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MAXIMUM ASYMPTOTIC VARIANCES OF TRIMMED MEANS
UNDER ASYMMETRIC CONTAMINATION!

By JoHN R. CoLLINS
University of Calgary

We consider the following problem arising in robust estimation theory:
Find the maximum asymptotic variance of a trimmed mean used to estimate
. an unknown location parameter when the error distribution is subject to
asymmetric contamination. The model for the error distribution is
7= (1 — ¢)F, + ¢G, where F, is a known distribution symmetric about 0,  is
fixed proportion of contamination, and G is an unknown and possibly
asymmetric distribution. We prove, under the assumption that F, has a
symmetric unimodal density function f,, that the maximal asymptotic vari-
ance is obtained when G places mass 1 at either + oo or — 00. The key idea of
the proof is first to maximize the asymptotic variance subject to the side
conditions F(a) = a and F(b) =1 — « when a and b are given.

1. Introduction and summary. Let X,,..., X, be a random sample from a
distribution F(x — 6), where 6 is an unknown parameter to be estimated. Let
=T[X,,..., X,] denote the a-trimmed mean as defined, e.g., on page 58 of
Huber (1981). Then under mild regularity conditions on F, n'?[T, — ET,]
converges in distribution to a normal distribution with mean 0 and variance
V(F), where (ref. Andrews et al. (1972), pages 31 and 34):

1 b 2 2 2
(1) V(F)=(1_—2a)—2{/a(x—c(a)) dF + af (a = e(a))? + (b = c(e))]},

where

(2) c(a) = /bxdFJr a(a +b),

and where a = F"(a) and b = F (1 — a).
A problem arising in robust estimation theory is to evaluate the supremum of
V(F) as F varies over distributions of the form

(3) F=(1-¢F, +¢G,

where F,, is a fixed known distribution symmetric about 0, G is unknown, and e is
a fixed proportion of contamination. Here the constants & and «a are required to
satisfy 0 < ¢ < a < j in order to avoid breakdown. It is well known that when
the unknown contaminating distribution G is restricted to be symmetric about 0,
then T, is an unbiased estimator of § and V(F') is maximized by the symmetric

distribution G which places mass ; at each of + 00 and — co.
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Consider now the situation when the unknown contaminating distribution G
in (3) is not required to be symmetric. Although T, is not an unbiased estimator
of § under asymmetric contamination, the problem of maximizing V(F') remains
of interest. (See Section 4.9 of Huber (1981) for further motivation for this
problem.) Huber (1981) considered the case where F; is a normal distribution and
made the “highly plausible” conjecture that V(F') is maximized over all F of
form (3) when G places mass 1 at either + co or — 0.

In this paper we prove that Huber’s conjecture is true whenever the fixed F
in (3) has a density f, which is symmetric about 0 and unimodal. The main
difficulty in proving the result is that the limits of integration in formula (1)
depend on F. The device used to circumvent this difficulty is to first maximize
V(F') over all F of form (3) subject to the side conditions F(a) = a and
F(b) = 1 — a. A simple argument using the method of moment spaces yields the
maximum asymptotic variance, V(a, b), subject to F(a) = a and F(b) =1 — a.
One then shows that V(a, b) is maximized over all possible pairs (a, b) by the
choice of a and b obtained by placing all the contaminating mass at + oo.

2. Maximizing the asymptotic variance. Assume that ¢ and « are fixed,

with 0 < e <a < ;. Let F, be a fixed distribution function with a density

function f, = Fy satisfying the following two assumptions:
ASSUMPTION 1. f, is symmetric about 0, i.e., fo(x) = f(—x) a.e. x.
ASSUMPTION 2. fy(x) is strictly decreasing in x > 0.

The problem is to maximize V(F), given by (1), over all F of form (3).
Simplification of (1) yields

(4) V(F) = Vi(F)/(1 - 2a),
where
(5) V, = Vi(F) = —[c(0)?] + fbedF+ a(a® + b?).

Here c(a) is given by (2), and a and b satisfy
(6) F(a)=a, F(b)=1-a.

Our first step will be to maximize V| subject to @ and b being given. That is,
we will maximize Vi(F') over the convex subclass of distributions of form
F(x) = (1 — e)Fy(x) + eG(x) which satisfy (6). Only pairs of values of a and b
for which this convex subclass is nonempty will be considered. For given values of
a and b, G(a) and G(b) are determined by

G(a) = (a— (1 - e)Fya))/e,

1-G(b) = (a - (1 - e)(1 = Fy())) /e,
so that the G-mass G(b) — G(a) is also known.

(7)
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We may assume that a and b satisfy
(8) 0<lal<b,

so that 1 — F(b) < Fy(a)and 1 — G(b) > G(a). The reason that there is no loss
of generality in assuming that (8) holds is that if F' = (1 — ¢)F, + ¢G and if
F* = (1 — ¢)F, + ¢G*, where G*(x) = 1 — G(—x) for all x, then clearly V(F) =
V(F*) by symmetry.

For fixed a and b, it follows from (2), (3), and (5) that

(9) V= [c1 + efabxdG(x)r +C,+ e_/;bedG(x),

where C, and C, are positive constants, so that V| is a simple quadratic function
of the moments

(10) u=/bxdG(x), u=/bx2dG(x).

It is well known that the pair (z/p, v/p) can be any point in the convex hull of
the curve S = {(x, x?): @ < x < b}, where p = G(b) — G(a) is fixed by (7). The
upper boundary of the convex hull of S is a straight line segment, and each point
on that line segment can be realized by a distribution whose restriction to the
interval [a, b] is supported by the pair of points {a, b}. Keeping u fixed and first
maximizing V; relative to v, it is obvious from (9) that any distribution G
maximizing V, must have v maximal, that is, must be supported by {a, b}.

For fixed a and b, let the maximizing G have masses p and ¢ at a and b,
respectively, so that p + ¢ = p. Then we have u = pa + qb = pa + q(b — a)
and v = pa? + ¢b? = pa? + q(b? — a?). So the maximum value of V,, subject to
(6), is the maximum value of

Vi=Vi(q) = ={(1 ~ o) [xdRy(x) + e[(G(b) = G(a))a + q(b ~ )]

(11) + a(a + b)}

(1 - e)_/;bedFO(x) + e[(G(b) - G(a))a® + q(b? — a?)]

+a(a® + b?),
where g ranges over [0, G(b) — G(a)], and where G(a) and G(b) are determined
by (7).
Partial differention of (11) relative to ¢ and substitution of identity (2) yields:
aV,/3q = —2c(a)e(b — a) + &(b? — a?)

b+a 1 b
— K
2 I—Qafaxd (x)],

where F = (1 - ¢)F, + ¢[(p — q)8, + q¢8,]. Since we also have 92V,/dq? =
—2¢%(b — a) < 0, we need only inspect dV,/dq at 0 and p to determine whether
V, is maximized when (i) ¢ = p, (i) ¢ € (0, p), or (iii) ¢ = 0. The following

(12) =2¢e(b—a)(l — 2a)
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lemma shows that, when p > 0, the possibility of V, being maximized when
q = 0 (corresponding to having all the contaminating mass at a) is ruled out
under our assumptions.

LEMMA . Let F, be a fixed distribution function satisfying Assumptions 1 and
2. Let a and b be fixed numbers which satisfy (8) and for which p = G(b) — G(a)
(defined by (7)) satisfies p > 0. Then dV,/dq is nonnegative at q = 0.

ProoF. Suppose not, i.e., suppose that dV,/dq < 0 at ¢ = 0. By (12), this
implies that when the restriction of the distribution to [a, ] is F = (1 — ¢)F, +
epd,, the average of the distribution over [a, b], namely [°x dF(x)/(F(b) — F(a)),
is > (b + a)/2. Then the average over [a, b] under F,, namely
[bx dF(x)/(Fy(b) — F)(a)), must also be > (b + a)/2, since mixing F, with §,
can only pull the average toward the left. Now let x, = (b + a)/2 and note that
x, > 0 by assumption (8). To complete the proof by contradiction, it remains to
show that the average value over [a, b] under F, is < x,. But this follows from
the calculation

]:bedFO(x) - xofabdFO - fax"(x — xy)fo(x) dx + /x"(x — xg)fo(x) dx

(13)
= _/(;(bia)ﬂt[ fo(xo + 8) — fo(xo — t)] dt <0,

since Assumptions 1 and 2 imply that fi(x —t) > f,(x + ¢) for all ¢ > 0 and
x>0.0

In view of the lemma, the maximum of V| subject to fixed a and b satisfying
(8) occurs when either (i) ¢ = p (all contaminating mass at b) or (ii) ¢ € (0, p) (a
proper mixture of mass at both a and b). We remark that calculations for the
case when F, is the standard normal distribution show that both cases (i) and (ii)
do in fact occur, depending on the values of a and b.

THEOREM. Under Assumptions 1 and 2 on F;:
(i) The maximum value of Vi(F) = (1 — 2a)?V(F) over all F = (1 — ¢)F, + G
is

(14) - [(1 - e)/;bxdFO(x) +ola+ b)]2 + (- s)_/;bx2dF0(x) T a(a? + b?),

when a = a, and b= by, where a, = F; (a/(1 —¢)) and b, = F; (1 — a)/
(1 —¢)).

(i1) The maximum is attained at F = (1 — e)F, + ¢G if and only if either G
places mass 1 on (b, o] or G places mass 1 on [ — o0, — by).

Proor. (i) Let Vi(a, b) denote the maximal value of V, subject to F(a) = a
and F(b) =1 — a. We need to show V,(a, b) < Vi(a,, b,) for all possible (a, b).
Without loss of generality, consider only pairs (a, b) which satisfy (8). Our first
step is to show that for each fixed a, V(a, b) is maximized at the maximal
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possible value of b (corresponding to p = G(b) — G(a) = 0); namely at b = b(a)
satisfying

(15) Fy(b) = Fy(a) + (1 — 2a)/(1 —¢).

For fixed a, we will show that dV (a, b)/db > 0 for all b. First let S be any
interval of bs for which dV,/dq (formula (12)) is > 0 at g = p. Equivalently, S
is an interval of bs for which

b+ a 1 b JF

o 1_2a/ax 4(x) = 0,

where F, denotes a distribution with restriction to [a, b] given by F, =
(1 — &)F, + epd,. In view of the lemma, V(q) is maximized at q = p for all
be S. For beS, V(a,b) is obtained by substituting ¢ = p = G(b) — G(a)
into the right-hand side of (11). Differentiating V(a, b) with respect to b, noting
that d(eG(b))/db = —(1 — &)f,(b) by (7), yields (after some simplification) that

aV,(a, b)/db = 2[e(G(b) — G(a)) + a] [b - (bede(x) +ala+ b))]

(16)

(17) =2[e(G(b) — G(a)) + a]
x (b— b;a) + b;a(1—2a)—/:xde(x)” >0

for all b € S, by (16).

Next, for fixed a, let S, be any open interval of bs for which the value of ¢
maximizing V,(¢) in formula (11) satisfies 0 < g < p. Then in view of the lemma,
it follows that for b € S,, the maximum value of V| is

b 2 b 2
(18) Vi(a,b) = — [[ xdF,(x) + ala + b)] + [*x2dF(x) + aa + b)},
where F, = (1 — e)F;, + &(G(b) — G(a) — q)8, + eq8, on [a, b], and where g =

g(b) is the unique solution in (0, p) of dV(q)/dq = 0. Equivalently, from (12),
q = q(b) satisfies

b+a 1
(19) _ b -
3 = 2Olfaxqu(x) 0.

Differentiating (18) with respect to b on S, yields

aVl(aa b) b

SLE R —Q[Lxqu(x) +ala+ b)]

dq ‘

(20) X (1—8)(b—a)f0(b)+e(b—a)%+eq+a

+(1 = &)(b%— a?)fy(b) + e(b® — az)% + 2ebq + 2ab.

Substitution of (b + @)/2 = [2xdF(x) + a(a + b) (which is just (19)) into (20)
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yields, after simplification, that

aVi(a, b
(21) —(é—b—‘—)=(b—a)(a+eq)>0

for all b € S,.

From (17) and (21) it follows that, for each fixed a, V,(a, b) is maximized when
b attains its maximum value, corresponding to p = 0. Thus V,(a), defined as the
maximum value of V; given a, is given by (14) with b = b(a) determined by (15).
It remains to show that V,(a) attains its maximum at the maximum possible
value of @, namely at a = a, = F; '(a/(1 — ¢€)).

Computation of dV,(a)/da, using from (15) that db/da = f(a)/f,(b), yields

aV(a)/da = —2[(1 - s)fabxfo(x) dx + ala + b)]

X [(1 —&)fo(a)(b—a) + a(l + fo(a)/fo(b))]
+(1 = &) fo(a)(d® — a®) + 2‘1[“ + bfo(a)/fo(b)]-

So to show that dV,(a)/da > 0 for all a, completing the proof of (i), it suffices to
show both:

(22)

(23) btas 2[(1 _ e)f:xfo(x) dx + ala + b)]
and
(24) a + [bo()/h(B)] (1= ¢) [*xfo(x) dx + a(a + b).

1+ [fo(@)/fo()] ~

Using an inequality from the proof of the lemma and using the identity (15)
yields

b
b+a /xdFO(x) 1—¢
< = dF,
2 “F(b) - Fya) 1-2a fa" o(*),
which is (23). Also (24) will follow from (23) if we can show that

" afy(b) + ba)
fo(a) + fo(b)

(25)

b+a

But we have

o7 afo(b) + bfy(a) _ Q) = (b= a)( fola) — fo(d))
(&) 2 fola) + fo(b) (b+a) fo(a) + fo(®)

since b — a > 0 and since b > |a| implies that f(b) < f,(|a]) = fy(a) by Assump-
tions 1 and 2. This completes the proof of (i).

(ii) When b > |a|, it is easily seen that the inequalities (25), (26), and (27) are
strict inequalities. Thus dV(a)/da > 0 except at the boundary case where
|a| = b, proving that the unique maximum value of V, is given by (14) when
a = a, and b = b,. Clearly F = (1 — ¢)F, + ¢G attains the maximum subject to

>0,
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(8) if and only if G is concentrated on (b, co]. Removal of side condition (8)
completes the proof of (ii) by symmetry. O

REMARK 1. For numerical values of the maximal asymptotic variance corre-
sponding to various values of ¢ and a when Fj is the standard normal distribu-
tion, see Exhibit 4.9.2 on page 105 of Huber (1981).

REMARK 2. Not all F of the form F = (1 — ¢)F, + ¢G satisfy the regularity
conditions under which the a-trimmed mean is asymptotically normal with
variance V(F'). For such regularity conditions, see Bickel (1965) and Stigler
(1973). However it is clear from part (ii) of our theorem that there are suitably
regular F'’s which attain the maximal value of V.
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