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ASYMPTOTIC DISTRIBUTION OF THE SHAPIRO-WILK W
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Washington State University

Twenty years have elapsed since the Shapiro-Wilk statistic W for
testing the normality of a sample first appeared. In that time a number of
statistics that are close relatives of W have been found to have a common
(known) asymptotic distribution. It was assumed, therefore, that W must
have that asymptotic distribution. We show this to be the case and examine
the norming constants that are used with all the statistics. In addition the
consistency of the W test is established.

1. Introduction. A popular test for the normality of a random sample is
based on the Shapiro-Wilk statistic W. This statistic, which was presented in
Shapiro and Wilk (1965), is the ratio of the square of the BLUE of ¢ to the
sample variance, where o? is the variance of the normal population from which
the sample is assumed, under the null hypothesis, to have been drawn. For
convenience we shall work with W'/2, which has the form

n 1/2
w2 = X’V()_lm/{Z(Xi _ X)zm/‘/o— IVB— lm} ,
1

where X = (X,,..., X)), X, < X, < --- < X, is the vector of order statistics
from the sample, X is the sample mean, and m is the mean vector and V, the
covariance matrix of standard normal order statistics. As W'/? is location and
scale invariant we can assume henceforth that X,,..., X, are order statistics for
a sample from a N(0, 1) population.

A number of authors (for example, Sarkadi (1975), (1977); Gregory (1977))
have (correctly) guessed at the form of the asymptotic distribution for W as well
as predicting that the test should be consistent. However, no rigorous proofs
have been possible due to the presence of V; !. Neither V; nor V; ! can be found
explicitly and until recently no reasonably accurate asymptotic approximation
for V, was available. A paper by one of the authors (Leslie (1984)) has now
remedied the situation. In that paper an approximation for V, together with a
number of asymptotic properties of V, can be found, one of which is of particular
importance to this work. It states that m is approximately an eigenvector of V!
in the following sense:

(1) Vo 'm — 2m|| < C(log )~ '/?,
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where C is a constant independent of n, and |jb||* = £b? for b = (b,,..., b,).
This latter result formalises a similar one appearing in Stephens (1975).

The asymptotic distribution of W, after appropriate normalising, has been

assumed to be the same as that of the De Wet and Venter (1972) statistic

W* = r?(X,H);
here r(X,Y) is the sample correlation coefficient between X and Y, H is the
n X 1 vector whose ith element is ® '{i/(n + 1)}, and ® (-) is the in-
verse function for the standard normal distribution function ®(-), that is,
O (®(x)) = x.

The rationale behind this assumption was that first, V; 'm was known to
behave like 2m (see Stephens (1975)); second, ® ~'(i/(n + 1)} approximates the
ith element of m, and third, as V; is a doubly stochastic matrix (the sum along
any row or column is 1), we may write

W =r3X,V; 'm).

De Wet and Venter (1972) showed that the asymptotic distribution of W*
has the form :

(2) 2n(1 - W*/2) —q -, ¢,
where { = E3(Y? — 1)/i, {Y,, i > 1} is a sequence of i.i.d. N(0,1) variates,
3) = ()7 T -De(e (D)) 7] - &

i=1

J=1/(n+ 1), and ¢(-) is the N(0,1) density function.

Beyond the De Wet and Venter result the first step toward the asymptotic
distribution for W was to show that the Shapiro-Francia (1972) statistic W,
given by

W' =r%X,m),

behaves in the same way as W *. This was done independently and via different
routes by Verrill and Johnson (1983) and by the authors in Fotopoulos, Leslie
and Stephens (1984) (henceforth called FLS), where expression (2) was estab-
lished with W7 in place of W*. In fact we show in FLS the equivalent result
that

+

(4) n(W*/2 — W1/2) - 0 in probability.
Our task in the present paper is to show that
(5) n(WY2 — Wi/2) 5 0 in probability.

We note that Verrill and Johnson (1983) contains a result (Theorem 3) that
should eventually cover the asymptotic distribution of W. However, certain
properties of V7 'm need to be established before it can be applied. Inequality (1)
does not appear to be enough.

2. Asymptotic properties of W and a,. The following theorem presents
one version of the asymptotic distribution for W—in fact the asymptotic
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distribution for W'/2—whilst the corollary offers the complementary form in
terms of W.

THEOREM. Under the hypothesis that the observed sample is from a normal
population, the asymptotic distribution of the Shapiro-Wilk W takes the form:

2n(1 — W%) — 2En(1 — W'/2) - ¢,

where { = Y2(Y? —1)/i, and {Y,,i > 3} is a sequence of i.i.d. N(0,1) vari-
ables.

From the following lemma and the theorem we have Vn (1 — W'/?) - 0 in
probability, which leads to

2n(1 — W¥2) —n(1 - W) = (Vn(1 - Wl/z))2 — 0 in probability.

Again applying the lemma below we obtain

COROLLARY. An equivalent form for the asymptotic distribution of W is

n(W—EW) -, - ¢.

It is not obvious from their definition just how the constants a, will behave
as n gets large. The following lemma should shed some light on this matter.

LEMMA. The constants a, defined in (3) have the following properties:

() a, — 2nE{1 — r(X,b)} — 0, where b can be any of m, 1V, 'm, or H;
(ii) a, — nE1 - W) - 0;
(iii) Ja, — n(1 — n"'m'm) + 2| < C(logn)~}; and
(iv) Cyloglog(n) < a, < Cyloglog(n), 0 < C, < C, < .

Note that (iii) implies that
mm=n-a,— 3+ o(1).

As far as we are aware, this property of m'm has not appeared elsewhere; the
behaviour of m'm is of interest in other contexts and has been the subject of a
number of papers (see for example, Balakrishnan (1984), Ruben (1956) and Saw
and Chow (1966)).

It should be pointed out that the convergence for (i) and (ii) in the lemma is
extremely slow; for example a, — 2En(1 — r(X,m)) = —0.1 for 40 < n < 400. It
is, therefore, unclear which set of norming constants is best to use.

When Sarkadi (1975) established the consistency of the Shapiro-Francia test,
it seemed likely that the Shapiro-Wilk test would share that property. That it is
indeed consistent will follow from a straightforward application of a result in
Sarkadi (1981).
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3. Proofs.

NoTATION. We give some notation that will be used throughout the rest of
the paper. With or without subscripts, C is a generic constant that is indepen-
dent of i and n. Set g = ;Vy 'm, nG? = g’g, nM? = m'm, N as the integer part
of I(n+1), §2=IKX, - X)/n, ¥(v) = @ Yexp(—v)}, s; = Tiv Y,
¥, = Y(s;), and W, = —log(®(X;)) — s;. Note that W, + s, is the ith largest
order statistic in a random sample from an exponential distribution; EW, = 0,
EW? =d,,, where d,;,, = Z7v"% EW3 = 2573 and |EW/| < Ci 2 for r > 3.
Denote the ith element of g, m, and H by g;, m,, and H,, respectively (m and H
are given in Section 1). Further, as r is scale and location invariant we assume
without loss of generality that our sample is from a N(0, 1) population.

PROOF OF CONSISTENCY. The consistency of W follows directly from Theo-
rem 1 of Sarkadi (1981). There is a small difficulty in that whilst it appears to be
the case that V; 'm is a vector whose elements, as you move down the vector, are
monotonic increasing, we are unable to prove it. This means we cannot establish
that W'/ is always positive. Sarkadi exploits the fact that W'/2 is always
positive to argue that tests based on W1/2 are equivalent to those based on W,
We need to argue likewise for W. (Note: we distinguish between W'/2 W11/2
etc., and the square roots of W, W, etc.; it is true that W = (W'/2)?, but in
view of what has just been said, we are unable to say whether W1/2 is the
positive square root of W.) We overcome this difficulty by showing that

(6) WY2 > —C(logn)~"?, C independent of 7.

From the theorem and the lemma, the 100a% critical region for the test based on
W2 is W% <1 — L(c(a) + a,)n"". For the test based on W it is W <1 —
(c(a) + a,)n" . By (6) the two critical regions are asymptotically equivalent. We

need only show, therefore, that W'/ is consistent. We establish (6) by setting 1,
to be an n X 1 vector of 1’s and writing

WY% = {(X - X1,)(g — m) + X'm}/(nS,G,).

As X’m > 0 provided only that the components of X are increasing (see Sarkadi
(1975), Lemma 2), and from (1), max|g; — m;| < C/ /(log n), we have, with the
help of (21),

W2 > —cfp(,. - X|/{nS,G,/(logn) } = —C/{(logn) .
1

We turn now to Theorem 1 of Sarkadi (1981). Applied to our context, it states
that W'/2 will determine a consistent test of H,: that the random sample is
normal, versus H,: that the observations are not normal (Sarkadi also allows the
observations under H, to be m dependent with common nonnormal marginal)
providing

(7) igiGn_l/I(i— 1<nu<i)® Yu)du=1+o0(1),
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where I(A) is the indicator function of A. Note that Sarkadi’s theorem is framed
in terms of a statistic 7),, which here takes the form

Tn = Z{(Xt - ‘Y)n_l/zsn_l - cin}2 = 2(1 - Wl/z),
1

where ¢, Vn = g,/G,. To establish (7) we require results contained in the proof
of both our lemma and theorem; therefore, we will leave the derivation of (7)
until the end of the article.

PRrROOF OF LEMMA. We start by showing (iii). Observe that
N
n(l - M?) = 2{2Var(x,.)} — (2N — n)Var(Xy).
1

We can write
Var(X;) = E{y(s; + W;) — Ey(s, + W) }".

Expanding ¢ in W, up to third order terms, using the properties of W, given in
the section on notation and, together with results in Leslie (1984) (in particular,
Lemma 6 and the properties of ¢ given in Section 3), we can show that

|Var(X;) — {¥/(s)}°d, | < Clillog(n/i))} 7,
where y/(s;) = {exp(—s;)}/d(® (exp(—s;))) and d;, = X?» 2. This yields

N N
(®) LVar(X,) — X (¥/(s:)) din | < C(logn) .

1 1
Using the Euler-Maclaurin summation formula (Knopp (1951), page 534)
(9) 0<s,—log((n+1)/i) — (i ' —(n+1)7") < (i?2-(n+ 1)‘2}/12
and

(10) 0<dy,-i{1-(i/(n+1)} - 3{i?—(n+ 1)'2} < 1/(6i%).

In FLS we show that |y/(v)| and |{//(v)| are monotonic decreasing in v; also in
Lemmas 1 and 4 in Leslie (1984) it is shown that

(11) |¥{log((n + 1)/i)}| < C{log(n/i)}
and
(12) |¥{log((n + 1) /i) }| < C{log(n/i)} ~*.

With (9), (10), and (11) we have
13)  [{w(s)}(din— i Y1 = (i/(n+1))})| < Ci~*/log(n/i),
(14) [{¥(s:)}" = (¥{log((n + 1) /i)})?| < Clw/(e) ¥ () /i,
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where log{(n + 1)/i} < a; < s;. Expressions (11)-(14) taken together imply that

N
Y{¥(s))dy~ (n+1)7°
1)
x ¥ (@ '(i/(n+1))}) i{1 —i(n+ 1)7"}| < Clogn) "
1
From the definition of a, and with (8) and (15) we obtain (iii).

Next we establish (1V) A well known inequality is useful here (see Renyl
(1970), page 164); for x < 0,

(16) ¢(x)(1 —x72)/|x| < @(x) < ¢(x)/|x].
From this we obtain, for 1 < i < N and with x = H,,
(17) 1-H 2<z| |/{(n+1)¢(H)}<1

In view of the symmetry in the summands in a,, we need consider only
1 <i< N. We use (17) over the range 1 < i <[;N] and for [[N]<i < N we
use

(18) C, < ¢(H)(i/(n+ D)){1 - (i/(n+ 1))} <G,

where C,, C, do not depend on i or n. Based on (16) we show in Lemma 3 of FLS
that for any ¢, (0 < ¢, < 1) there is a y(c,) such that when 0 < u < y(¢;) < 3,

(19) — {—log(27u?)}"* < & (u) < —{ —colog(2qruz)}l/2
This yields, for 1 <i < N,
(20) Cy{log(n/i)}'* < |Hy| < Cy{log(n/i))""".
Applying (17), (18), and (20) we find

[N/2] [N/2]

Cs ¥ {ilog(n/i)} '+ Co<a,+2<C; ¥ {ilog(n/i)} " + G,
1 1

which, after approximating the sum by an integral, establishes (iv).
To complete the lemma we prove (i) and (ii). First, however, we need two
results that will be used here and in the proof of the theorem:

(21) G,—»1 asn— o0
and
(22) 0 < |m|| [lg]| — m'g < M,G, g — m]|>.

It is well known that M, > 1 as n — oo (see Hoeffding (1953)). On writing
G:=M?+2m(g—m)n~'+|g —m|?n"}, from (1) and the Schwarz in-
equality we obtain (21). We demonstrate (22) by exploiting an idea in Sarkadi
(1972). First note that m'g > 0, for m’g = m’V;, 'm and V,,, being a covariance
matrix, is positive definite. Set § to be the angle between m and g; then
cosf >0 and 0 < @ < ;7. Consider the triangle formed by vectors m, g, and
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a=m — g, lines AB, AC, and CB, respectively. Let CD be the perpendicular
from C to AB. Then |a||2 > (CD)? = |g||%sin?d = ||g||%(1 + cos )(1 — cos §) >
llgll2(1 — cos @) > 0. As cos § = m'g/{|im|||Ig||}, (22) follows.

Returning to the proof of (i) and (ii) of the lemma, we show first that

(23) |[nE(1 - r(X,b)) — n(1 — M,) + 2| < C(log n)~.

As r is scale invariant and as S? is sufficient for the scale parameter o, we can
use Theorem 7 of Hogg and Craig ((1970), page 243) to yield

nEr(X,b) = m’b/{ ES,|b|ln""/2}.

With nS? distributed as x? on n — 1 degrees of freedom it is elementary to show
that

ES, = (2/n)"’T(n/2)/T((n - 1)/2).

By Stirling’s formula this reduces to 1 — (3)n™! + O(n"%). As n” 3| > 1
(the case b = H is shown in Lemma 2 of De Wet and Venter (1972)), and using
(1), (22), and an analogue of (22) with g and G, replaced by H and

H, = /{(H'H)/n} (this analogue holds because mH; > 0 for all i; m; and H,
always having the same sign), we have

En{1 - r(X,b)} = n(ES,) {1 - (3)n"' = n”V2mrb|| "'} + O(n"?)
= n(ES,) (1 - M,) - (3) + O(logn) "’
=n(l-M,) - (3) + O(logn) ",

the latter expression resulting from the fact that n(1 — M,) = O(loglog n)
(using (iii) and (iv) of the lemma and recalling that M, — 1). This establishes
(23). Analogous to (23) for b = g we have

(24) |nE{1 - r¥(X,g)} —n(1 - M?) + 3| < C(logn)™".
To show this we note that as nES2 = n — 1, we can write
nEr’(X,g) = E(X'g)"/{(n - 1)G}}
with
E(X'g)’ = g'Vog + ('m)” = {mg + (g'm)’
= $nM,G, + (nG,M,)" + O(n/logn),

using (1) and (22). Again using the property that n(1 — M,) = O(loglog n), we
obtain (24). As

(25) 2n(1—-M,) - n(1—-M?2)={Vn(1- M,,)}2 = O{(loglog n)z/n},
it is clear from (23), (24), and (iii) of the lemma that (i) and (ii) hold. O

Undoubtedly it is true that a, — En{l — rX,b)} - 0, for b = m and H.
However, this entails showing that ||V,;H — 2H|| » 0 and ||Vym — 2m| — 0,



1504 J. R. LESLIE, M. A. STEPHENS AND S. FOTOPOULOS

both of which will follow once V, is replaced by the approximation V given in
Leslie (1984): Corollary 1 in Leslie (1984) permits this. These two results involve
a quantity of tedious analysis and it seems unnecessary to set it down here.

ProOOF OF THEOREM. The theorem follows from (2), (4), and (5) together with
the lemma; therefore, to prove the theorem it remains to establish (5). Now

nS,(W2 — wh/2) = ¥ X,(g.G.* — m;M; ')
1

= Z(Xi - mi)(gi - mi)Gn_l
+ X (X; - m)m (G, — M ') + (m'g — |im]||ig])G, .

As S, — 1 a.s. and with (21) and (22), expression (5) will follow from Markov’s
inequality once we demonstrate that

(26) ElE(Xi -m;)(g — mz)| -0
and
(27) E|X(X;— m)m,(G;' — M;)| > 0.

Result (26) follows from the Schwarz inequality:

ElZ(Xi -m;)(& — mz)| = {n(l - Mf)}wllg — m|.

With (1) and with (iii) and (iv) of the lemma we have (26).
To deal with (27) we note that in Lemma 11 of FLS

(28) E|X; - ;| < C/y{ilog(n/i)}

and in Theorem 1 in FLS

(29) Wi — my| < Ci~Y{log(n/i)} ~¥%

both of these bounds hold provided 1 < i < N. As ||m| — ||g||| < |m — g]},
(30) |Gt — M| < |m — g||/(M,G,/n) < C(nlogn)~"*

and

N
(31) E|Y (X, — m)m,| < 2Y(EIX, — ¥lmy| + |p; — m,||m,]).
1

From (29), (9), (20), and the monotonicity (decreasing) of [{(v)|,
(32) Im;| < C{log(n/i)}"?, 1<i<N,
so by combining results (28) to (32) we find

E|Y (X, — m)m,{G;* — M;}| < C(logn) ™"~
This establishes (27) and hence the theorem. O
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DERIVATION OF EXPRESSION (7). Denote the integral in (7) by J(i, n); then
-¢{® Y(1/n)}, fori=1,
T, n) = | @G- D/m)n 7 + 1n-2(p{@ (i - 8)/n)}) ",

0<f<1,1<i<n,
o{® 1 -n"")}, fori=n.

Without loss of generality, assume n is even. Then
n/2

Y&d(i,n)/G,=2n"" Y g(® (i - 1)/n}
1 i=2
+in {o{@ (i - 0)/n)}) )
+28,4{27(1/n)}.
By (16), for 1 < i < 3n,
${@ (i - 8)/n)} = ¢{® (i - 1)/n)}
- (i-1)@ Y(i-1)/n}/n, 2<i<kn, k<j
| C(k), kn <i<in.
Thus by the Schwarz inequality,

n/2

n~? §g,~/¢{¢>“((i —0)/n)}

kn—1 n/2
< n_l/an{ Y {i(I>‘1(i/n)}_2 + Y C(k)_zn‘z},
1 kn+1
which in turn is bounded by C{nlog(n)} /2, in view of (19). Further, by (16)
and (19), ¢(®~'1/n)) ~ O((log n)/n); by (1), &, ~ m,; and with (32) and
finally (22) we can argue that
n/2 n
2n ' Y g Y(i—-1)/n} ~n' Y g@ {i/(n+ 1)}
2 1

~n"'mg ~ M,G,.
These ensure that (7) holds. O
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