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It is generally acknowledged that it is hard to think about priors in high (but
finite) dimensional spaces. Subjective Bayesians know that it is hard to elicit a
prior from an individual when the dimension is 3 or 4. Diaconis and Freedman'’s
interesting results on an inconsistent Bayes rule involving a reasonably natural
prior show how far off our intuition can be when we pass to an infinite
dimensional setting. In this discussion, we present other peculiarities, in addition
to the inconsistent behavior, that arise when one uses the symmetrized Dirichlet
prior. The discussion concludes with a few remarks on an alternative way of
constructing priors on c.d.f.’s.

1. The symmetrized Dirichlet priors. The setup considered by Diaconis
and Freedman is the following:

X, =0+e¢g, i=1,2,...,n, g areiid. ~ F.

The parameters § and F are independent, § having a density f, and F being
distributed according to 2, with a absolutely continuous.

Let 6,;= 3(X;+ X), and let #(0,;) denote the number of distinct pairs
(X4, X;) such that 3(X, + X,) = 6,,. (The pairs (X}, X,) and (X, X,) are called
distinct if the sets {X,, X;} and {X|, X,} are distinct.) The number #(6,;) will
be called the multiplicity of 6,;. The posterior distribution of 4 given X,...,
is denoted 7,,.
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46 DISCUSSION

If max;, ;#(0,;) = 1, then 7, has been described by Diaconis and Freedman
(1986, Lemma 3.1).

Doss (1984) shows that if max,, ;#(6;;) > 1, then 7, is a discrete measure,
concentrating all its mass on the points 6;; of highest multiplicity. (An intuitive
explanation of this is in Section 3 of Doss (1984); the corollary in that section
gives an explicit formula for #,.) In particular, if there is a unique point of
highest multiplicity, then 7, is a point mass at that point. This qualitative result
is true independent of the parameter a.

Several observations can be made immediately from this result; it is easiest to
proceed by way of example. Consider a data set consisting of 104 points, as
follows: X|,..., X o are between —1 and 1, and #(f;;) =1for 1 <, j < 100;
the last 4 points are 3, 6, 10, and 13. Under reasonable conditions on a and f (e.g.,
a and f are both standard normal), 7,,, will have most of its mass between —1
and 1. Note, however, that 7,,, is a point mass at 8 because 8 has multiplicity 2.
Not only does the posterior undergo a drastic change because of a few additional
observations, but we have a situation where the posterior (7,,,) is singular with
respect to the prior. To a subjective Bayesian, this is very counterintuitive: A
finite data set completely changes the opinion of the statistician.

Next, suppose that one of the last four points is perturbed very slightly. The
result is that the posterior is no longer a point mass at 4. Thus, we see that the
map X — 7, is highly discontinuous. (Compare with Diaconis and Freedman’s
discussion of the derivative of the map taking priors to posteriors.) This is
unusual behavior and is disturbing when one considers the possibility of rounding
and/or grouping of the data. In light of the “what if” method discussed by
Diaconis and Freedman, this raises questions about the use of the prior 2,,.

Diaconis and Freedman have examined the asymptotics of #, when the data
X,,..., X, are iid. from a continuous distribution. The form of the posterior
when max,, ;#(6,;) > 1 and the observations made above raise the question of
how 7, behaves when X|,..., X, are i.i.d. from a symmetric discrete distribu-
tion. The answer is that #, can perform extremely well.

Consider a discrete distribution H which is symmetric about 8, and suppose
that H has just a finite number of atoms, say at 8 + a;, for i = 1,..., k. Let
{X;} be iid. ~ H. As soon as the values 6 + a;,,i =1,..., k have all been
observed, 6 is a midpoint of multiplicity &k, while all other midpoints have
multiplicity less than k. The posterior 7, is then a point mass at 6, and no
additional observations can change it. Furthermore, the probability that at least
one of the values § + a; has not been observed by time n goes down exponen-
tially with n. This can be generalized to other types of discrete symmetric
distributions. For example, the result is still true (with probability 1) if H is
picked according to 2,; see Doss (1984). Thus, the posterior (and its mean) can
behave extremely well if the data come from a discrete distribution.

Suppose that X, X,,..., X, have a unique midpoint 6* of highest multiplic-
ity. Since the posterior distribution of 8 is a point mass at 8* regardless of the
parameter a, it follows that if the prior on F is a mixture of symmetrized
Dirichlet priors, then the posterior distribution of @ is still a point mass at 6*.
Thus, the entire discussion above applies to mixtures of symmetrized Dirichlet
priors. Dalal (see, e.g., 1979) has shown that such mixtures are dense in the set of
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all priors on symmetric F’s, with the weak topology. These considerations raise
questions as to the appropriateness of approximating priors on symmetric F’s
with mixtures of symmetrized Dirichlet priors, since it is obvious that it is the
“details” of these mixtures (viz. the fact that they give probability 1 to discrete
symmetric c.d.f.’s) that is causing the peculiar behavior.

2. An alternative construction of random c.d.f’s. The atoms in the
posterior distribution of § arise because the construction of random c.d.f.’s used
by Diaconis and Freedman produces symmetric discrete c.d.f.’s with probability
1. The atoms vanish if instead we proceed as follows. Let a be a finite symmetric
(absolutely continuous) measure on %, and let «_ and a_ denote the restrictions
of a to (0, 0) and (— 00,0), respectively. Choose F, and F, independently from
2, and 9, , respectively, and form

F(t) = 3F\(¢) + 3Fy(2).

This F has median equal to 0 and with probability 1 is not symmetric, although
it is symmetric “on the average,” e.g.,
EF(t) = ﬁ(—tl
||

If we use this construction, the problem becomes one of estimating the median.
This is done in Doss (1985a, b), which contain the details of the rest of the
discussion. The Bayes estimate 6B of 0 can be described as follows. Let 4™
denote the maximum likelihood estimate of § when the distribution of the ¢;’s is
assumed to be a/||a||. Then, B is essentially a convex combination of §™ and of
the sample median, with the welghts depending on the sample.

Suppose that {X;} are iid. from a distribution function H with unique
median equal to 6. If H is discrete, then the Bayes estimate 62 is consistent.
However, if H is continuous, then the Bayes estimate can be inconsistent: It can
converge to a wrong value, it can oscillate indefinitely between two wrong values,
or the set {f,} can be dense in 2. As before, this behavior can be traced to the
fact that the Dirichlet priors give probability 1 to discrete distributions.
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