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ASYMPTOTIC NORMALITY OF THE ANOVA ESTIMATES OF
COMPONENTS OF VARIANCE IN THE NONNORMAL,
UNBALANCED HIERARCHAL MIXED MODEL.

By PETER H. WESTFALL

Texas Tech University

Despite their lack of optimality in unbalanced normally distributed
models, the ANOVA estimates of components of variance are convenient and
widely used. The hierarchal (nested) design is well suited to this estimation
scheme. In this paper the nonnormal, unbalanced hierarchal design is consid-
ered and mild conditions for a sequence of such designs are specified so that
the vector of normalized ANOVA estimates converges to a multivariate
normal distribution. The nested structure permits an expression of the
estimates in terms of a sum of independent quadratic forms in mean zero
random variables plus smaller order remainder, and a theorem of Whittle
(1960) establishes the Liapounov criterion. Distinguishing features of this
paper are the limit theory of nonnormal unbalanced models and the al-
lowance that some variances other than the error variance may be null.

1. Introduction and results. The ANOVA estimates of components of
variance are widely used. Their popularity is attributable to the simplicity of
their formulation and computation, and to their wide exposure as estimates
routinely computed by packaged computer programs. The ANOVA estimates are
particularly appealing in the hierarchal (or nested) mixed model because the
computations are simplified considerably and the estimates are uniquely defined.

Despite their nonoptimality in unbalanced normally distributed models
(Olson, Seely, and Birkes (1976)), the ANOVA estimates have fared reasonably
well in simulation studies when compared to estimates such as maximum
likelihood, MINQUE, and I-MINQUE (Corbeil and Searle (1976), Swallow and
Monahan (1984)). These simulations compare the estimators under normally
distributed models for which the maximum likelihood and MINQUE-type esti-
mates are best suited.

Asymptotic theory for variance component estimates has been limited largely
to normally distributed or balanced models. Hartley and Rao (1967) and Miller
(1977) have considered asymptotic theory for maximum likelihood estimates in
the normally distributed case. While Miller’s results encompass a wide variety of
unbalanced mixed models, his theory is restricted to normally distributed models
whose variance parameters lie in the interior of the parameter space. Brown
(1976) has proven asymptotic distribution results for MINQUE and I-MINQUE
estimates of variance components in nonnormal models; however, his theory only
applies to models having a special balanced structure.
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By way of motivation, consider the following example, which is similar to one
given in Scheffé ((1959), pages 221-223): an experiment is tried in a factory with
t workers and a machine run by a single worker. Let y,; be the output of worker
ionday j,1<i<t¢1<j<n,; In the design phase of the experiment the n,
may be bounded by five, since there are five working days in a week; however,
due to scheduling problems, it is not possible to observe all workers exactly five
days. Thus, the experiment is designed to be unbalanced.

Assume the model y,; = p + a; + ¢,; with p fixed and {a,,..., a, 5.+, &,,}
independent mean zero random variables with Var(a;) = o7 and Var(e,,) = 0.
The analysis of variance (ANOVA) technique may be used to obtain estimates
for 02 and o?2; it is natural to question whether these estimates have a limiting
bivariate normal distribution under some conditions as the number of workers
becomes large. The fact that the estimate are quadratic forms in an increasing
number of mean zero random variables it not enough to guarantee normal
convergence, since there are instances for which such quadratic forms have
nonnormal limiting distributions (e.g., Fox and Taqqu (1985) and Varberg (1966)).

In this paper asymptotic distribution theory is given for the ANOVA esti-
mates in unbalanced, nonnormal hierarchal models. The conditions for conver-
gence are quite mild, not requiring that the data vector be composed of i.i.d.
subvectors. The nonerror components of variance are allowed to be null, and it is
seen that the error random components play a crucial role in the asymptotic
theory. In order to prove the central limit theorem, arbitrary linear combina-
tions of variance component estimates are represented approximately as summa-
tions of independent quadratic forms in mean zero random variables, and a
theorem on the expectation of absolute moments of quadratic forms due to
Whittle (1960) is employed to establish the Liapounov criterion.

2. The model. The model under consideration is

(1) Y=Uqa,+ U, + - +Ua,,
where Y has dimension n X 1, U; is n X m(i), and «; is m(i) X 1.Fori =0,..., ¢
let a; = (a;;,..., a,,,)- It is assumed throughout that

(1a) (fixed effects) a, is a vector of fixed unknown constants;

(1b) (nonerror random effects) for i = 1,...,¢ — 1, a; is a vector of i.i.d. mean
zero random variables such that E(a%) =02 > 0 and E|a,|**?° < oo for
some & > 0;

(1c) (error random effects) a, is an n X 1 vector of ii.d. mean zero random
variables such that E(e%) = 62> 0, E|ay|**?® < o, and Var(a?) > 0;

(1d) (independence of factors) ay, ..., a, are independent random vectors;

(1e) (ANOVA design matrices) U, is a matrix having exactly 1 one and m(i) — 1
zeros in every row and no columns containing all zeros, U, is the identity
matrix of dimension n X n; and

(1f) (hierarchal property) every column in U, is the sum of some of the columns
in U, , , for all 7 < ¢. Formally, letting u(i, s) denote the sth column of U,
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we assume for every (Z, j) such that 0 <i<j<c¢ and every se&
{1,..., m(i)} there exists a set of indices T(s, i, j) = {¢, ¢y ...} C
{1,..., m(j)} such that

(2) u(i,s) = X u(j,t).
teT(s,t, ))
&
Note that (1e) and (1f) imply that for 0 < i <j < ¢ the sets 1(s, i, j), for
1 < s < m(i), partition the set {1,..., m(j)}; in particular, this entails m(:) <

m(j). Equality m(i) = m(j) can obtain only if the design matrices U; and U,
have identical (up to permutations) columns; this would mean that the effects «,
and a; cannot be distinguished and that the ANOVA estimation scheme de-
scribed below cannot yield a unique set of estimates. Hence, throughout the
remainder of the paper it is assumed that m(i) < m(j); i.e., for every i < c there
exists some s € {1,..., m(i)} such that |T(s, i, + 1)| > 1. Assumption (i) (to
follow) is an asymptotic version of this requirement.

For example, the preceding one-way random effects model may be written as
Y = Ujay + Uja; + Usary, where Y = (y11,-co5 Yipysoovs Imtseevs Ymn, ) N =
rin;, Uy=(,...,1y = e}, U, is block diagonal with blocks e, , and U, is the
identity matrix of order n. Letting i = 1, j = 2 in (2) we have for s = 1,..., m,
u(l, s) = X, cpi1,0u2, t), where u(l, s) is the sth column of U,, u(2, t) is the
tth column of the identity matrix, and 7(s, 1, 2) is the set of indices

{Zn +1, Zn +2,. i } (defineXO:n,=O).

=1 i=1 =1

3. Main results. The model specified by (1a)-(1f) defines an experiment at
any point in a conceptual sequence of designs. In what follows, a sequence of
models satisfying (1a)—(1f) is defined for n increasing to infinity. Thus, all model
quantities are regarded as functions of n; however, for the sake of simplicity the
dependence on n may at times be omitted.

Define »(i, s) = u'(i, s)u(i, s); i.e., »(i, s) is the number of times factor i is
observed at level s. The sequence of hierarchal models is specified as follows:

ASSUMPTION (i). n~'m(i) » a; for 0 <i<c, where 0 =a,<a, < -+ <
a.= 1.

AssUMPTION (ii). There are universal constants k2, K, with 0 < & < K < oo,
such that 2 < n »(0,s) < K, forall n and s = 1,..., m(0).

(Note that »(0,s) < XP»(0,¢) = n and »(0,s) > 1; hence, all that is really
required here is that n~'»(0, s) > & for all n.)

AssUMPTION (iii). There is a universal constant M such that »(i, t) < M for
all n,1 <i<candl<t<m().
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These three assumptions are quite mild: In many nested designs it is easy to
imagine the model comes from a sequence satisfying Assumptions (i)-(iii); a
particular application is considered in Section 5.

To define the estimates, let P, = U(U;U,)"'U; for i = 0,...,c and let g, =
Y(P,— P,_))Y for i=1,...,c. Then (eg, Searle (1971), pages 443-445) the
ANOVA estimates may be obtained by equating the g; to their expectations and

solving for o2, ..., 02 Because U/(P, — P,_;) = 0 for j < i, we have
(3) q.= X X oU/(P,— P_)Uay

j=1k=i
and

E(q;) = 012(’1 - tr(l]i/})i—ll]i)) + Z °j2tr(Uj'(Pi - ‘I)l—l)l]j)

j=i+1

Writing @, = (¢1,qs,---,q.) and = = (07,03,...,07), we have E(n'Q,) =
F,S, where F(n)=1—n""t(U/P,_U); F(n)=n""te(U/(P, ~ P,_)U)) for
i <j,and F,(n)=0for j <iIf F, is invertible, then

(4) 2., =n"'F,'Q,

is the vector of ANOVA estimates. A sufficient condition for invertibility of F,, is
that C(U,) ¢ C(U,) ¢ -+ < C(U,), where C(-) denotes vector space spanned
by column vectors. This condition is implied by our assumption that m(i) <
m(i + 1)fori =0,...,c — 1, and is also guaranteed as n = oo by Assumption (i)
and the conditions (1e) and (1f).

We will study the asymptotic behavior of the vector @,, from which the
results for ﬁn will readily follow. In particular, we have the following:

MAIN LEMMA. Given the model definitions (1a)—(1f) and Assumptions (1)—(iii),
and for any d € R¢ — {0}, then [Var~'/*(d'Q,))(d'Q, — E(d'Q,)) converges
weakly to N(0,1).

Assumptions (i)—(iii) are not sufficient to insure that the covariance matrix of
the normalized estimates n'/%(Z, — =) converges. In order to assert convergence
of this covariance matrix we assume the following:

ASSUMPTION (iv). F,; — F, where F is invertible.
ASSUMPTION (v). n~'Cov(Q,) — A, where A is positive definite.

These assumptions may seem somewhat stringent at first glance; however,
they are actually only mild strengthenings of Assumptions (1)—(iii). That these
assumptions are consistent with Assumptions (i)—(iii) is demonstrated in Section
4, Lemmas 1 and 2, and is further illustrated in the application of Section 5.
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Thus we have:

MAIN THEOREM. Given the premises of the main lemma, and adding As-
sumptions (iv) and (v), we have that n'/* (2, — £) has a limiting c-variate
normal distribution with mean 0 and covariance matrix (F~)A(F~ Y.

4. Proofs. Asymptotic notation and conventions are as follows: If {a,} is a
real sequence and f(n) is a positive real function of n, then a, = O(f(n)) if
f(n)~'a,| is bounded away from o, and a, = o( f(n)) if f(n) 'a, — 0. If {x,)}
is a sequence of random variables, then x, = o ( f(n)) if f(n)™'x, converges to 0
in probability. The following convenient notation is less familiar: a, = B(f(n))
if f(n)"'a, is bounded away from both 0 and oo for all n large.

In order to establish consistency of Assumption (iv) with (i)-(iii), it is
necessary that the elements of F, are bounded and that F, does not approach
singularity for increasing n. These results are established in Lemma 1.

LEMMA 1. Suppose Assumptions (i)-(iii) hold. Letting F, be defined as
E(n"'Q,) = E,=, we have ‘

(a) F;(n)=0Q) forall1 <1, j<c, and
(b) det(F,) = B().

Proor. We first establish the order of magnitude of |T(s, i, j)|, where |- |
denotes cardinality.

For 0 <7 <j < c note that »(i,s) = X,cq, . j(J, t); since »(0,s) = B(n)
and v(Jj,t) < M for j=1,..., c this establishes

5) |T(s, i, j)| = B(n), 1<s<m(0),0=1<j<ec,

<M, l<s<m(i),l<i<j<e.

We now establish order of magnitude for n~'tr(U/PU;). For 0 <i<j<c¢
note that

m(t)
t(U/PU) = u{(UU) " UUUU = X v (i) X (), 1)
s=1 teT(s,t, J)
Thus we have
6) n“tr((JjE(Jj) = 0(1), 0=i<j<e,
=B(1), 1l=<i<j<e.
Equation (6) establishes (a).
Because F, is upper triangular, we need only show F;;(n) = B(1)fori =1,..., ¢
to prove (b). Note that

m(i—1)

F(n)=1-n"1" Y »'(i-1,s) Y v2(i, t).

s=1 teT(s,i—1,i)
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Since »(i, t) = 1 and
Y v(i,t)=»(i—1,s),
teT(s,i—1,1)
we have

vH(i—1,5) = Y Y v(i, t)v(i, t')

teT(s,i—1,i) 'eT(s,i—1,1i)

Y v2(i,t) + (|T(s,i—1,i)| - )»(i — 1, s),

teT(s,i—1,1)

\%

implying that
v Y (i—1,s) Y v2(i,t) <w(i—1,s8) — |T(s,i—1,i)| + 1.
teT(s,i—1,1)

Hence,
m(i—1)

F,(n)=1-n"" Y (v(i—-1,s)—|T(s,i—1,i)|+1)

=1-nYn-m@i)+miE-1)=n"m()—-n"'m(i-1).

Part (b) of Lemma 1 now follows from Assumption (i). O
The consistency of Assumption (v) with (i)—(iii) is demonstrated in Lemma 2.

LEMMA 2. Suppose Assumptions (i)—(iii) hold. Then any d € R¢ — {0},
Var(d'Q,) = B(n).

Proor. We first note the intimate relationship between the variance of a
quadratic form and the sum of squares of the defining matrix in a special case
relevant to this paper: Let a = (a}:a%: --- :a,) and let A be an m X m
symmetric matrix composed of m(i) X m(j) submatrices A;; (here m = Ym(z)).
Letting E(a?) = p;, we have

c c c
(7) Var(«’Aa) =23 Y ofoftr(AijAji) + (,ui — 30 )tr( A, diag(A;))
i=1 =1 i=1
and
(8) ktr(A’A) < Var(a’Aa) < K tr( A’A),

where k= min,_;_ {20/ A (p;— o)} and K = max,_,;_ {20V (n;— o)},
and the notations j A & and j V k refer to min(j, £) and max(J, k), respec-
tively. Equation (7) is verified by direct computation, and (8) follows from
(7). For the remainder we let S(A) = tr(A’A) for any (not necessarily square)
matrix A.
Using (3) and interchanging the order of summation we have
c c Jnk

(9) dQ,= 2 X Uy 2 di(P, = P_))Upa,.
i=1

J=1k=1
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To demonstrate that Var(d'@,) = O(n) it will suffice to show that S(U/PU,) =
O(n)for0 <i<jAEk
Fori=jAkand1l <j <k <c wehave

m(Jj)

S(UPU,) = S(UU,) = X Y vk, t)=0(n).

s=1 teT(s, j, k)

By symmetry the same holds for1 < 2 <j < ec.
Suppose that i <j A kand 1 <j < k < ¢. Manipulation of the trace operator
and the Cauchy-Schwarz inequality gives

(10) S(U/PU,) < SA(U/PU,)S(U{PU}).
Now,
m(i) 2
SWpY) = v is)| T G0}
s=1 teT(s, i, j)
hence,

S(U/PU,) =0(1), O=i<j<ec,

(11)

=B(n), 1<i<j<ec.

By symmetry we have the same result for 2 < j; combining (10) and (11) yields
Var(d'Q,) = O(n).

To complete the proof that Var(d'®,) = B(rn) we need only show that
n~'Var(d’Q,) is bounded away from 0 for n large From (9) obtain d'Q, = «’'Ga,
where G is composed of submatrices G, 'virkd (P, — P._)U,. Using an
argument similar to that used to prove (8), 1t may be shown that Var(a’Ga) is
bounded below by a quantity that depends only on the lower right submatrix
G. =X, d(P, — P_)). It then follows that

Var(d'Q,) = (20 A (p. — 0f))tr(G,G..)

cecrcee

= (20 A (p. ))gd tr(P,— P_))

a

(20 A(p. )) Z 2(m(i) — m(i — 1)) = B(n);

since at least one d, is nonzero, o2 > 0, Var(o?) > 0, and m(i) — m(i — 1) =
B(n). O

The crucial role of the error random effects in the asymptotic theory has just
been established: Regardless of whether 62 = 0 (or for that matter, 02 > 0 and
Var(o2) =0 for i=1,...,c — 1), Var(d'Q,) = B(n) due to the error effects.
This fact is essential in the application of the central limit theorem.
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PROOF OF MAIN LEMMA. For arbitrary d € R¢ — {0}, Equation (3) gives

Yd X
i=2 Jj=1

(XUJ'P Pl)Ukak+dZ ZaUPUkak

i J=1k=1

Tmo

—d, Y. X «U/PUse, = 6(n) — R(n) (say).
Jj=1k=1
By (10) and (11) the variance of R(n) is O(1), while Var(d‘Q,) is B(n) by
Lemma 2. It follows that if [Var~'/%(0(n)}]{6(n) — E(8(n))} converges weakly

to N(0,1) then so does [Var~/%d'Q,}1{d'Q, — E(d’',)}. We now show that
0(n) may be expressed as a sum of independent random variables.
For 1 <i <j A k, note that

m(i)

a}U/PiUkak = Z Z Z ajtakt’Vil(LS)V(j’ t)"(krt')

s=1teT(s,i,j)t'eT(s,i, k)
(12)

m(1)

= Z Z Z Z (thaktzV_l(i,S)V(:j,t)V(k,t,).

r=1seT(r,1,i) teT(s,i,j) 'eT(s,i, k)

Substituting (12) in the expression for #(n) and interchanging the order of
summation we have

m(1)

sm=-T{Lery T ¥

=it k=i s€T(r,1,i) teT(s,i,J)

ajtakt,v_l(i, s)v(j, t)v(k,t")

“YayY Y ¥ 5

=i k=i seT(r,1,i—-1) teT(s,i—1,j)

X Y aj,akt,v_l(i— 1,8)v(J, t)v(k,t)

teT(s,i—1,k)

WYY ¥ X

Jj=1k=1s€T(r,1,1) teT(s,1, ))

-
I

N
~

X Y ajtak,,v_l(l,S)V(j,t)v(k,t’)}

t'eT(s,1, k)

m(1)

= ; X(r).

Let H(r) = {a,|a;, appears in the expression for X(r)}, and'let H = UZXVH(r).
Since T(r,1,i) for r = 1,..., m(1) partitions (1,..., m(i)) forall i =1,...,¢, it
follows that { H(r)} partitions H; hence, X(1),..., X(m(1)) are independent.
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Since for 1 <i<j<e |T(r,i,j)|<M and 1<u(i,j)<M, X(r) is a
quadratic form in a uniformly bounded number of independent mean zero
random variables, with all coefficients uniformly bounded. Letting X(r) =
x!A(r)x,, it follows from Theorem 2 of Whittle (1960) that

E(x}A(r)x, — E(x[A(r)x,)|**®) < L(2 + 8)D[S(A(r))]' "2,

where L is a function of (2 + &) only, and D is a constant such that

E(la,|*"?) < D, i=1,...,c. Since the dimension and coefficient of A(r) are
bounded uniformly in r = 1,2,..., m(1),
m(1)

X E(1X(r) = E(X(r))**?) = O(n).

r=1

Since Var(6(n)) = B(n), the Liapounov criterion as applied to X(1),..., X(m(1))
follows, and [Var™?(d’@,)l(d'Q, — E(d’Q,)) converges weakly to N(0,1) for
allde R“— {0}.O

PROOF OF MAIN THEOREM. Results to this point have not depended on
Assumptions (iv) and (v). Invoking these assumptions and Slutsky’s theorem
yields that {d’(F~Y)AF~'yd}~/*(d'n"/* £, — =)} converges weakly to N(0,1)
for all d € R¢ — {0}, implying the results. O

5. An application. A simple example of an unbalanced hierarchal model is
the one-way classification y,; = p + a; + ¢, fori =1,...,¢ j=1,..., n, where
p is fixed and the remaining variables are independent with mean zero and
variances Var(a;) = o and Var(e,;) = o2. We require that a,...,a, are ii.d.
with Ela,|*"?® < o0, ¢,..., &, areiid. with Ele; |**?® < oo, and Var(e}) > 0.

In order to satisfy Assumptions (i)—(v), it is sufficient that n = ¥n, » oo in
such a way that n,<M, n 't >ce€(0,1), n"'Tn? >y and n 'Tn;' > ¢
Assumptions (i)—(iii) are satisfied by n, < M and n~'t - ¢ € (0,1); the remain-
ing assumptions insure that F, and n~'Cov(Q,) converge. Once convergence is
established, invertibility follows from Lemmas 1 and 2.

For such a sequence of models n'/%(62 — 02, 62 — 02)’ has a limiting bivariate

a’ “e

normal distribution with mean 0 and covariance matrix

(F)A(F Y

e
1

(13) B [ —2¢(1 - ¢) ot 2(1—¢) of

+ [vka +(E-c)1-¢) "k, (=81 -0c) "k, }

2yo! + 40262 + 2¢(1 —¢) 'of  —2¢(1 - 0)4104}

(c2-¢)1 —c)_Zke (1 —2c+£)(1—c)"2ke

where k, = E(a}) — 30! and k, = E(¢}}) — 30,
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In the balanced case n; = m (fixed), c=m™', y =m, and ¢ = m™2 In this
case

-1 -1
(FYAF Y = 2mo;+4ofof+2(m—1) of -2lm-1) o}

(14) —-2(m—1)" "o} 2(m — 1) 'mao?

mk, O

+1 o k|
From this expression it is readily apparent that asymptotically level-robust
procedures are available for testing Hj: 62 = 0 in the nonnormal balanced case
(as noted by Scheffé (1959), page 344). In the unbalanced case it is clear from (13)
that the same test is asymptotically conservative for £, < 0 and asymptotically
liberal for k&, > 0. The extent to which the test is conservative or liberal depends
largely on the quantity (£ — c2).

Apart from a constant of proportionality, the covariance matrix (14) is
identical to that obtained by Brown (1976) for the MINQUE estimators when
m = 2. (Brown uses ¢ as a normalizing constant. It is well known that the
ANOVA and MINQUE estimates coincide in the standard balanced models.)

6. Concluding remarks. The asymptotic normality of the ANOVA esti-
mates establishes the asymptotic validity of inferential procedures when the
random effects have normal distributions (or more generally, when kurtosis
parameters are null). It is seen that in some balanced cases, asymptotically valid
procedures for testing whether a component of variance is null are obtained
when the kurtosis parameters are nonzero. In cases where the design is unbal-
anced and the kurtosis parameters are nonzero, the results give a means of
assessing the degree of nonlevel robustness of normal-theory based inferential
procedures when a priori information on the “tailedness” of the random effect
distributions is available.
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