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This book is aptly titled. It is concerned with problems arising in the descrip-
tion and analysis of data that consist of points on the (g — 1)-dimensional surface
Q, = {fullu € R,, | u| = 1} of the unit sphere in g-dimensional space R,. Such
data arise primarily from measurements of direction or orientation in the plane
(g = 2) or space (g = 3). A “direction” may be defined to be a semi-infinite ray
in R, from a fixed origin. Such a ray intersects Q, at a unique point u and
conversely such a point uniquely defines a direction. Actually what I have just
described is a vectorial direction for which u defines a direction distinct from
that defined by —u, for instance the “vanishing direction” of a homing pigeon
released from a location distant from its home loft. Also common are axial
directional data for.which u and —u cannot be distinguished. An example is the
direction of the principal axis of an ellipsoidal pebble found in a stream bed. In
the axial case, the natural mathematical ground for directions is the projective
plane. However, even in this case the surface of the sphere is a comfortable
mathematical environment as long as one bans any operations that treat u and
—u differently.

Why should there be a specialization of statistics on spheres? Cannot we use
the same techniques as we learn in Statistics 101, at least for simple problems?
As Fisher was perhaps the first to point out, the problem is that we need to take
into account the topology of the sphere. In particular, we need techniques that
are immune to the fact that any nonredundant parameterization of Q, in terms
of reals must have at least one point at which continuity breaks down. In less
technical terms, there is a “wrap-around” problem arising from the fact that
most common ways of specifying directions are in terms of angles. For the circle
Q., indeed, it is hard to imagine another useful one-dimensional parameterization.
That this can cause problems for the unwary is obvious by comparing the
following two representations for the same batch of data: {—35°, 1°, 37°} and
{325°, 1°, 37°}. For these data, any sensible measure of “central tendency” should
be close to 1°. However, any reasonable method appropriate for reals will yield
very different results for the two representations.
~ In fact, one can view directional statistics as a particular case of multivariate
analysis. Indeed, the approach of studying directions as unit-vectors in R, is a
natural way to avoid wrap-around problems. Thus one can compute a central
tendency of a batch of directions as the direction of the vector sum of vectorial
unit vectors. For axial data, the eigen structure of the cross-product matrix of
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unit vectors may often be used to describe both clustering of directions and the
shape of a cluster.

Directional data arise in a great variety of fields—Geology (the orientation of
the paleomagnetism in rocks, the direction of the axes of sand dunes, the
orientation of tilted earth structures), Biology (the orientation of microorganisms
in polarized light, the homing behavior of various animals including Man, the
foraging behavior of insects, the directions of capillaries in tissue, the analysis of
chromosome patterns), Physics (the direction of particle diffusion), Astronomy
(the orientation of planetary and cometary orbits), etc. Directional data methods
have even been applied to data that is literally defined by latitude and longitude
on the sphere we call the Earth, trying to make sense of patterns of chains of
islands.

The statistics of directions have a long history dating back at least to Daniel
Bernoulli, who, in carrying out what has been called the first statistical signifi-
cance test, examined the null hypothesis that the directions normal to the orbital
planes of the known planets might have arisen by sampling an isotropic distri-
bution. Of course, as R. A. Fisher pointed out, much of the early development of
least squares by Gauss and Laplace was for the analysis of astronomical deter-
minations of the location of planets and stars on the celestial sphere. However,
for measurements of such precision there is no need to take the topology of the
sphere into account.

Directional statistics entered the main stream of statistics in 1953 with the
publication of papers by Fisher (1953) and Gumbel, Greenwood and Durand
(1953). Much of the content of these had been anticipated by Arnold (1941) in
an unpublished MIT dissertation, but his work seems to have been largely
ignored. Both papers dealt with particular cases of what Watson calls the
Langevin distribution. This has the density with respect to the uniform proba-
bility measure dw,/w, on @, (dw, is invariant measure on Q, with total measure
wq = 2m72/T(q/2))

f(u; &, p) = F(x) 'exp(xuTp),

in which g € Q, is a pole of concentration, x = 0 is a precision parameter, and
F(x) is a normalizing constant expressible in terms of Bessel functions (if one is
unfamiliar with special functions when involved in directional statistics, one’s
ignorance does not last long). In the literature, this family is usually called the
Fisher-von Mises or von Mises-Fisher distribution. For ¢ = 2, von Mises (1918)
applied it to the somewhat far-fetched situation where the data were the fractional
parts of atomic weights of the chemical elements, rescaled as angles. Gumbel,
Greenwood and Durand (1953) call this case the “circular normal distribution,”
as’it is one candidate (of many) for an analogue on the circle of the usual normal
distribution. Fisher (1953) proposed the form with ¢ = 3 for the analysis of
measurements of the direction of paleomagnetism. His principal interest was to
clarify the application of fiducial inference in the presence of a nuisance param-
eter (see Barnard, 1963; Williams, 1963; Bingham, 1980). Watson gives priority
to Langevin who, in 1905, derived the family as an equilibrium distribution
arising in statistical mechanics.
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Once the Langevin distribution was in the standard literature, its exploration
was rapid, especially for the important cases of ¢ = 2 and ¢ = 3. Many problems
parallel to those in normal theory arise naturally. The pole p is a vector location
parameter analogous to the mean and 1/« is an analogue of the variance. The
primary interest is usually in u with « a nuisance parameter. For a single sample
there may be interest in testing Ho: p = po or Hy: u € V, V a subspace. For more
than one sample, there is the obvious problem of testing whether all the u’s are
the same, or more generally, lie in the same plane or hyperspace. Just as
homogeneity of variance simplifies normal theory in the multi-sample case, so
does homogeneity of x simplify Langevin theory. Exact and approximate infer-
ential methods have been developed for these problems and others (much of the
work by Watson and his students). A relatively unexplored area concerns mul-
tivariate extensions of the Langevin distribution. Some progress has been made
in a regression context (Gould, 1969), and in the bivariate case (Rivest, 1982;
Saw, 1984). Mardia’s review (1975) suggests other directions. Downs (1972)
applied an analogue of the Langevin distribution to orientation data with more
complex structure than either axial or vectorial.

Other distributions that have been proposed for vectorial data include the
Brownian motion distribution, i.e., the distribution of the location of a particle
subject to homogeneous diffusion from a point source on 2, (Roberts and Ursell,
1960; Stephens, 1963), and “small circle” distributions (Mardia and Gadsden,
1977; Bingham and Mardia, 1978). These, like the Langevin distribution, are all
rotationally symmetric around a single pole u.

The development of distributions for axial data has lagged somewhat. In the
case g = 2, there is nothing new to be said, since the projective plane is isomorphic
to the circle by simply doubling angles. But for ¢ = 3 this trick does not work
since the projective plane is not isomorphic to the sphere. Selby (1964) suggested
densities proportional to exp(—« | cos 6 |) or to exp(x sin 0), where cos § = up,
while Watson suggested a density proportional to exp(—« cos?§) (called now by
Watson the Scheidegger-Watson distribution). Depending on the sign of , these
are either concentrated near the “equator” normal to u (so-called “girdle” distri-
butions) or near +u (“bipolar” distributions). All display rotational symmetry
about u. Bingham (1974) independently introduced (for ¢ = 3) a generalization
of the Scheidegger-Watson distribution that may not be rotationally symmetric
around any axis. Its density is proportional to exp(3 L, {;(ufu)?) = exp(tr Auu”).
Here A is a ¢ X g symmetric matrix with spectral decomposition A = MZMT
with orthogonal M = [uy, po, - - -, u,], and Z = diag[¢, - - -, $2]. M serves as a
generalized location parameter and Z as a set of shape and concentration
parameters. For g = 3, if {; < {, < {3, the density is girdle near the plane normal
to w1, while if §; < {, < {3 it is bipolar near *u3. For this distribution, too, there
are analogues of many of the standard normal theory one- and multi-sample
problems. These have been less thoroughly explored than for the Langevin
distribution.

Both the Langevin and Bingham distributions can be viewed as conditional
distributions of particular multivariate normal distributions for u, given u € Q.
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Thus if u is MVN,(u, x*Iq), p € Qq, then conditional on || u || =1, u is Langevin.
Similarly, if u is MVN,(0, —2A!) where A = AT is negative definite, the
conditional distribution of u is Bingham, with the pu’s and {’s the eigenvectors
and values of A. This suggests the more general family derived by conditioning
an arbitrary MVN,(u, Z). For ¢ = 3, Kent (1982) partially classified the distri-
butions so obtained, according to various restrictions placed on u and =. These
distributions include the Bingham-Mardia small circle distribution and a useful
noncircularly symmetric distribution for vectorial data (Kent’s FBs).

Further, the Langevin and Bingham distributions and their generalizations
are, of course, in the exponential family of distributions. Beran (1979) has
proposed including higher degree polynomials in u in the exponent, and has
developed a powerful approach to the difficult problems of estimation, largely
bypassing the need to work with multi-argument transcendental functions.

There is another important problem in applied directional statistics—testing
the hypothesis of isotropy (uniformity on €,). Since Q, is compact, the uniform
distribution is proper and represents the absence of any structure in the popu-
lation. In some contexts, rejection of this hypothesis is a principal goal of research.
For instance, before it makes sense to study whether the position of the sun
affects the typical foraging direction of bees, one needs to establish that the
directions are not uniformly random. The most widely applied test is the Rayleigh
test based on the squared resultant length R? = || $%,; u;|| % R? is asymptotically
distributed as nx2/q when the underlying distribution is uniform. For vectorial
data, Bingham (1974) proposed (for ¢ = 3) the statistic (q(g + 2)/2n)tr(UUT —
ng~'1,)?, where U is the ¢ X n matrix [uy, us, -- -, u,]. This is asymptotically
X ?4+2)(a-1)72 under isotropy. A rich theory of tests for uniformity on spheres and
more general compact structures has been developed and exploited (Ajne, 1968;
Beran, 1968, 1969b; Giné, 1975; Kuiper, 1960; Prentice, 1978; Stephens, 1964;
Watson, 1961, 1976).

In addition to the various parametric approaches, there has been a fair amount
of work on extension to the circle of distribution-free methods, primarily rank
tests (Beran, 1969a; Mardia, 1967; Rothman, 1971; Schach, 1969; Welner, 1979).
In particular, there are tests for a preferred direction, tests of independence, two-
sample tests for identity of distribution, etc.

The book under review is indeed an important addition to the literature. It is
the closest thing we have to a monograph on directional statistics which can lead
research statisticians to the frontiers. It consists of five chapters, each corre-
sponding to a lecture presented at a conference on Statistics on Spheres at the
University of Arkansas in March, 1982. No claim is made that it provides enough
background and detail to be of much use to the practicing scientist who is a
novice at analyzing directional data. For that, Mardia’s book (1972) is still
indispensible. However, Watson’s book contains a wealth of material of interest
both to the theoretician and the applied statistician.

In spite of the limitations of the format, much of the work mentioned earlier
is covered to some degree—tests of uniformity and parametric methods based on
the Langevin, Bingham, and other distributions. However, its greatest importance
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lies not in describing small sample methods based on parametric families, but in
providing the beginnings of a large sample methodology for statistical problems
on spheres, making only minimal assumptions such as symmetry.

Chapter 1 is a general introduction for those new to directional data. Types of
data and applications are described, and summary statistics and graphical meth-
ods of display are presented. Particularly interesting is a detailed look at the
directions normal to comet orbits. This is used to illustrate uniformity tests and
a graphical assessment of the goodness-of-fit of the Langevin distribution. This
last is an important problem that has had too little attention. There is a brief
section on density estimation on the sphere using the Langevin density as kernel.

Chapter 2 deals with the uniform distribution. Various results are derived
concerning the exact distribution of X = Y%, u;, where u; are i.i.d. uniform on
Q,. The Central Limit Theorem gives the large samplé distributions of X and
M, = n"' 3%, uju} These are used to derive the asymptotic x?2 distributions of
the Rayleigh and Bingham statistics for testing uniformity. Of some mathemat-
ical interest is a look at what happens when n is fixed but g goes to infinity.

Chapter 3 covers an immense amount of territory and serves as an introduction
to many of the results in Chapters 4 and 5. It consists of a mixture of facts
concerning various parametric families. The discussion of exponential models
includes a succinct review of spherical harmonics, another useful theoretical tool.
Various routes to constructing distributions are sketched—conditioning (leading
to the Langevin, Bingham, and more general families), marginalizing (angular
Gaussian), diffusion on €, subject to possibly random stopping times (Brownian
motion, Langevin, among others), diffusion to surface from an interior point of
a solid sphere (Langevin), and maximization of entropy (Langevin, Bingham).
There is a nice proof that the Langevin is the only distribution with density of
the form f(xTu) such that || X || ~*X is the MLE of p.

Chapters 4 and 5 are the most important in the book. They provide the
beginnings of general large sample inferential methods based on the sample mean
vector n~'Zu; (Chapter 4) and the eigen structure of the sample second moment
matrix M, (Chapter 5). Emphasis is on distributions having particular symme-
tries. Chapter 4 is primarly concerned with methods applicable when the distri-
bution is rotationally symmetric about u € Q, i.e., having densities depending
only on cos § = pTu. The population mean direction u € Q, is the object of
interest. The distributions emphasized in Chapter 5 have densities of the form
f(|| Pvu||), where Py projects into a subspace V. This is a natural generalization
of the previous case, with the object of interest now being the subspace V. Single
and multi-sample test statistics of various hypotheses (e.g., Hy: Vi =V, = ... =
V) are proposed and their null and nonnull asymptotic distributions derived.
The results based on the mean vector & are derived fairly readily by standard
methods starting with the multivariate central limit theorem. On the other hand,
most of the results on the eigen structure of M,, are derived using elegant methods
from a book by Kato (1966) on perturbation theory for linear operators. Chapter
4 also discusses large sample methods specifically for the Langevin distribution,
and similarly Chapter 5 has a section devoted to the generalized Scheidegger-
Watson distribution with density proportional to exp(k | Pvu || 2).
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There are three Appendices. Appendix A presents a lot of facts concerning
functions derived from the normalizing functions for the Langevin and Scheideg-
ger-Watson distributions. It is unfortunately marred by a number of algebraic
errors. Appendix B summarizes the application of results of Kato (1966) to the
spectral analysis of cross-product matrices. And Appendix C, by this reviewer,
gives a series expansion in spherical harmonics for the marginal distribution of
u = | x| 'x when x is MVN,(n, ¢°I,).

In summary, Watson’s book is a milestone in the literature on spherical
distributions. For the specialist it brings together many results and points to
paths for new research directions. For the statistician who is new to the subject,
it is an excellent introduction to much of what is important in the field. This
will be easier with an errata sheet available from Watson.

One of the exciting things about the area of orientation statistics is that there
are still many areas where we scarcely have an inkling of what to do. For instance,
beyond pairwise correlation measures, I am unaware of anything on genuinely
multivariate problems involving several related determinations of direction.
Except for a test for serial correlation (Watson and Beran, 1967), there is a
dearth of methods that might be used to analyze time series of orientation
variates. Appropriate models would find immediate application in geophysics. In
fact, given practically any problem area in “flat” statistics—robustness, cluster-
ing, modelling, influential observations, to name a few—there is a corresponding
problem for spheres. Progress is being made, but there is much to be done. And,
of course, when statistics on the sphere are as familiar as N(0, 1), there are
worlds of more complicated curved manifolds to conquer.
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