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ON A CONVERSE TO SCHEFFE’S THEOREM

By T. J. SWEETING

University of Surrey

In Boos (1985) equicontinuity conditions are given which ensure the
uniform convergence of densities in R*, given convergence in distribution. In
the present note we show that such equicontinuity conditions in fact char-
acterize uniform local convergence with no additional assumptions on the
sequence of densities, or on the limit density. Versions of these results are also
given when the distributions depend on an unknown parameter; these forms
will be relevant for the uniform approximation of likelihood functions.

1. Introduction. In Boos (1985) it is shown that convergence in distribution
entails continuous convergence of the corresponding densities under boundedness
and equicontinuity assumptions regarding the sequence of densities. This result
follows from the Ascoli theorem regarding the sequential compactness of families
of functions. It is further demonstrated in that paper that a strengthening of
these conditions leads to uniform convergence of the densities over the entire
Euclidean space. The results are applied to the problem of proving local limit
theorems for translation and scale statistics.

The main purpose of the present note is to show that such equicontinuity
conditions are also necessary for the stated convergences. Additionally, it is not
actually necessary to assume continuity of the individual densities in these
results, nor even the existence at the outset of a density for the limit distribution.
When local limit results are required for the construction of likelihood functions,
it is also necessary to have uniform convergence over compact subsets of the
parameter space; this matter is discussed in Section 3.

2. Uniform convergence of densities. We borrow the notation in Boos
(1985): Let (G,,) be a sequence of absolutely continuous (wrt Lebesgue measure )
distributions on R*, and let (g,) be a corresponding sequence of densities. We
seek necessary and sufficient conditions for the sequence (g,) to converge uni-
formly to some density g. Since we do not assume here that the g, are
continuous, we require the following slight modification of equicontinuity. As in
Boos (1985) we let | - | on R* be the maximum absolute coordinate. We shall say
that a sequence of real-valued functions (u,) on R* is asymptotically
equicontinuous (a.e.c.) at x € R* if given ¢ > 0, there exist 8(x, ¢), n(x, ) such
that whenever |y — x| < 8(x, €) then |u,(y) — u,(x)| < e for all n > n(x, ). The
sequence (u,) is a.e.c. if it is a.e.c. at each point x of R*. Likewise, we say that
(u,) is asymptotically uniformly equicontinuous (a.u.e.c.) if it is a.e.c. and
d(x, €) = 8(¢), n(x, €) = n(e) above. (These definitions actually coincide with the
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definitions of equicontinuity and uniform equicontinuity given in Boos in the case
of continuous u,; the addition of the word “asymptotic” better describes the
concepts, however, especially in the case of discontinuous u,.) Finally, the
sequence (u,) is bounded if sup,|u,(x)| < M(x) < wo for each x € R% The
following theorems clarify the position in Boos (1985). We use the symbol = to
stand for weak convergence.

THEOREM 1. The following two statements are equivalent.
(1) (&,) is a.e.c. and bounded, and G, = G.

@) g, — & pointwise, uniformly in compacts of R, where g is
the continuous density of the distribution G.

ProOOF. (1) = (2). In the case of continuous densities (g,) and g, the result
follows from the Ascoli theorem along with Scheffé’s theorem, as given in Boos
(1985). However, it may readily be checked that the proof of the Ascoli result (as
given in Corollary 31 of Chapter 9 in Royden (1968), for example) goes through
for a general a.e.c. sequence (g,,) of (not necessarily continuous) functions with
virtually no change; we omit the details. The convergence of any subsequence
(&,) to a continuous limit g uniformly in compacts of R* implies that for any
compact set K ¢ R*, G, (K) — [xgdp. It now follows from the regularity of the
measure given by H(A) = [,gdp (Rudin (1970), Theorem 2.18) that H = G and
hence g is the unique continuous density of G. The result now follows from the
Ascoli theorem.

(2) = (1). The following form of converse uses the local compactness of R*.
Let x € R* and & > 0. Choose 8(x, ¢), n(x, €) such that |g(y) — g(x)| < ¢ and
1&.(y) — 8(y)| < & whenever |y — x| < 8(x, €) and n > n(x, €) (from the contin-
uity of g and uniform convergence of (g,) in compacts). Then if |y — x| < 8(x, €)
and n > n(x, €) we have

18.(y) — 8.(x)l < 18.(¥) — 8(¥) + 18.(x) — &(x)| + |g(¥) — &(x)|

< 3¢

and, hence, (g,) is a.e.c. Also, (g,) is trivially bounded as (g,) converges
pointwise. The weak convergence G, = G follows from Scheffé’s theorem. O

Thus, apart from allowing arbitrary densities, the sufficient conditions in Boos
(1985) for density convergence cannot further be weakened if uniformity in
compacts of R* is demanded. We remark that it is not necessary to assume at the
outset the existence of a density for G in the implication (1) = (2). When the
sequence (g,,) is continuous, then of course asymptotic equicontinuity is equiv-
alent to equicontinuity. Finally, we note that when (g,) is continuous the
uniform convergence of (g,,) in (2) itself entails the continuity of the limit g.

The next result treats uniform convergence over R*.
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THEOREM 2. The following two statements are equivalent.
(4) (8,) is a.u.e.c. and bounded, and G, = G.

(5) &, — & pointwise, uniformly in R*, where g is the uniformly
continuous density of the distribution G.

ProOF. (4) = (5). Since (g,) is a.e.c. and bounded we know that g, — g
pointwise from Theorem 1 where g is the continuous density of G. But
(g,) au.ec. implies that given & > 0 there exist &(e), n(e) such that
18.(¥) — 8,(x)| < e whenever |y — x| < 8(¢) and n > n(e). Thenif |y — x| < 8(¢)

lg(y) - g(x) = lim |g,(y) — g.(x)] <e,

and hence g is uniformly continuous in R*.

We give a slightly different proof of the uniform convergence of (g,) to that in
Boos (1985). In view of Theorem 1, it suffices to prove that (i) g,(x,) — 0 and (ii)
&(x,) — 0 whenever |x,| — oo. Consider first (i) and suppose to the contrary that
there exists ¢ > 0 and a sequence (x,) with |x,| = oo such that g,(x,) > 2¢
along some subsequence (n’). From asymptotic uniform equicontinuity it follows
that there exist 8(¢) > 0, n(¢) such that g,(y) > ¢ whenever |y — x,,| < 8(¢)
and n’ > n(e). Hence [iy-x,j<se8n(y)dp > e[28(¢)]* for each n’. Thus
G, ({y: |y] > |x,| — 8(e)}) > €[28(¢)]* and since |x,| — oo the sequence (G,,) is
not tight and hence cannot converge weakly. A similar argument using the
uniform continuity of g shows that if (ii) fails then G is not tight and hence is
not a probability measure.

(5) = (4). We can choose 8(¢) and n(e) such that [g(y) — g(x)| < ¢ whenever
ly — x| < 8(¢) and |g,(y) — &(y)| <& for all y. Then if |y — x| < 8(¢) and
n > n(e) (3) holds and (g,) is a.u.e.c as required. The boundedness of (g,) and
weak convergence of (G,) follow as before. O

Note that the conditions that g be continuous and g(x,) — 0 as |x,| = oo
stipulated by Boos (1985) are redundant, since the asymptotic uniform
equicontinuity and boundedness of (g,,) entail the existence and uniform continu-
ity of the limit, which in turn imply that g(x,) — 0 as |x,| = oo.

As remarked by Boos, it is more convenient to consider uniform convergence
on compacts than pointwise convergence. In the latter case, it is possible to give a
version of Theorem 1 by simply replacing the a.e.c and boundedness conditions
on (g,) in (1) by an appropriate sequential compactness condition. Such a result
however is of little use, as it seems difficult to characterize compactness in the
topology of pointwise convergence.

3. Uniform approximation of likelihood functions. As remarked in Boos
(1985), local limit results are especially important in statistics whenever one
wishes to construct an approximate likelihood function based on some ap-
propriate statistic. It would also appear to be essential that such an approxima-
tion can be made uniformly in compact subsets of the parameter space .
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Suppose then that the distributions G,(x; ) depend on an unknown parameter
0 € Q, which we assume to be a subset of R’ (although the results below may be
stated for an arbitrary separable locally compact metric space). Again, for each 6
we assume G, (x; 0) is absolutely continuous with density g,(x; ) (not neces-
sarily continuous in either x or #). The following version of Theorem 1 follows
easily on replacing x by (x, §) throughout in the proof of Theorem 1; otherwise
the proof requires no change.

THEOREM 3. The following two statements are equivalent.
(6) (8,) is a.e.c. and bounded in R* X Q, and G,( ; 0) = G( ; 0)
for each 6 € Q.

) &, — & pointwise, uniformly in compacts of R* X Q, where
&( ; 0) is the continuous (in R* X Q) density of g( ; 0).

Note that since (6) = (7), the conditions in (6) also ensure that G,( ; §) =
G( ; 6) uniformly in compacts of R* X Q, and that G( ;) is continuous in
R* x Q.

In practice, uniform convergence in R* will often be necessary for likelihood
approximations, as G,(x; 8) will usually be the distribution of some quantity
u,(T,, 9) where T, is a statistic. Then the density of T, is given by

fo(t; 0) = g,(u,(t;0); 0)[(3/3t)u,(t,0),

where g, is the density of u,(7),, #), and as 6 ranges over compacts of {2, the
values of u,(t, ) for given ¢ and all n will usually not be confined to some
compact set. It will therefore be necessary to show that g, — g uniformly in
R* X K for every compact K € Q.

THEOREM 4. Let K be any compact subset of Q. Then the following two
statements are equivalent.

(8,) is a.u.e.c. and bounded in R* X K and G ;0) =

®) G( ; 8) uniformly in R* X K where G is continuous in 6.
) &, — & pointwise, uniformly in R* X K, where g( ; 0) is the
density of G, uniformly continuous in R* X K.

Note that (g,) a.e.c. in R* X Q and a.u.e.c. in R* for each @ is equivalent to
(g,) auec. in R*x K for every compact K € Q. (This follows from the
separability of {.) Theorem 4 follows as a corollary to Theorem 2, given the
following basic lemma. Let X and Y be two metric spaces. The sequence («,,) of
functions u,: X — Y is said to converge continuously to u if u,(x,) — u(x) for
every sequence (x,) with x, —» x for all x € X.

LEMMA. Let (u,) be an arbitrary sequence of functions u,: X —» Y where X
is locally compact. Then u,, = u, a continuous limit, uniformly in compacts of X,
if and only if u, - u continuously.
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The lemma follows from standard arguments, and the proof is omitted.
Theorem 4 now follows from Theorem 2 on taking convergent sequences (4,) and
writing gX(x) = g,(x; 6,). As an example, consider a translation statistic T,
satisfying the conditions of Theorem 1 in Boos (1985). Then if 7, is also a scale
statistic, it is easily shown, following the proof in Boos, that (8) holds with
G,( ; 0) the distribution of n'/*(T, — p) and 6 = (p, o), where p is the target
parameter of T, giving the desired uniform density convergence in (9).
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