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ASYMPTOTIC PROPERTIES OF LEAST-SQUARES ESTIMATES
IN STOCHASTIC REGRESSION MODELS

By C.Z. WEr!
University of Maryland

Strong consistency of least-squares estimates in stochastic regression
models is established under the assumption that the underlying model can be
reparametrized so that the new design vectors are weakly correlated. An
application to fixed-width interval estimation in stochastic approximation
schemes is also discussed.

1. Introduction and summary. Consider the multiple regression model
(1.1) , Yo =BiXpy + - +Bx,, t ey, n=1,2...,

where the ¢, are unobservable random errors, B,,..., B, are unknown parame-
ters, and y, is the observed response corresponding to the design vector x, =
(Xp15+++5 %,p)- Then

_1n

bn = (bnl’*“’ bnp), = (inx’i) inyi
1 1

denotes the least-squares estimate of B = (8,,..., B,)" based on the observations
X1 Yoo+ » Xy Yy, assuming that Y7x x’ is nonsingular. Throughout the sequel,
we shall assume that {¢,} is a martingale difference sequence with respect to an
increasing sequence of o fields {#,}, i.e., ¢, is %, -measurable and E(¢,|%,_,) =0
for every n. We shall also assume that the design vector at stage n depends on
the previous observations x,, ¥,,...,X,_y, ¥,_; 1., X, is #,_,-measurable. The
asymptotic properties of the least-squares estimates were recently studied by Lai
and Wei (1982) who in particular established the following theorem concerning
the strong consistency of b,.

THEOREM A. Assume in the regression model (1.1) that

(1.2) supE(|e,|"|Z,_,) < o a.s. for some y > 2,
n

and
(1.3) Auin(n) = 0 a.s. and logA,.(n)=o0(Au(n)) a.s.,

where A, (n) and A, (n) denote the minimum and maximum eigenvalues of
YIx x4, respectively. Then

(1.4) b,—>B a.s.
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Lai and Wei (1982) also showed that, without further assumptions on x,,, (1.3)
is the best possible condition for the strong consistency of b,. They construct a
counterexample in which P{b, —» B} = 0 and in which (1.3) is only violated
marginally in the sense that

(1.5) Ain(n) = 0 as.

and log A, (n)/A ;.(n) converges to a positive random variable.

There are many interesting applications, such as stochastic approximation and
optimal control of a linear dynamic system, in which (1.5) holds, rather than (1.3),
as shown in Section 3. [See also Lai and Wei (1985).] This motivates a study of
the asymptotic behavior of least-squares estimates when (1.3) is relaxed. How-
ever, we impose the additional condition that there exists a linear transformation
A such that the new design vectors z, = Ax, have the property:

n n 1/2
(1.6) liminf )\min(Dn“(Zzizi)Dn“‘) >0 whereD, = {diag(Zziz;)}
n=oo 1 1

Thus, the linear transformation A induces a reparametrization of the model (1.1)
so that the new design vectors z, form a “weakly correlated” design in the sense
of (1.6). As far as strong consistency is concerned, this reparametrization reduces
the original problem to a univariate case. That is why the improvement is
possible. More precisely, when such a reparametrization is available, the follow-
ing theorem shows that b, is still strongly consistent when (1.5) holds, or more
generally, when (1.3) is weakened to condition (1.7) below.

THEOREM 1. Suppose that in the regression model (1.1), (1.2) holds and
(1.7) Apn(n) > 0 a.s. and {log Ao (n)}?? = o(An(n)) a.s.
for some 8 > 1/min(y, 4).

Suppose that there exists a nonsingular matrix A such that the random

vectors z, = Ax,, satisfy (1.6). Then b, — B a.s. If the vectors z,, = (2., ..., 2,,)’
satisfy, in addition to (1.6), the condition:

n c ’
(1.8) z,2”~=o(( szi) ) forsome0 <c<1 and i=1,...,p,
k=1

then we can weaken (1.7) to the assumption
(1.9) A (n)—> o as. and loglogh, . (n)=o(A(n)) as.,

and still obtain the strong consistency of b,,.
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The proof of Theorem 1 is given in Section 2. An application of Theorem 1 to
fixed width interval estimation in stochastic approximation schemes is discussed
in Section 3.

2. Proof of Theorem 1. The proof of Lemma 1 below is straightforward.

LEMMA 1. Let B and C be p X p matrices. If C is symmetric and nonnega-
tive definite, then
A max(C)A ppx(B'B) 2 A, (B'CB)
2.1
(21) > X pin(BCB) 2 Ao (C)X o (B'B).

LEMMA 2. Let {¢,, #,} be a martingale difference sequence satisfying (1.2).
Let {u,} be a sequence of random variables such that u, is %,_,-measurable.
Define s2 = Ltu?. Then

(2.2) z’:‘,uiei = O(sn(log sn)s) a.s.,

V 8 > 1/min(y, 4). Furthermore, if

(2.3) u?=o0(s2) forsome0<c<1,
then
n
(2.4) Yue = O(s,,(loglog sn)l/z) a.s.
1

Proor. Without loss of generality, we can assume each u, is a bounded
random variable. Otherwise, choose a, so that ¥°P[|u,| > a,] < oo and replace
uy by uplp,. < o,1- By Strassen’s imbedding theorem (Strassen, 1966 or Hall and
Heyde, 1980, page 269), there is a Brownian motion {W(t), t > 0} together with a
sequence of nonnegative random variables {T}, i > 1} such that

(2.5) Ejjyi = W(X':‘,Ti) as.,

(2.6) E(T,\#,,) = E(Y}|%,_,) as,
and
(2.7 E(T!\Z,_)) < ¢,E(|Y,|*|%,_,) as. forallr>1,

where Y, = u;¢; and c, only depends on r.
Fix r = min(y/2,2). Then2 > r > 1 and 286r > 1. Let Z, = T, — E(T,|%,_,),
t, = sZ(log s,)*®/(loglog s,) and V, = X7Z,/t,. Since s, is %, ,-measurable,
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{V,, n > 1} is a martingale. By (2.7),

o0 o0
ZE(|Zk|r|gk—1)/tlz < ZrZE(|Tk|r|3"—k—1)/tlg
1 1
<2¢, Y E(|Y, > % 1)/t
1

o0
=27¢, Y E(|ex) | Foy ) lusl >/t
1

[ee]

<2, ¥ (E(|ex"|F,-,))""ui(loglog s, )" /sE(log 5,)**"
1

< o0 as.

on the event {s2 — oo} by (1.2). Thus by the local martingale convergence
theorem (Chow, 1965) and Kronecker’s lemma,

(2.8) Y.Z,=o0(t,) as. on{s?— w}.
1
Hence by (2.6) and (2.8),

YT, = Y E(T%, ,) +YZ,
1 1 1

n

= ZE(YkZW"-k—l) + 2.2,
1

1
=0(s2) +o(t,) as. on{s?- o)
=o(¢,) as. on{s?— w}.

By the law of the iterated logarithm for Brownian motion,

n

b

1

(2.9) = 0(($ﬂ)loglog(}§7}))1/2 as.

1
= o(t,loglogt,)"”* as. on{sZ— oo}
= o(sn(logsn)s) as. on{s2— oo}.

On the event {E¥u? < 0}, by the local martingale convergence theorem

(2.10) Zn‘,uiei =0(1) as.

1
From (2.9) and (2.10), (2.2) follows. Moreover, if (2.3) holds, a standard Chebyshev’s
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inequality argument shows that

00

2 2
Z E{(ukek) I[(u,,e,,)2>s;‘,’/(logsk)(loglogsk)“]l‘gzk—I}IOgIOg sk/sk
k=1

o0
< Ss:pE(|ek|’|fk_1) Y |uyl"(log s,)"* " '(loglog s,)* " */sf
k=1

r/2-1 2r—3

o0
< Sl;pE(leklrl‘g;k~l) 2 uj(logs,)”" " (loglog s,)
k_

=1

00
<o as. ontheevent{Zu,§= oo}.
1

Hence by (2.10) and Theorem 3.2 of Jain et al. (1975), (2.4) follows. O

Proor OVF THEOREM 1. First note that

n -1 n
b, — B = (inx;) pIp I
1 1
-1

= A_l(zr::z,'z;)(A')_l} A7)z,

1

n -1 p
= A’(Zzizf) Zziei
1 1

Hence by (1.6),

(2.11) b, - BIl = O(IIDJIII Dn_liziei ) as.
1
Since
> xx; = A‘l(fziz:)(A')“
and 1 l

n n
Zziz;=D;‘{D,:‘(Zziz:)D;l} D,
1

1
Lemma 1, (1.6), and (1.7) imply that
(2.12) Ain(D,) & ©  as.
and

{10g X (D) }° = 0(A%,(D,)) ass.

/sz+(r—2)(1 —c)
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By Lemma 2, (2.11), and (2.12),
I, = Bll = O( {108 A x(D,) }*/N2rin( D))

=o0(1) as.

Moreover, if (1.9) holds then similar argument shows that (1.4) also holds. O

3. Applications to fixed-width interval estimation in stochastic ap-
proximation schemes. Consider the general regression model
(3.1) Yo =¥x,) =M(x,) +e,, n=12,..,

where the x,, are real, the errors ¢, ¢,, ... are i.i.d. random variables with mean 0,
variance o2, and Ele|? < co. Assume that the regression function M(x) is a
Borel function satisfying the following three conditions:

(32) M(6)=0 foraunique § and M’'(8) = B exists and is positive;

(3.3) inf  {M(x)(x—-6)} >0 forall0<é<1;
S<|x—0|<8!
(3.4) IM(x)| < C|x| + D for some C, D > 0 and all x.

A class of stochastic approximation procedures, originally proposed by
Robbins and Monro (1951), for finding the root § and choosing the levels x,, is
represented by recursions of the form

(3.5) Tpir = X, — by,/n

where x, and b > 0 are constants. Blum (1954) showed that x, — 6 a.s. and
Sacks (1958) showed that if 258 > 1 then n'/?(x, — ) is asymptotically normal
with mean 0 and variance b%2/(2b8 — 1). In practice we may want to terminate
the procedure when x, is sufficiently close to 6§ with high probability. We

propose here a stopping rule giving a fixed-width confidence interval for 6. Let
x, = (1, x,). Define

-1 pn

(&n’ Bn)l = (ZX,-X;) inyi’
1 1

n
n_IZ(yi - &n - énxi)z'
1
Given 0 <7 < 3, let K, be the upper 100(1 — n)-percentile of the standard
normal distribution. For any d > 0, define the stopping rule
(3.7) N(d) = inf{n|v, < d*n},

where

(3.6)

~2
n

v, = K2b%2/(2bB, — 1).

As an application of Theorem 1, we obtain:

THEOREM 2. Suppose that (3.1)-(3.4) are satisfied and that M is continu-
ously differentiable in some neighborhood of 6. Consider the stochastic approxi-
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mation scheme (3.5) with 2b > 1. Define &,, B,, 6, by (3.6) and N(d) by (3.7).
Then

4 ”2“'"i"(i"i""‘) (- £ ~ (logn)o®b /(268 — 1) as,
(3.8)
Amax(zxix;) ~(1+6*n as,;

(3.9) &, —B0 a.s. and B,— B a.s;
(3.10) 62 > 6% a.s;
(3.11) lim d*N(d) = K2b%?/(268 = 1) a.s;
—> 0
(3.12) ‘}lin})P{|xN(d) -0l<d}=1-2n.

REMARKS. (a) Sielken (1973) proposed a stopping rule for the stochastic
approximation scheme (3.5). He used strongly consistent estimates for 8 and o2
which were proposed by Burkholder (1956). The estimates require that at the nth
step, an observation be taken on y(x,) and y(x, + j,), where {,} is a sequence
of positive constants such that j n* converges to a positive limit for some
0 < A < 1. Specifically, the estimates 8, and 62 of B and o? are defined by

B=n Y (A +4) — (x)) i
and
52 = é{n-‘i [y2(x,) + *(x, +jn)]}.

(b) Stroup and Braun (1982) argued that Burkholder’s variance estimate is
distorted by y(x, + j,) and proposed a modified least-squares estimate for 8 and
an unbiased estimate for o2. The estimates require that at the nth step, two
independent observations y, , and y,, be taken at the same level x,. The
estimates B, and o2 of B and o2 are defined by

and
- 2 2
ol=n"1) [(yi,l -5) +(¥a2—5) ],
i=1

where ¥ = (¥, + ¥%.2)/2and X, = n”'L]x,.
(c) Both estimates in (a) and (b) require two observations at each step, which is
not required in our procedure. Although the variance estimate of Stroup and
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Braun is unbiased, the squared error of their estimate is larger than ours
asymptotically. More specifically, assume 7 = E|e2 — 02|2 < c0. Then
lim|62 — 0?2=1/2 as.,
and
lim|o? — 022 =1/2 + 40! as.

(d) The crucial step for establishing (3.11) and (3.12) is to show that the
estimates of B and o are strongly consistent. Applying a theorem due to Lai and
Robbins, which is a particular case of Theorem A, Stroup and Braun (1982) claim
that B, is strongly consistent because

(3.13) Y(x; - %,)*/logn - o as.
1

However, (3.13) contradicts (3.8). The usefulness of Theorem 1 for such settings is
clear. [See also Stroup and Braun (1984).]

(e) Instead of using stopping rules similar to (3.7), Stroup and Braun (1982)
proposed a new stopping rule defined by

N, = inf{n|u,(k) < c}

where u, (k) =X} %2 ,,,/ko? and ¢ > 0 a constant. Their results rely on their
Theorem 2 which requires the restrictive assumption that ¢, are normal random
variables. [Cf., Stroup and Braun (1984).]

Before proving Theorem 2, we need two lemmas. The first one is easy and its
proof is omitted.

LEmmA 3. If lim,_, Y?a?/logn = ¢ > 0, then

Zn:ai = o((n log n)1/2).

LEMMA 4. Suppose that in the regression model (1.1) and (1.2) hold. Sup-
pose that there is a nonsingular A such that z, = Ax, satisfy (1.10). Let
67 =n "Ll (¥ — bx)% If lim,_ E(e%%,_,) =02 a.s. for some ¢ > 0 and

(3.14) Amin(n) = 00 and {logA,.(n)}** =0o(n) a.s.
for some 8 > 1/min(y,4), then

(3.15) 62 > 0% a.s.

Moreover, if z, further satisfies (1.8) and

(3.16) Amin(n) = 0 and loglogA,,(n)=o0(n) a.s.,

then (3.15) holds.

ProoOF. Apply identity
2= n7{Set| =6, )| S0, 9
1 1

and a similar argument as that in the proof of Lemma 3 of Lai and Wei (1982). O
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ProoF or THEOREM 2. We only have to show (3.8)-(3.10), since (3.11) and
(3.12) follow easily from these and Sielken’s (1973) arguments. Let £2 =
62b%/(2bB — 1). By Theorem 4 of Lai and Robbins (1979), it follows that

n
(3.17) lim Y (x,— 0)’/logn=¢2 as.,
n—oo 1
and
(3.18) limsuplx, — 8(n/2loglogn)"/? = || as.
n— oo
Hence

n

S (xi— )2 = ¥ (2~ 0)° — n(%, - 0)°

1

(3.19) = zn:(xi —8)* + O(loglog n)

~ (logn)¢? as.
Now

(n) + Apn(n) = n + La? = n(1+ 22) + 3 (x, - 5,)°,

A max

(3.20)

n

Amxnwxm@w=n2ﬁ—(in)=n$m»—af.

Since X, = 0 as., A (n)~ @1+ 60> 'THx;, — x,)® as. and A, (n)~
n(l + 6?) a.s. This completes the proof of (3.8). For the proof of (3.9), we claim
that (3.9) is equivalent to the strong consistency of the least-squares estimate
(&,,B,) in the model

(3.21) Y =a+ Bx;+¢
where a« = — 36. We show this by proving that
(3.22) |&, = &, +|B, — Bl >0 as.

Let g(x) = M(x) — (a + Bx). Then

n

a—a=zm—@mmyim—@ﬂ
and

(3.23) &, — &, =g(x,) +(B, - B,)%,.
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Lai and Robbins (1981, page 338) have already shown that
n n
L (5= 5,)ex) = of Kr, - 57| as
1 1

Hence ﬁn — B, = 0(1) as. and consequently by (3.23) and the fact that g(x,)—0
as., &, — a, = o(1) a.s. This completes the proof of (3.22).

Now let
1 0 1
A=(_0 1), zn=Axn=(x _0)

n

and
n 0
2_ n
Di=lo Y(x,-0)|
1

By (3.17) and Lemma 3,
n
R,= D,{l(Zziz’i)Dn‘1 -1, as.
1

Thus (1.6) is satisfied. By (3.8), (1.7) is satisfied with § = 5/12 and y = 3. By
Theorem 1 and (3.22), (3.9) is proved. Using a similar reduction, we can prove
(3.10) by applying Lemma 4. O
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