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INTERGROUP DIVERSITY AND CONCORDANCE FOR
RANKING DATA: AN APPROACH VIA METRICS FOR
PERMUTATIONS

By PauL D. FEIGIN! AND MAYER ALVO?

Technion and University of Ottawa

Motivated by the apportionment of diversity analysis due to C. R. Rao, a
general approach to comparing populations of rankers is proposed. Each
permutation metric corresponds to a particular population characteristic that
forms the basis of the comparison. Tests of hypotheses concerning equality of
characteristics are developed. Throughout, comparison is made with earlier
work, most of which is based on the use of only the Spearman metric.
Extension to tied rankings is discussed. Examples for two groups are pre-
sented which illustrate the computational feasibility as well as the value of
the proposed procedures.

1. Introduction. There has recently been a revival of interest in the analysis
of rank data (or rankings) and even some controversy concerning the appropriate-
ness of various proposed statistics [see Hollander and Sethuraman (1978) plus
comments by Schucany, and the paper by Kraemer (1981)]. Our aim here is to
propose a general framework within which the various analyses can be investi-
gated as well as to suggest some alternative analyses. We will concentrate on the
situation of two or more populations of rankers or judges [for the single popula-
tion case some related material may be found in Alvo, Cabilio, and Feigin (1982)],
and our interest lies in determining whether and how the populations differ in
the way they tend to rank a fixed set of r objects.

Although the rankers may apply some absolute scoring system to each object,
with the resultant scores determining the ranking, these scores are not observed
—the only datum each ranker provides is his ordering of the r objects with
respect to some criterion. Various models have been proposed for such data, for
example: ones that are based on an absolute scoring process [see the recent paper
by Pettitt (1982) which also considers groups of judges]; or ones that try to
reflect the paired comparisons approach to determining a ranking [see Mallows
(1957) and Feigin and Cohen (1978)]. Here, we will not consider parametric
models per se, but will be concerned with describing those characteristics of
models with respect to which one may wish to compare different groups of
judges.

The model or population characteristics were arrived at initially by applying
methods of analysing diversity which have recently been developed by Rao
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(1982a, 1982b). Although, in retrospect, one may also begin by defining the
various characteristics directly, we feel that it is nevertheless instructive
and useful to present the analysis of diversity as the point of departure (viz.
Section 2).

Before proceeding with a general comparison of various approaches to analys-
ing rankings, we pause to define a few quantities. A ranking of r objects can be
described by a permutation, w, which is an element of @, the set of all & = r!
permutations (or the symmetric group on r letters). The possibility of rankings
with ties is discussed briefly later; meanwhile it is denied. A stochastic model for
the selection of a ranking by a judge is a probability vector «, which is of
dimension k& and whose ith component (i), is the probability that w,(€ ) is
selected by the judge. The permutations w,, ..., , are numbered in an arbitrary
but fixed way. Each judge in a particular group (or population) selects a ranking
according to the same 7 and independently of the other judges. Equivalently, we
can regard the population distribution of judges (as far as ranking the r objects is
concerned) as given by ; and the particular group of judges as a random sample
from this infinite population. Comparing g populations of judges then amounts
to trying to compare the g probablhty vectors (models) 7, LOTRRRRR A If a sample
of n; judges from population i is taken we denote by {X; i J = 1, ., n;} the set
of ranklngs chosen by these judges. Summarizing the above, we have, for each

J=1,...,n;
P(X,;=w)=m(l), 1=1,..,k

When referring to the comparison of groups of judges the terms agreement
and intergroup concordance have been used in the literature. The question of
comparing populations of judges then involves two stages: firstly, defining agree-
ment or measuring degrees of agreement; and secondly, estimating or testing for
levels of agreements based on the samples (or groups) of judges available.

The recent literature on agreement has focussed on analysis based on the
average rank statistic for each group, whether or not agreement itself is defined
in terms of the expected rank vector. One of the innovations proposed here is the
possibility of considering other statistics corresponding to other characteristics of
the population models. For example, the average rank vector is directly related to
the Spearman rank correlation, p, whereas one may wish to consider that
characteristic vector associated with Kendall’s rank correlation, 7.

The characteristics of a population or model (determined by «) may be
thought of as a mapping 77 of = into a lower dimensional Euclidean space R*®
(s < k = r!)—we only consider linear maps T' here. We note that Pettitt’s (1982)
approach, for example, may be regarded as involving a particular nonlinear map
of 7 vectors which lie in a (r — 1)-dimensional subspace of R*. Given T,
agreement itself may be defined in terms of the vectors T, .. , Tm, [see, e.g.,
Kraemer (1981)] and/or the means of testing for agreement however defined,
may be based on the statistics Tf,,..., Tf,; where f; is the relative frequency
vector of the permutations (rankings) in group i of judges.

One of the main reasons for considering the statistic Tf instead of f itself is
the dimensionality of the latter. For r as small as 5, the analysis based directly
on f would need to take place on the unit simplex in R'?*°—a task that would
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require more data than is usually available in order to apply standard asymp-
totics. Another important motivation for considering characteristics T'r is that
permutations or rankings that differ do so to different degrees. In other words,
one would like to incorporate the notion of distance between permutations when
comparing groups of judges. This last point leads us to our approach via
measures of diversity and forms the subject of the next section.

In terms of the notations of this paper, the controversy alluded to earlier may
be paraphrased as follows. Hollander and Sethuraman (1978) define agreement
between two populations of rankers as 7, = 7,, and suggest testing agreement by
comparing Tf, with Tf, where T is the mapping which gives the average
(centred) ranks vector. Schucany and Frawley (1973), for example, regard com-
plete absence of agreement as nonpositive correlation between the vectors T,
and T7, (same T as before). They are also concerned with the idea that if =, or,
actually T, is a constant vector then there is no consensus in population 1 and
so no possibility for agreement between populations 1 and 2. Kraemer (1981)
develops this idea further by defining a relative measure of intergroup concor-
dance—relative to the average intragroup concordance. We will make some more
explicit references to these approaches in the sequel, although our results, to some
extent, develop along the lines proposed by Hollander and Sethuraman’s (1978)
analysis, but deal with a larger variety of statistics. Of particular interest is the
characteristic corresponding to Kendall’s 7, which forms the basis of the numeri-
cal examples presented in Section 5.

As the referee has pointed out to us, in his forthcoming monograph, Diaconis
(1985) also presents one way to use metrics on the permutation group in order to
test for agreement among populations of judges. His approach is based on
constructing a minimal spanning tree of the data and comparing the number of
edges joining rankings of different populations with the number of edges which
join rankings from the same population. We hope to compare this rather different
approach with ours in the future.

2. Measuring and apportioning diversity for populations of rankers.
The measurement of diversity of a population has a long history, particularly in
the biological sciences such as genetics. Coincidentally with the renewed interest
in rank data, statisticians have recently returned to the problem of measuring
diversity [see, for example, the paper (with comments) by Patil and Taillie
(1982)] and one approach, espoused by Rao (1982a, 1982b), forms the basis of our
analysis. ‘

In contrast to the entropy-type measures of diversity which are simply
functions of {w(1), #(2),...,7(k)} without any regard to the ordering of the
categories (in our case—permutations), Rao suggests using measures which
incorporate distances between categories. In light of the comments made earlier,
this suggestion seems eminently appropriate to the analysis of rankings.

Consider a set 2 of & points w,, w,,..., w, and let {§,;: 7, j = 1,..., k} denote
the set of “distances” between pairs of points, i.e., §;; is the distance between w;
and ;. In Rao’s (1982a) formulation, § need only be nonnegative and need not
satisfy the properties of a metric—in other words, 8§ measures some concept of
distance between points. The diversity coefficient of a population can now be
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defined in terms of the expected distance between two members selected indepen-
dently from the population according to :

DEFINITION 2.1. The diversity coefficient (based on &8) of the population with
probability vector 7’ = (7(1),..., m(k)) on Q is

(2.1) H(7) = n'An
where A = (§;;) is a (k X k) matrix.

Applying this definition to the rankings situation simply involves choosing a
measure of distance between permutations (u,n € @ say). Three such measures
used in statistical applications are given below and are related to Spearman’s
p(S), Kendall’s 7(K ) and Spearman’s footrule (F'), respectively:

@) dy(um) =3 X (W) = (s)]* = [r(r+ 1(2r + 1)/6 = )
@3)  de(un) = 3 (1 - sgalu(s) — p(0)]sgnln(s) - n(£)]);

s<t

17

(24) dp(p,m) =5 X |n(s) = n(s)].
s=1

Of course, many other metrics have been defined on the set of permutations and
the particular one that the statistician chooses to use may involve consideration
of the actual processes which determine the choice of a ranking by a judge.
Alternatively, more robust conclusions may be reached by taking into account
several different metrics when analysing the same set of data. It is this flexibility
which we wish to pursue here, and not the determination of a particular metric as
universally superior.

Thinking of diversity as a generalization of the notion of variance, and since
we are interested in comparing several populations, the next step is defining the
diversity between populations versus that within populations—or, as Rao (1982a)
calls it: the apportionment of diversity. We note here that dg is the square of a
Euclidean metric and so leads directly to a standard analysis of variance. This
fact gives further insight into the popularity of analyses based on Spearman’s p.
Although dg is itself not a metric, we nevertheless will refer to it as the
Spearman metric in the sequel.

Suppose g populations with probability vectors =, ..., m, are mixed together
according to the proportions A,..., A such that A, + A, + -+ +A, = 1, thereby
forming a new population with probability vector 7 = X4_,A 7. Following Rao
(1982a) we now turn to:

DEFINITION 2.2. Suppose the diversity H(-) of (2.1) is a concave function on
S,, the unit simplex in R*. Then the total diversity H(7) can be apportioned
into the within populations diversity

(2'5) i )\iH('”i)
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and the between populations diversity

g
i<j
The concavity requirement is to ensure that the between populations diversity
(or discrimination coefficient) is nonnegative. In terms of the distance §, this
condition is equivalent to the requirement that

k
(2.7) a’Aa <0 whenever ) a(s) =0

s=1
or equivalently, that
(2.8) A* = (8, + 8,, — ;) be nonnegative definite.

It is interesting to note that requiring that & be a metric on Q is not sufficient to
ensure (2.7) or (2.8) hold, so that for the application to rankings one has to verify
(2.7), say, for each potential distance measure.

For metrics on the set of permutations, we have that the desirable property of
right invariance [see Diaconis and Graham (1977) or Alvo et al. (1982)] ensures
that the & vector e = (1,1,...,1)’ is an eigenvector of A. We therefore have:

LEMMA 2.1. If 6 is a right invariant metric on the set of permutations then
there exists ¢ > 0 such that

Ae = ce
and H(-) = Hy(") is concave if and only if
(2.9) Q = (c¢/k)J — A is positive semidefinite,

where J = ee’. Moreover, in this case H(7) has the maximum value 8 = c/k at
=u=(1/k)e.

ProoF. The existence of the eigenvalue ¢ follows from the right invariance
property as referred to above.

If (2.7) holds, then since Qe = 0, x'Qx > 0 for any x = b + ae with b’e = 0;
but this includes all x € R*. The converse is immediate.

Writing # = u + (7 — u) and since u is an eigenvector of A orthogonal to
(7 — u) the result follows from

H(7)=udu+ (7 — u)A(7 — u) <u'Au=c/k. 0

This last result says that the uniform distribution over  is most diverse for
diversity measures based on a right invariant metric.

The fact that (2.9) is valid for A based on dg and d [see (2.2) and (2.3)]
follows from Alvo et al. (1982) or from the form of (2.2) and (2.3) (see Lemmas 3.1
and 3.3). That (2.9) is also true for the footrule metric (2.4) is less obvious and is
proved in Lemma 3.4. Note that the restriction to right invariant metrics is a
natural one in the context of rankings.
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If the rank of @ is less than or equal to s, then standard matrix theory implies
the existence of an (s X k) matrix T such that

(2.10) Q="TT=(c/k)J — A.

We can now gain further insight into the nature of the between groups diversity.
For X a random vector we let var( X ) denote its variance covariance matrix.

LEMMA 2.2. If 8 is a right invariant metric on the set of permutations £,
then for H defined by (2.1), the between populations diversity is given by

g
(2.11) YA Ta; — Tmf|? = tr{var(Tm;)}

i<j
where || - ||, is the Euclidean norm in R™ and I has the distribution P(I = i) =
A,i=1,...,8

ProoOF. The result follows immediately from (2.6) by substituting A =
(¢/k)J — T'T and expanding the | - || term. O

The expression (2.11) allows us to interpret the apportionment of diversity
based on & in terms of the variability of T7;, i = 1,..., g. Moreover, it is the
characteristic T'w of the model 7 which forms the basis for comparing popula-
tions if one does so using a diversity measure based on a right invariant metric 8.
This interpretation of the apportionment of diversity is the topic of the next
section.

3. Defining and interpreting model characteristics. We pursue the im-
plications of Rao’s apportionment of diversity for the analysis of rankings based
on right invariant metrics. In so doing we arrive at a way of interpreting T
matrices for given metrics as well as showing how the characteristics so defined
have been or may be used to compare populations of judges. We concentrate on
describing the T matrices corresponding to the Spearman, Kendall, and footrule
metrics.

For the case §;; = dg(w,, w;), we may identify T' as follows. Define the centered
rank vector

tg: @ > R”
by
r+1 r+1y
(3.1) te(w) = |w(1) — T,...,w(r) -
and let the (r X k) matrix Ty be defined by
(32) 7:9= (tS(wl)y"-’tS(wk))’

LEMMA 3.1. For 8 corresponding to d, the matrix T in the decomposition
(2.10) is given by Ty of (3.2), and the characteristic Tn corresponds to the
expected centred rank vector.
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ProOOF. Let the rank vector v: € — R” be defined as ov(w) = fg(w) +
(r+1)/ 2e and

(3.3) V=(0(w),...,0(w)).
Then

1
(3.4) T=TS=(I—;J)V
and

(3.5) TT = (VV = ir(r+ 1)*J)
= (1/12)r(r + 1)(r — 1)J — A,

the last inequality following from the definition of dg (2.2). Since, by construc-
tion, Te = 0, we conclude that we have discovered the decomposition (2.10) with
c=kr(r+ 1)(r—-1)/12.
Furthermore,
3

Tr = ) m(i)ts(w;) = E,ts(w),

i=1

the expected centred rank vector. O

Much of the literature on analysing rankings is based upon the expected rank
vectors. For the problem of comparing two populations of rankers, Schucany and
Frawley (1973) and Li and Schucany (1975) consider a statistic which may be
regarded as an estimator of (T'7,)(Tm,): a measure of “covariance” between the
two vectors Tm, and Tm,. Kraemer (1981) defines a measure of intergroup
concordance p which, in our notation, is given by

£
(36) p=IV(m = @)/ EXIV(m ~ ),

where 7 = Y\, 7, and u = (1/k)e as before. Kraemer considers the case A; = 1/g;
i=1,2,...,8 We can rewrite p in terms of the within and total diversity.

LEMMA 3.2. In terms of the apportionment of diversity (Definition 2.2) based
on the Spearman metric, the intergroup concordance p is given by

(37) p =ITml2/{ SANTmI2)
(3.8) = (B — total)/(B — within), B=c/k= r(r+ 1)(r—1)/12.
ProofF. From (3.3) and (3.4) we have
W(r—u)=T(r—u)="Tn
so that, via (2.9) and (2.10),
\T7||2 = 7'Qm = (¢c/k) — w’Am = B — H(7)
and (3.7) and (3.8) follow. O



698 P. D. FEIGIN AND M. ALLVO

Note that if 7, =« all i then p is undefined—otherwise it represents the
proportion of concordance attainable between groups given the level within
(Kraemer, 1981). In fact, we may regard concordance (C) as the complement of
diversity (D) from the relationship
(3.9) C=8-D.

Thus, Kraemer’s coefficient measures the concordance ratio
p = C(total)/C(within)

whereas the apportionment of diversity would lead to the dispersion ratio
a = D(within) /D(total).

It then becomes a more philosophical issue whether dispersion (distance) or
concordance (similarity) is the appropriate criterion. It is true that whenever C
(within) = 0, p is undefined whereas a = 1. This case corresponds to that of
similar but completely internally discordant groups. Is it the similarity or is it
the complete discordance that one wants to measure?

The form (3.7) could, of course, also serve to define a measure of intergroup
concordance based on another right invariant metric, for example, that based on
Kendall’s tau [viz. (2.3)]. In order to interpret the latter we quote the following
result.

r

LEMMA 3.3. Letty: @ - {1, +1}(2) be defined by
(310)  (tx(w)(s) = (sgn{w()) - w(i)}),  s=12,....(3),

where
s=(i—-1)(r—i/2)+(j—-i), 1<i<j<r.
Then the (}}) X k matrix T

T= TK = (tK(""l)""r tK(wle))
satisfies (2.10) for A based on the Kendall tau metric (2.3).

PRrROOF. Straightforward, since for the definition (2.3)
: r(r—1)

— — ti(wtx(n),

dK\uu‘y T’) =

so that
A=[r(r-1)/2]J - TT. O

The « naracteristic T, 7 may therefore be regarded as the expected pairwise
concordunce vector, where concordance is measured with respect to the identity
permutation (1,2,...,r). Thus the measure p of intergroup concordance with
T = Ty in (3.6) would look at relative agreement based on average pairwise
decisions—a more sensitive criterion than that based on average ranks. Whether
or not this extra sensitivity reflects relevant aspects of concordance or agreement
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between judges must, of course, be ascertained from the particular context. At
the very least, however, it provides a further tool for comparisons and contrasts.

In order to interpret the characteristic Tp7 corresponding to the diversity
measure based on the Spearman footrule metric (2.4), we obtain the following
result after some algebra.

LEMMA 3.4. Lett,: Q- R" be defined by
(te())((@ = Vr+j)=I[w(i) <j] -j/r, 1<ij<r,

where I[w(i) <J] equals one when w(i) <j and is zero otherwise. Then the
(r? X k) matrix T given by

T=Tp= (tp(w),..., tp(w;))
satisfies (2.10) for A based on Spearman’s footrule.

Proor. The proof amounts to showing that
[tp(u)]’ty(n) =(r+1)(r-1)/6 —dg(p,n)
using the fact that ’
max(p(i), n(2)) = §[n(d) + p(@)] + 3p(@) — ()] 0

The characteristic T,7 may therefore be regarded as the set of (centred)
distribution functions for the ranks of each item. If we write

F(J)=P(w(i)<j)—j/r, 1<j<r,

then T.m is equivalent to the set {#,,..., #}. This characterization is only
based on the marginal distributions of the ranks for each item, and so takes no
account of possibly important dependence relationships between these ranks. The
same is of course true for Tym—which merely considers averages for each
item—whereas Ty 7 is sensitive to certain patterns of dependence in the alloc-
ation of ranks to each of the objects.

In the light of the above interpretation of model or population characteristics,
we may look again at those analyses of agreements suggested previously.
Hollander and Sethuraman’s (1978) statistic is sensitive to departures from
Tgm, = Tgm,. An extension to the case of g groups was considered by Katz and
McSweeney (1981): It amounts to treating disagreement as occurring if Tym; #
Tgm; for some 1 < i, j < g. Using other characteristics Tw instead of Tgm, other
types of disagreement among populations of judges may be investigated. We
develop this approach in the sequel, particularly for the pairwise concordance
characteristic Ty 7.

For other approaches to defining agreement, we refer to Li and Schucany’s
(1975) discussion of various comparisons of populations of judges. The approach
ascribed to Quade amounts to saying that the two populations agree if

7 p— 14
mAm, = wjAm,

where A = Ay or Ay. This approach seems to ignore the fact that the two
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populations could be equally concordant about different rankings. Linhart’s
(1960) definition is essentially equivalent to Quade’s in that #'Agn is directly
related to the coefficient of concordance (viz. Kendall’'s W) for the population
[see Alvo et al. (1982)].

Finally, we reiterate the point made in the introduction—that the characteris-
tic £: @ —» R* which describes the information used in comparing rankings may
itself be chosen directly by the researcher and need not be derived from a
diversity argument based on a particular metric. In this case, however, there is a
certain ambiguity in the definition of the corresponding A (distance matrix). We
assume T is chosen so that Te = 0 and then set

Ay(T) = BJ — T'T.

DEFINITION 3.1. A is called the minimal distance matrix corresponding to T
if it is nonnegative with at least one zero element (on the diagonal) and equals
AT for some B = B(T).

From the definition it is clear that
B(T) = max{(T'T),,i=1,..., k},

and that if T is defined in terms of a metric § then the minimal distance matrix
corresponds to the original matrix A = (§;;) (with zeroes on the diagonal).

In the sequel we will refer to the minimal distance matrix corresponding to T
as simply the distance matrix corresponding to 7.

4. Inference for measures of agreement. We will refer to three essentially
different ways of making inferences about the level of agreement observed among
a set of g groups of rankers. They involve procedures:

A. based on the randomization distribution of a statistic;

B. based on jackknifing or related methods;

C. based on the asymptotic distributions of a statistic.

For each approach the actual statistic to be used may be chosen either a priori
or based on the corresponding analysis for the asymptotic (multivariate normal)
experiment. Furthermore, we have the option of deriving versions of a given
statistic type by choosing that model characteristic T in terms of which we wish
to assess the level of agreement.

The data available, although probably not presented in this way (see below
concerning computational aspects), may be summarized as follows. For i =
1,..., 8, the n, judges of group i assign rankings and the resulting relative
frequency vector f; is defined by

(4.1) f.(£) = ni' x (no. of times w, assigned in group i),
’ (=1,2,....,k=rl.
The analysis of agreement may now proceed by defining statistics related to the

corresponding population quantities—that is, we replace «, by f, in the relevant
formulae. Given T [and the corresponding distance matrix A and value 8 = B(T')
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—see Definition 3.1], we begin by considering the following two statistics:

(4.2) &=Ww/s,
(4.3) p=(B-8)/(B-W)=(B/S—1)/(B/S - &)
where

g g
W= Z)\zfi,Afizﬁ_ Z}\,||Tfi||2,
=1

1=1

I

S=fAf=B-ITFI*

and
(4.4) A, =n;/N, N=n,+n,+ - +n,

or, possibly, {A;} is an a priori set of weights for the g populations, independent
of the sample sizes. We assume in the sequel that the A, are determined by (4.4).

At a descriptive level, both & and p measure the relative degree of intergroup
concordance—values near one indicating stronger agreement between the groups.
The statistic & corresponds to the proportion of total diversity due to intragroup
differences (viz. Definition 2.2); whereas p is a generalized version of Kraemer’s
(1981) measure (viz. Lemma 3.2). These statistics to some degree answer the
question: What level of agreement do the populations reveal? While « refers to
the relative diversity (within/total) p relates to the relative similarity [(overall
similarity) /(within similarity)].

To make inferences concerning the corresponding population quantities, we
may employ procedures of type A or B. For testing, using A, with the null
hypothesis of complete agreement

(4.5) Hy. 7 =, i=1,...,g (impliesa = p =1),

the randomization (permutation) distribution gives equal probability to each of
the M = N! /I'T{_,(n;!) partitions of the N judgesinto g groups of sizes n,, ..., n,.
The significance level of the data is then the relative frequency of values of the
statistic (& or p) that fall below the value observed for the actual partition.
Approximations for moderately large N are also available. We refer the reader to
Mielke et al. (1981) for some details and references. Hollander and Sethuraman
(1978) derive their test statistic from the asymptotic approximation of the
randomization distribution of Tgf. However, we find it more natural to discuss
their approach with respect to procedures of type C.

For confidence intervals for the population quantities a or p, one may follow
Kraemer’s (1981) suggestion and compute the jackknife estimate of the parame-
ter as well as its standard error viz. procedure B above. This procedure involves
recalculating the statistic, leaving out each ranking one at a time, and then using
the value from the ¢ distribution on the appropriate number of degrees of
freedom. Mosteller and Tukey (1977) give the general theory and Kraemer (1981)
discusses the application to the particular case of p based on Tf (i.e., the average
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ranks vector). The extension to a and to general T is straightforward in principle.
Moreover, ascertaining the probability value of the hypothesis a = 1 (or p = 1)
can be determined approximately using the same ¢ approximation.

The bootstrap is an approach related to the jackknife, which could also be
applied to the analysis of & or p. The bootstrap samples would each contain N
pairs (I, w) randomly chosen with replacement from {(i, X;;): j=1,...,n;
i=1,...,8) and then the standard Monte Carlo analysis would allow one to
estimate biases and standard errors as well as to construct confidence intervals.
(Here X,; is the ranking of judge j in group i.) A succinct account of these ideas
appears 1n Efron (1982).

The more classical statistical approach is to consider the asymptotic distribu-
tions of the statistics involved and this approach is readily applicable here also.
We have, denoting the p-variate normal distribution by N,:

THEOREM 4.1. Forn,/N — A, >0as N - o

. T(f,—m) = U, i=1,...,8,
where ‘
U ~N,0,T=T), U,,..., U, are independent and

2, =1,-mmn/, IT, = diag('”i(l), ceey Wz(k))~

PROOF. A straightforward application of the central limit theorem for multi-
nomial vectors. O

Based on the asymptotic formulation, a test for agreement based on the
characteristic T'n, i.e., of

H(T): Tmy=Tmy= --- = Tm,,
amounts to a multivariate analysis of variance with nonhomogeneous covariance
matrices. If we regard the null hypothesis as
Hym=m= - =m,
then under H,, the covariance matrices are homogeneous and classical MANOVA
may be applied.

The approach proposed by Katz and McSweeney (1981) is designed for testing
H,(T) and allows for the nonhomogeneity of variances. Although they only
consider T' = Ty, there is again no major difficulty in applying their approach to
other T matrices.

We will concentrate on the situation of two groups of judges (g = 2).

THEOREM 4.2. For g = 2 and under H\(T), the conditions of Theorem 4.1
imply
VNT(f, - f,) = Ng(0, TET'),
where
(4.6) S=A1Z AL,

ProOF. Straightforward. O
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COROLLARY. Suppose 3 is a consistent estimate of 2 and that D is the
Moore-Penrose inverse of TXT'. Then, under H(T),

= N(f, = £,)T'DT(f, - f,) = x2
where v = rank(TZT").

PROOF. Since D is consistent for D, where D is the Moore-Penrose (gener-
alized) inverse of TZT", the result follows from standard multivariate normal
theory and the continuity theorem of weak convergence. O

One way to circumvent the need to use generalized inverses is by choosing T so
that T2T" is of full rank. Thus the ((r — 1) X %) matrix T¢* only uses the ranks
of the first (r — 1) objects and thus avoids the obvious singularity incurred by
using Tg. Of course singularities may also derive from the particular form of X.

For the case of T = Ty [of dimension ( ) X k], there is no a priori singularity in

the matrix TZT".
It is now important to decide on how to estimate = of (4.6). We write

St=nz[F'i_fifz,]'(ni_1)_l’ i=1"",ga
where
F, = diag( f,(1),..., f.(k)).

There are basically three different estimates of X, depending to some extent on
which null hypothesis is entertained:

35 = N(n'2, + n3'%,),
Sp= [N2/n1n2]((n1 -1, + (ny, - DE,)[1/(N - 2)],

A N-2]. N
2= [N—__IJEP + o (h = R~ )

The estimate ﬁs (separate) is appropriate when H(T') is considered to be the
null hypothesis since in this situation we may not assume that the variance
matrices (dispersions) are equal. The estimate EP (pooled) is obtained by pooling
the estimates 2, and 22 and is appropriate under H(, Hollander and Sethuraman
(1978) actually use ZC (combined sample) which is the estimate of dispersion
based on the combined sample of size N. In the MANOVA context, (N — 1)2( is
the total dispersion whereas (N — 2)2P is the within groups dispersion—the
latter is more commonly used to estimate the common dispersion.

Returning to testing for agreement, we recall that the relevant dispersion is
T =T’ which is of dimension s, typically much less than & = r!. It is this lower
dimensionality that makes both the inversion of T3T" feasible as well as the
(asymptotic) normality a better approximation [see Remark 5(d) of Alvo et al.
(1982)]. Based on the corollary, we therefore have an asymptotically x? statistic
for testing the hypothesis of complete agreement [ H(T') or H,]. Alternatively,
we may use the (approximate) F statistic appropriate to the (asymptotic)
multivariate normal situation [see Rao (1965, Section 8d.3)],

o= {(N-v- 1)/[(N = 2)v] }yy = Fonoeots
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for y, based on the (generalized) inverse of TﬁpT’ (appropriate for the case of
testing H,)). In this way we take into account the sampling error of estimating .

The matrix T has columns ¢, ..., t, which in turn defines a mapping from Q
to R® as follows: for w € Q

In Section 3 we have seen how to construct #(w) for T = Tg, Ty or Ty. The
matrix T2 ,T" is simply the estimate of the (s X s) covariance matrix based on
the vectors

in other words,

n,

(4.7) TET = (n,~1) ' ¥ (¢X,) - £.)((X,;) - &)
where |
(4.8) t.=n' Z' t(ij)'

These equations illustrate how the computations may be done in R®, with
matrices of dimension (s X s), and there being no need to handle the (k£ X k)
matrices 3,. Even for r =10 and T = Ty, we have s = (;)= 45—leading to
matrix inversions well within the capabilities of today’s mini-computers.

In terms of the mappings ¢ we may also deal with the problem of ties. The
idea is to extend the definition of ¢ to the domain of possibly tied rankings in a

linear way. For example, for the tied ranking
{=(1425255)

we may consider it as the average of

n=(14235)
p=1(14325)
and define
(4.9) t($) = 3(t(n) + t(n)).

For t = ty we simply have
ts(¢) =(-21-05 -052),
whereas for ¢ = ¢,
t($)=(1111-1-11011),

with the zero (0) deriving from (4.9) and coinciding with the natural extension of
(3.10).

The fact that the sample space and hence the appropriate # vector is much
enlarged by allowing tied rankings has no impact on the calculations outlined in
(4.7) and (4.8) once the ¢ mapping is appropriately extended. In this way we also
induce an extension of the distance 8 and the matrix A to the new sample space.
It will, however, follow that the diagonal elements of the extended A matrix will
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be positive corresponding to rankings with ties; that is, a ranking with ties is not
at “distance” zero from itself! Although slightly disturbing at first, it is possible
and thought-provoking to justify such a phenomenon in terms of comparing two
judges who give identical rankings with or without ties. We leave the reader to
ponder this aspect.

In the following section, we illustrate the application of the above ideas to
various data sets. We focus attention on the analysis for T = Ty and T = Tj,.

5. Examples.

5.1 Sutton’s data. Hollander and Sethuraman (1978) present data of C.
Sutton on leisure time preferences for one group of 14 white females and one
group of 13 black females. The analysis is summarized in Table 1.

The apportionment of diversity shows that 31% for the Spearman metric (and
27% for the Kendall metric) of the diversity is between groups. The percentages
represent a sizeable proportion of the total diversity in the combined group of 27
women. The coefficient of intergroup concordance p indicates very high relative
concordance of 0.97 between the groups for the Spearman case but only 0.64 for
the Kendall case. In other words, intergroup concordance is not so high if one
uses the more sensitive Kendall distance.

The significance tests (approximate) all lead to significant values, with the F
statistics having “p values” less than 0.2%. We note that the analysis based on
the combined sample estimate leads to more conservative values. This effect can
be explained by the fact that the differences between the groups are blurred since
the estimated covariance matrix is larger (in the ordering of positive definiteness).
If one is testing H,: m, = m, then the “pooled” estimate is preferable.

TABLE 1
Analysis of concordance: Sutton’s data— black / white females

Spearman Kendall

Apportionment

Within 0.88 (0.69 = &) 1.51 073 = &)

Between 0.41 0.5

Total 1.29 2.05
Kraemer’s p 0.97 0.64
Testing H,, Hy(T)

x*(df ) F'(df) x*(df) F'(df)

Separate? 28.0(2) 12.8(2,11) 28.1(3) 7.8(3,10)*

Pooled? 28.5(2) 13.7(2, 24) 28.5(3) 8.7(3,23)

Combined? 13.8(2) X 13.9(3) X

2 groups; n, = 14, n, =13; N =27, r = 3.

"The F statistic is Hotelling’s T2 statistic (see Section 4).

2See the discussion of estimating % in Section 4.

SApproximate (conservative) F approximation using min(n,, n,) — 1 for degrees of
freedom of estimate 3.
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TABLE 2
Analysis of concordance: Latrobe Valley data—male / female residents

Spearman Kendall

Apportionment

Within 28.41 (0.98 = &) 20.81 099 = &)

Between 0.46 0.29

Total 28.86 21.10
Kraemer’s p 0.997 0.96
Testing Hy, Hy(T)

x*(df ) F'(df) x*(df) F'(df)

Separate? 7.5(7) 0.9(7, 40) 40.7(28) 0.6(28,19)*

Pooled? 7.5(7) 1.0(7, 87) 40.6(28) 1.0(28, 66)

Combined? 7.0(7) X 28.6(28) X

2 groups; n, = 47, n, = 48; N =95, r=8.
!As for Table 1.
2As for Table 1.
3As for Table 1.

In this example there is some contradiction between the diversity analysis and
the intergroup concordance result (at least for the Spearman case). The former
indicates group differences whereas the latter indicates high intergroup agree-
ment. The same is not true for the Kendall metric. An explanation is that
Kraemer’s p depends on the maximum possible diversity (8) and if this is far
from being attained within or in total then p will be large. That p seems to be so
sensitive to the metric used is a disadvantage compared to &. Alternatively, one
may claim that the intergroup concordance based on Kendall’s metric is more
meaningful than that originally proposed by Kraemer. This claim is borne out by
other examples which were investigated and in which the between group dif-
ferences are significant.

5.2 Latrobe Valley data. Residents in the Latrobe Valley of Victoria,
Australia were asked to rank eight sectors in order of the degree that they would
be affected by proposed industrial developments. Of the 95 respondents, 47 were
male and 48 were female and the researcher wanted to know if there was a
difference due to sex.

The results of the concordance analysis (Table 2) show quite unequivocally
that there is no difference in the rankings of the eight sectors between males and
females. The ability to cross-check such conclusions by using two (or more)
metrics is one of the main contributions of the proposed methodology.

6. Conclusions. We have approached the comparison of groups of rankers
from the point of view of analysing diversity based on various metrics for ranks.
We have shown how this approach is related to others based on measuring
intergroup concordance as well as interpreting the analysis as the comparison of
population (or model) characteristics.

A class of descriptive and test statistics have been proposed to allow the
researcher to quantify the proportion of diversity ascribed to differences between
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groups as well as to test hypotheses of equality of populations or of their
characteristics.

Experience with examples indicates that the new types of statistics proposed
as well as the extension of intergroup concordance originally proposed by Kraemer
(1981) provide useful extra information for comparing groups of rankers.

Acknowledgment. The data is available from the first author. We acknowl-
edge the researchers of the Division of Building Research at CSIRO Victoria,
Australia, who collected and made the data available to us.

REFERENCES

ALvo, M., CaBILIO, P. and FEIGIN, P. D). (1982). Asymptotic theory for measures of concordance with
special reference to average Kendall tau. Ann. Statist. 10'1269-1276.

Diaconis, P. (1985). Group Theory in Statistics. IMS Lecture Notes—Monograph Series. Forthcom-
ing.

Diaconis, P. and GRaHAM, R. L. (1977). Spearman’s footrule as a measure of disarray. J. Roy.
Statist. Soc. Ser. B 39 262-268.

EFRON, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Re-
gional Conference Series in Applied Mathematics. SIAM, Philadelphia.

FEIGIN, P. DD. and CoHEN, A. (1978). On a model for concordance between judges. /. Roy. Statist.
Soc. Ser. B 40 203-213.

HOLLANDER, M. and SETHURAMAN, J. (1978). Testing for agreement between two groups of judges.
Biometrika 65 403-411.

KaTtz, B. M. and MCSWEENEY, M. (1981). Some tests for ranked data in repeated measures
multi-group designs. Amer. Statist. Assoc. Proc. Soc. Statist. Sec. 476-481.

KRAEMER, H. C. (1981). Intergroup concordance: definition and estimation. Biometrika 68 641-644.

[, I.. and ScHUcANY, W. R. (1975). Some properties of a test for concordance of two groups of
rankings. Biometrika 62 417-423.

[LINHART, H. (1960). Approximate test for m rankings. Biometrika 47 476-480.

MavLLows, C. L. (1957). Non-null ranking models 1. Biometrika 44 114-130.

MIELKE, P. W., BERRY, K. J., BROCKWELL, P. J. and WiLLIAMS, J. S. (1981). A class of nonparamet-
ric tests based on multiresponse permutation procedures. Biometrika 68 720-724.

MOSTELLER, F. and TUKEY, J. W. (1977). Data Analysis and Regression. Addison-Wesley, Reading,
Mass.

PATIL, G. P. and TAILLIE, C. (1982). Diversity as a concept and its measurement. JJ. Amer. Statist.
Assoc. 77 548-561.

PETTITT, A. N. (1982). Parametric tests for agreement amongst groups of judges. Biometrika 69
365-375.

Rao, C. R. (1982a). Diversity and dissimilarity coefficients: A unified approach. <J. Theoret. Pop.
Biol. 21 24-43.

Rao, C. R. (1982b). Gini-Simpson index of diversity: a characterization generalization and applica-
tions. Utilitas Math. 21B 273-282.

ScHucaNy, W. R. and FRAWLEY, W. H. (1973). A rank test for two group concordance. Psycho-
metrika 38 249-258.

FACULTY OF INDUSTRIAL ENGINEERING DEPARTMENT OF MATHEMATICS
AND MANAGEMENT UNIVERSITY OF OTTAWA
TECHNION OTTAWA, CANADA

HAIFA 32000
ISRAEL



