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This paper by Martin and Yohai will stimulate much future research. The
authors are to be congratulated for that and for the presentation of the paper,
which stresses statistical intuition and avoids technical detail, where possible.

The central point of their approach to the generalisation of the concept of
influence function to a time series setting is the explicit dependence of that
function on the arc along which the measure of the observed process approaches
that of the nominal process. This emphasis on a specific model for the contamina-
tion is necessary because of the great range of possibilities for contamination in a
time series setting. However, one can, consequently, ask how strongly the conclu-
sions with respect to robustness and relative performance drawn from this
influence function depend on the contamination model. The model (2.2) is very
general but the major part of the paper and the examples in Section 5, in
particular, deal only with 2} given by (2.4). Consider, for example

k—1
(1) y=x;+tn, n; = Z Bjsi—jy
0

where the ¢; are i.i.d. with distribution (1 — p)d, + pH. Here the contamination
is generated by impulses which excite a linear system whose effect is imposed on
the nominal process. The model (1) is included in the general model (2.2) and
both (1) and (2.4) could generate similar patterns of outlier patches so that it
would be difficult to distinguish between them from the data. Of course it can be
hoped that conclusions from the influence function, based on (2.4), will not differ
substantially from those that would have been derived via (1), for example, since
essential aspects of the influence function, such as gross error sensitivities, are
essentially qualitative in nature and small numerical differences will be of no
consequence. However, basically different types of outlier, e.g., isolated outliers
compared to those occurring in patches, appear to lead to large differences, as
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Figures 1 and 2 of Martin and Yohai show, and this is an agreeable feature of
their approach.

The main example of the paper, for practice, is the robust estimation of
ARMA parameters. In considering various estimation procedures via the in-
fluence function it is necessary to consider the purpose of the analysis. Three, not
entirely disjoint, purposes appear to have been as follows. (1) The use of an
ARMA model to approximate to the structure of a series so as to obtain
understanding. (2) The use of an ARMA model to construct a spectral estimate.
(3) The use of an ARMA model for prediction and control. It is not obvious that
estimates of ARMA parameters that are robust lead to spectral estimates with
good properties. A spectral density influence function is needed to judge this. The
same kind of thing can be said of control and prediction and again it would be
interesting to transfer the concept of influence function to the control setting. It
seems that the main purpose of influence function analysis must be the first of
the three listed above.

If one fits an ARMA model with this first objective in mind one has to be
aware of problems of misspecification, which have been only recently examined.
(See, for example, Hannan (1982) and Shibata (1980).) There is a fair understand-
ing of what happens when the model order is chosen too small or too large or,
more realistically, the truth does not lie in any of the parametric sets examined,
even when the order is left to be determined from the data. For robust ARMA
procedures one has to face the question whether the influence function, derived
on the basis of a given parametric model being specified, can be usefully
interpreted in the realistic setting. Again the extension of the idea of the
influence function to a more general setting, where the ARMA model is no more
than an approximation to the truth, is desirable.

Finally we discuss Section 8.2. Examples of the effects of a few isolated
outliers on spectral estimation have been given in Bloomfield (1976, Section 5.3),
Kleiner, Martin, and Thomson (1975), and Tukey (1984, Chapter 29). Having in
mind the intuitive understanding these give it seems unsatisfactory that the
spectral density influence curve IC(§), derived on the basis of an additive outlier
model, does not depend on frequency. Small aberrations at high frequencies with
low power may be as important as larger effects at frequencies with large power.
The performance of the spectral estimator might better be measured in terms of
relative mean square error. See for example Priestley (1981, Section 7.2). One
might better examine the influence function of log S,(f) as an estimate of

log S(f).
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Martin and Yohai provide an interesting study on the effect of atypical
observations on the behavior of estimators in time series. The influence func-
tional given by Definition 4.2 is the infinitesimal asymptotic bias in a one-param-
eter family of contaminations of a given model. The bias was also the starting
point of my own paper (1984, cf. Section 1.2), but I treated only a smaller class of
estimators and I focused on different aspects. So let me explain the differences
between the two approaches and discuss their advantages and disadvantages.

Heuristically the connection between ICH and IF is as follows. ICH is the
derivative in all directions, i.e., the gradient of T. Hence by the chain rule of
differential calculus one gets, formally,

IF d T(p? dT d Y ICH d d
= dy (P‘y) =<grad 1, d‘y”y > _/ (y1) d‘)’”y( Yi)-
If T depends only on the m-dimensional marginal, we can find (d/dy)p?, in the
model (2.4) by the following argument. Ignoring terms of order o(y), there is at
most one block of outliers intersecting with (1,0,...,2 — m), and the initial point
of this block is distributed uniformly over (1,0,...,3 — m — k). To me, the most
important theoretical contribution of Martin and Yohai is Theorem 4.2 where
they show that the same result also holds for m = oo, at least if { depends only
weakly on values far away. Since the uniform distribution on all integers is not
finite, a bounded ¥ is not sufficient for the boundedness of (d/dy)T( By).

Some of the arguments in the proof of Theorem 4.2 involve the specific
contamination model while others are valid more generally. Since the latter may
be useful in other situations, I propose to split it in the following way.

THEOREM 4.I'. Let T be a § estimate with t, = T(n,) and put m(y,t) =
E[Yy(y1 0] If
(@) T(py) -ty = O(y),
(b’) m(0,t) is differentiable at t = t, and the derivative C is nonsingular,
(c’) b(t) = lim(m(y,t) — m(0,t))/y exists and the convergence is uniform for
It - t0| < &,



