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Martin and Yohai’s paper is a fine technical achievement, developing an
interesting tool, the influence functional, for describing an aspect of time series
behaviour, and continuing the authors’ work on the difficult and important
problem of time series analysis in the presence of outliers. I have two points, one
being a suggestion prompted by their discussion of hypothesis testing, and
motivated by the need for test statistics with both good robustness and good
power properties against given alternatives. My first and main point concerns
Martin and Yohai’s approach towards dealing with the outlier behaviour de-
scribed by their general replacement model, and to some extent this impacts on
the use of their influence functional.

Martin and Yohai’s general replacement model (2.2) is indeed “general,” and
even in the pure replacement (PR) and additive outliers (AO) special cases it
presents an identifiability problem to which GM and RA rules need not neces-
sarily provide a useful solution. The non-Gaussian character of y and the
nonlinear character of the GM and RA rules severely hinders a proper analysis of
the identifiability problem. While Martin and Yohai’s results embrace w and v
with no moments, even bad contamination can be modelled by w and v with
finite variance, in which case, if their core x process is indeed “ usually Gaussian,”
a second moment analysis may gain some insight into the identifiability problem
in the LS case, and conceivably also into the possible impact of GM and RA
estimators on the problem. Denoting means by m,, etc., and lag-j autocovari-
ances by c,( ), etc., for the PR model

(1) m,=m, + (mw - mx)mz’
¢, () = (1 = m,)e,(j) + mie,())

+ {(m, — m)* + e ,(j) + cu(J) e ).

For the AO model with v independent of x (as assumed by Martin and Yohai in
Section 5)

(3) m,=m,+m,m,,

(4) e,(J) = e(j) + mZe,(j) + {m + e(J)}e.()).

Note that x’s ARMA coefficients are functionals of the c,(j).

It is easily seen that the c,(j) can be quite unrecognisable from the c(j),
leading in general not only to inconsistent estimation of x’s ARMA coefficients
but also to incorrect order determination via criteria such as AIC. Can robustifi-
cation alleviate these problems? Note that c, is determined not only by c,
and c, or c,, and the frequency of contamination m,, but also by c,. We
cannot choose m,=m, or m,= 0 (thereby eliminating (m, — m,)m,,
(m, — m,)%c(j), m,m,, and m?cj) from (1)—(4), respectively) without loss of
generality because without further information only y can be mean-corrected;
substantially different m, and m,, or nonzero m, (by no means unlikely, it
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seems) could conceivably result in y reflecting z’s autocovariance structure more
than x’s, or w’s or v’s for that matter. By down-weighting extreme y’s, GM
estimation (e.g., the Mallows variant, rather than M estimation) seems to take a
step in the right direction, albeit in an ad hoc fashion, and there is evidence (e.g.,
Martin and Jong (1977)) that it does help; its not clear to me whether the RA or
GRA rules are effective in reducing the inconsistency, notwithstanding Section 7
and their evident relevance to innovations outlier (I0) problems.

Because ARMA autocovariance structure is closed under addition and multi-
plication, generally (2) and (4) imply that x, w, v, and z with ARMA-like
autocovariances imply y with ARMA-like autocovariances, with ARMA orders
at least as high as x’s. In Martin and Yohai’s “independent outliers” case, (2)
and (4) become

(2) e, (j) = 1 = m,)c,(j) + mZc,(J) + a;d,
(4) e, () = e () + mZe(7) + axdy,

where a, > 0, a, > 0, and § is the Kronecker delta. For example an AR(p) x
and white noise w or v implies an ARMA(p, q) ¥, ¢ < p, so ¥’s AR order (and
coefficients) matches x’s, but y generally has an MA component so AR(p)
fitting to y, by GM, RA, and other rules, leads to inconsistency; an ARMA w or
v with positive AR order implies y’s AR order generally exceeds x’s, so the
inconsistency problem is if anything more serious. In Section 2.2 Martin and
Yohai suggest a z process generating “patchy outliers”; it may be shown that
this implies z has an MA(k — 1) representation, with c,(j) = (1 — p)*
{(1 — p)) = (1 — p)*}, 0 <j < k. The effect may be to further increase y’s MA
order (though not its AR order) relative to the “independent outliers” case.
Martin and Yohai’s “patchy outliers” model is only one such, and to the extent
that we can identify outlier occurrence in real data sets it might be worth
investigating whether this particular model warrants emphasis. For example, one
can model binary time series to have a more general MA structure than theirs, or
to have AR and ARMA structure; in the latter cases y’s AR order will generally
be increased, causing inconsistency in the GM and RA estimators as well as
leading to different forms of the influence functional.

I hasten to add that Martin and Yohai are well aware that AO and other
outlier models (though not IO ones) cause inconsistency, and Martin has to some
extent addressed the problem in earlier work. I feel that the identification
problem should be faced up to more squarely by making a conscious effort to
take outlier models such as Martin and Yohai’s sufficiently seriously to allow
them to determine the form of model to be robustly estimated, via arguments
such as mine. In case (4’) with x AR(1) and v white noise for example, we could
fit (albeit inefficiently) an ARMAC(Y, 1); or we could estimate only the (correctly
identified) AR coefficients (again inefficiently) using the following modification of
Martin and Yohai’s (3.6):

Vilyls ¢) = (2 — ¢%1s %21 — ¢)
where y,_,, unlike y,_,, is uncorrelated with the MA(1) disturbance in y,
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(though not necessarily independent of it, so non-LS estimators may still suffer
from some inconsistency). More ambitious approaches would be to exploit
Gaussianity of x and non-Gaussianity of outliers in a manner analogous to some
solutions to the classical errors-in-variable problem, or to approach the non-
Gaussian modelling problem head-on. I do not underestimate the complications
and pitfalls in these alternatives, but I do not think that Martin and Yohai’s use
of the same estimators in both independent and patchy outliers cases should be
taken to imply that approximate knowledge of z’s properties (or of w’s or v’s for
that matter) should not influence estimator choice. Their approach to estimation
could be said to take for granted that we have almost no information about the
character of w, v, and z. While this may more or less often be realistic, the
authors also seem able to characterise some outlier patterns occurring in prac-
tice, and calculation of their influence functional with a real data set in mind
itself requires considerable knowledge of serial dependence and other distribu-
tional structure of w, v, and z, as well as of x (though normality of x does not
seem crucial to most of their theoretical results). Note that if we base the
estimation rule on the “true” model for y, derived from stochastic assumptions
on w, v, and z possibly as described above, we could still study the correspond-
ing influence functional, more complicated though it may be; there is interest in
the influence of outliers on consistent rules, as well as on inconsistent ones.

Let me finally turn briefly to the question of hypothesis testing. In Section 8
Martin and Yohai apply their influence functional to the Box-Pierce port-
manteau statistic

It is known that V! is asymptotically equivalent to the score test statistic
against AR(L) or MA(L) alternatives, based on a Gaussian likelihood, and is
thus asymptotically locally most powerful against such alternatives. Not surpris-
ingly, therefore, Martin and Yohai find that V* is not robust. A robust
alternative, that maintains good power properties against specified time series
alternatives, could be obtained by applying the score principle (or Wald or
likelihood ratio principles) to an appropriate robustified loss function. While this
should work well in IO cases I must echo my earlier reservations in the PR and
AOQ cases; white noise x may be far from synonymous with white noise y.
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