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FAMILIES OF A-OPTIMAL BLOCK DESIGNS FOR COMPARING
TEST TREATMENTS WITH A CONTROL?

By A. S. HEDAYAT AND DIBYEN MAJUMDAR
University of Illinois at Chicago

A-optimal designs for comparing each of v test treatments simultaneously
with a control, in b blocks of size k each are considered. It is shown that
several families of BIB designs in the test treatments augmented by ¢ repli-
cations of a control in each block are A-optimal. In particular these designs
with ¢ = 1 are optimal whenever (k — 2)? + 1 < v =< (k — 1)? irrespective of
the number of blocks. This includes BIB designs associated with finite
projective and Euclidean geometries.

1. Introduction. We shall consider the problem of obtaining optimal de-
signs for comparing several test treatments with a control in incomplete blocks.
Here the term control is used in the sense of a special or standard treatment,
rather than a check on the experiment as advocated by Fisher and other experts
in the theory of experimental design. To fix notation, we shall henceforth denote
by v the number of test treatments, by b the number of blocks and by & the size
of each block.

A serious study of the problem of comparing test treatments with a control
was done by Pearce (1960), who proposed a class of suitable designs and gave
their analysis. Bechhofer and Tamhane (1981) systematically investigated the
problem of finding optimal designs for simultaneous interval estimation. Majum-
dar and Notz (1983) looked at the optimal design theory as postulated by Kiefer
and other researchers, and gave a method of obtaining ¢-optimal designs for a
large class of criteria ¢. In particular, the A-optimality criterion possesses
considerable statistical content. Ture (1982) has also considered the problem of
determination and construction of A-optimal designs. Notz and Tamhane (1983)
and Hedayat and Majumdar (1984) have considered the problem of constructing
efficient designs. ‘

Even before these investigations, Cox (1958, page 238) had advocated aug-
menting a BIB design with one or more replications of the control in each block
as a means of getting good designs. Pearce (1960) gave an example of a real life
experiment, in which a balanced block design was augmented by 2 replications of
the control in each block. Pesék (1974) investigated the efficiency of BIB designs
augmented by one control in each block and Constantine (1983) established their
A-optimality in a restricted class of competing designs. The catalog of
A-optimal designs given by Hedayat and Majumdar (1984) for reasonably small
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values of the parameters v, b and k, shows that designs of this type are in fact
A-optimal in many cases. One benefit of considering this type of optimal designs
is that one may appeal to the vast literature on BIB designs for their existence
and construction. This is an appreciable advantage over the more general class
of BTIB designs of Bechhofer and Tamhane (1981), which are not very widely
studied as yet. It also seems reasonable to assume that these designs will be quite
efficient for comparisons among the test treatments.

The purpose of this paper is to obtain A-optimal designs explicitly. In partic-
ular, we investigate the optimality of augmented BIB designs. At the very outset
we warn the reader that there are situations when an augmented BIB design is
not optimal. Examples may be found in Constantine (1983) (v = b = 11, k = 6)
and Hedayat and Majumdar (1984) (v = 9, b = 48, k = 7). The A-optimality of
several families of augmented BIB designs is established here. In deriving these
results, we have utilized the technique of Majumdar and Notz (1983). Indeed, no
more A-optimal augmented BIB designs can be obtained by that technique. It
may be noted that Majumdar and Notz’s method involved minimizing a function
over finite set of positive integers. In this paper, we have been successful in
solving the problem analytically for those cases where the minimum corresponds
to an augmented BIB design.

In the process, many interesting families of A-optimal designs have been
obtained. Some examples are the families of BIB designs corresponding to finite
projective and Euclidean geometries augmented by one replication of a control
in each block, as well as the union of any number of copies of such designs. We
would like to point out that these are the first known families of A-optimal
designs for comparing test treatments with a control.

In Section 2 we prove general results on the optimality of BIB designs
augmented by ¢ replications of a control in each block. The special case ¢t = 1 has
many interesting features. These are studied in depth in Section 3. Examples of
optimal designs for some other values of ¢ are also provided.

2. Optimality of BIB designs augmented by ¢ replications of a control
in each block. v test treatments are to be compared with a special treatment
called the control in b blocks of size k each. We label the test treatments by
1, ..., v and the control by 0. Let Y;;, denote the observation on treat-
ment i (0 <i<wv)inblockj (1 <j=<b)inplotl (1l =!=<k). We assume the
usual additive:linear model without interaction, namely

Yiu=n+ 7+ B+ e,

where e;;; are assumed to be uncorrelated random variables with mean 0 and
common variance ¢2. The unknown constants u, 7; and $3; represent the general
mean, the effect of treatment i and the effect of block j respectively. An
experimental design is an allocation of treatments to blocks. Let Z (v, b, k) be
the set of all possible experimental designs. We want to choose an experimental
design from 2 (v, b, k) which attains the minimum of

Y1 var(7a — 7ai)

as d varies over all of (v, b, k). Here 740 — 74;(1 < i = v) denote the BLUE’s of
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70 — 7; under the design d. A design which achieves the minimum is called an
A-optimal design. We shall only deal with the incomplete block set up, v = k.
A-optimal designs for & = 2 have been extensively studied, theoretically and
numerically, in Hedayat and Majumdar (1984). In this paper we shall concentrate
only on parameters v, k which satisfy

(2.1) k=3
(2.2) v=k

In Theorem 2.1, due to Majumdar and Notz (1983), we state a method for
finding A-optimal designs. Before stating it, we need some definitions and
notation.

A design d in 2 (v, b, k) for which all var(74 — 74}), (1 =i < v) are equal, and
all Cov(7gp — 7ai, Tao — Tair) 1 <1, i’ <v,i#i’) are equal is called a Balanced
Test treatment Incomplete Block (BTIB) design. These were defined by Bech-
hofer and Tamhane (1981), who also gave a combinatorial definition of such
designs. An important subclass of BTIB designs are the augmented BIB designs.
We shall denote by BIB (v, b, k) a BIB design based on v treatments in b
blocks of size k each. A BIB (v, b, k —t) based on the v test treatments and
augmented by ¢ replications of a control in each block will be denoted by ABIB
(v, b, k — t; t). Following Das (1958), some authors refer to such designs as
reinforced BIB designs.

Let

a= (-1 c=bvk(k-1),

p=v(k—1) + k&,
AN =1{0,2):2=1,...,b}
N={(x,2):x=1,---,[kR/2]-1,2=0,1, ---, b},
where [e] is the largest integer not exceeding e. Let
A=A UA,,

and
g(x, 2) = a/(c — p(bx + z) + (bx? + 2xz + 2))

+ 1/(k(bx + z) — (bx* + 2xz + 2)).

We observe that,
g(x,0) =g(x—1,b), forall x#O0.

THEOREM 2.1 (Majumdar and Notz, 1983). Let integers t and s be defined by

g(t, s) = Ming,,en g(x, 2).

Then a BTIB design with the control replicated (t + 1) times in s blocks and t
times in (b — s) blocks and binary in the test treatments is A-optimal.

The notations of Theorem 2.1 are different from that of Theorem 2.2 of
Majumdar and Notz (1983). The symbol r of the original version is replaced by
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bx + z of this version. Moreover, the set A does not cover all points of the original
version when k is odd, since in the latter, the points x = [k/2],s =1, ..., [b/2]
are also included. This gap does not affect the result, since when k is odd,
8([k/2], s) increases with s = 0. This version is better suited for our purpose.

If s = 0 in Theorem 2.1, then an ABIB (v, b, k — t; t) is A-optimal. In this
section, we shall obtain in Theorem 2.6, several families of v, b, k for which every
ABIB (v, b, k — t; t) is A-optimal. This is done via an analytical solution to the
problem of minimizing g(x, z) over A for those cases which lead to s = 0. This is
given in Theorem 2.5. We start by proving some preliminary results. Lemma 2.2
is given on page 91 of Ture’s Ph.D. dissertation (1982). For the sake of better
availability, we include a proof of the lemma here.

LEMMA 2.2. For each fixed x in the interval [0, (E — 2)/2], there exists 2o, a
function of x, 2o € [0, b}, such that g(x, z) decreases with z when z € [0, z,] and
g(x, 2) increases with z when z € (2o, b]. If 2o = 0 then g(x, z) increases with z in
[0, b] and if zo = b, then g(x, z) decreases with z in [0, b].

ProOOF
9g(x, 2)/0z = —a(2x + 1 — p)/(c - pbx + z) + (bx? + 2xz + 2))?
—(k — 2x — 1)/(k(bx + 2) — (bx® + 2xz + 2))%
The sign of the partial derivative dg(x, z)/dz is the same as the sign of
—a(2x + 1 — p)(k(bx + 2z) — (bx® + 2xz + 2))?
—(k=2x—1)(c — p(bx + 2) + (bx® + 2xz + 2))?
= 72(x)2® + 271 (x)z = 7o (x)
where, .
Yo(x) = b%(k — x)*(—=a(p — 2x — 1)x® + (k — 2x — 1)(v(k — 1) — x)?),
v1(x) = bv(k — x)(k — 2x = 1)(p — 22 — 1)((v — 2)x + (k — 1))
and
v2(x) =v(k — 2x — 1)(p — 2x — 1)((v — 2)(k — 2x — 1) — (k — 1)).
Fix an x in [0, (k — 2)/2] and define
h(z) = v2(x)2* + 271(x)z — vo(x).
Observe that 1 = k — 2x — 1 <p — 2x — 1, and hence v;(x) > 0. Moreover, the
derivative
dh(z)/dz = 2(y2(x)z + v1(x)) >0

whenever (v — 2)(k — 2x — 1) — (k — 1) = 0, and z = 0. Even when
(v—2)(k—2x —1) — (k — 1) <0 (for example, v = k, x = (k — 2)/2), and
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0=<z=<),
dh(z)/dz = 2bv(k — 2x — 1)(p — 2x — 1)
(- —x)x+(k—-2x—1)+(k-1)(k-x-1)) >0,

using x € [0, (k — 2)/2], (2.1) and (2.2). Hence, for each fixed x in [0, (k — 2)/2],
one of the three cases may happen:

(i) There exists 2o € [0, b] such that h(z) < 0 when 0 < z < 2z, h(z) = 0,
h(z) >0whenzy<z=<b.
(ii) h(z) <0 whenever 0 <z <b.
(iii) h(z) > 0 whenever 0 < z < b.

Since the signs of dg(x, z)/0z and h(z) are the same, the lemma follows if we
choose z, = b in (ii) and z, = 0 in (iii).

LEMMA 2.3. Letx €0, (k — 2)/2].

(i) A necessary and sufficient condition for g(x, 0) = Min,—¢;,...» g(x, 2) is
&(x,0) = g(x, 1). ,

(ii) A necessary and sufficient condition for g(x, b) = Min,o,,...» &(x, 2) is
g(x, b) =g(x,b—1).

PrOOF. (i) Necessity is obvious. To prove sufficiency note that, from the
proof of Lemma 2.2, g(x, 0) = g(x, 1) implies 2o < 1. Hence the result. (ii) is
proved similarly.

LEMMA 2.4. (i) Lett€ (0, (k — 2)/2). Then g(t, 0) < g(t, 1) implies g(x,0) <
g(x, 1), forall x € [t, (k — 2)/2].

(ii) Lett € [0, (k— 2)/2). Then g(t,b) = g(t,b— 1) implies g(x,b) < g(x,b—1)
for all x € [0, t].

PROOF. Note that, whenever0 =x <(k—2)/2and0<z=<b,c—p(bx + 2)
+ (bx? + 2x2 + 2) > 0 and k(bx + 2) — (bx? +2x2 + 2) > 0, unless x = z = 0. We
first give a brief outline of a proof of (i).

Some algebraic computations show that g(x, O) < g(x, 1) holds if and only if
f(x) < 0, where

f(x) =bk —x){(k—2x — 1)(v(k — 1) — x)? — ax®(p — 2x — 1))
—vk=2x—-1(p—2x—1)(k—=1+ (v—2)x).

Observe that f(x) is a polynomial in x of degree 4, with coefficient of x* negative.
Moreover, f((k — 1)/2) <0, f((p — 1)/2) > 0, f(0) > 0 and f(¢) < 0 by virtue of
the condition g(¢, 0) < g(t, 1), where t € (0, (¢ — 2)/2]. So f(x) has one real root
in each of the intervals (—, 0), (0, t], ((k — 1)/2, (p — 1)/2) and ((p — 1)/2, «).
Hence f(x) < 0, for each x in [t, (R — 2)/2], which establishes part (i) of the
lemma.
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Part (ii) is similarly proved. It can be shown that g(x, b) < g(x, b — 1) holds
if and only if f,(x) < 0, where
fix) =bk— (x+ ) a(x+1)*(p—2x—-1) —(k—2x — 1)
<k =1) = (x + 1))
—vk—-2x—-1)(p—2x—1)(k— 1+ (v —2)(x + 1)).

fi(x) is a polynomial of degree 4 with a positive coefficient of x*, f,(—=1) < 0,
fil(k=1)/2)>0,f((p—1)/2) <0 and f,(t) < 0 since g(t, b) < g(¢t,b — 1). Hence
fi(x) = 0 for all x in [0, t]. This establishes Lemma 2.4.

THEOREM 2.5. (i) Let t € [1, [k/2] — 1] be an integer. Then
g(t» O) = Min(x,z)el\ g(x; Z)

if and only if g, 0)=g(t1)
and gt—-1,b)=git—-1,b-1).
(i1) g([k/2], 0) = Ming e g(x, 2)

if and only if g([k/2] — 1,b) < g([k/2] —1,b—1).

PrOOF. We outline a proof of (i) only; (ii) can be similarly proved. Since
g(x + 1, 0) = g(x, b), necessity is obvious. For sufficiency, observe that g(t, 0) <
g(t, 1) implies, by Lemma 2.3(i),

gt 0) =Min,,,.. , 8 2)<gtb)<git+1,0 =<gt+1,1)
where Lemma 2.4(i) is used for the last inequality. Continuing this chain of
arguments, g(¢, 0) is seen to be the minimum of g(x, z) over points (x, 2),
x=t ---,[k/2]—1;2=0,1, . --, b. Similarly using the condition g(t — 1, b) <
gt —1,b— 1), Lemma 2.3(ii) and Lemma 2.4(ii), g(¢, 0) is the minimum of
g(x, z) over points (x,2),x=0,1,..-,t—1;2=0,1, ---, b. Hence the theorem.

The experimental design version of Theorem 2.5 is given in Theorem 2.6,
where we write out expressions f(t) < 0 and f,1(¢ — 1) < 0 in condition (2.3) and
(2.4) respectively.

THEOREM 2.6. Let t € [1, [k/2]] be an integer. An ABIB (v, b, k — t; t) is
A-optimal if v, b, k and t satisfy
bk—t)((k—2t—1)(v(k—1) — t)* — at®(p — 2t — 1))

23) svk-2t—1)(p—-2t—=1)(k—1+ (v —2)t)
and
bk—t)at’ (p—2t+1) —(k— 2t + Dv(k—1) — t]?
svk=-2t+1)(p—2t+ 1)(k—1+ (v—2)t).
When t = [k/2], only condition (2.4) has to be satisfied.

(2.4)
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REMARK. In Theorem 2.6 we have extracted all the ABIB designs which can
be proved to be A-optimal if we limit outselves to the technique of Theorem 2.1.

Before studying the special cases ¢t = 1 and ¢t = 2, we dispose of the
other extreme, ¢t = [k/2]. When k = 3, we shall see in Example 3.2(i) that an
ABIB (5, 10, 2; 1) is optimal in 2 (5, 10, 3). However, when & is even the tech-
nique of Theorem 2.1 cannot be used to determine whether or not an ABIB
(v, b, k/2; k/2) is A-optimal. To establish this we can use Fisher’s inequality
b = v of BIB (v, b, k/2) to show that f;(k/2 — 1) > 0, where f; (x) is defined in the
proof of Lemma 2.3. So, condition (2.4) is violated.

We may note that Theorem 2.6 can be used to expand the catalog of A-optimal
designs given in Hedayat and Majumdar (1984).

3. Optimality of ABIB (v, b, B — 1; 1). Some statistical aspects of BIB
designs whose blocks are augmented by a single replication of a control have
been studied by several authors including Pesék (1974) and Constantine (1983).
In this section we shall identify cases for which we can guarantee the A-optimality
of an ABIB (v, b, k — 1; 1). Putting ¢t = 1 in Theorem 2.6 and simplifying, we
may conclude that an ABIB (v, b, k — 1; 1) is A-optimal if

bk — 1)((k = 2)(k — 3)(vk — 2) — (k — 1)(v — 1)*)

(3.1)

<k-3v+Ek-3)wk-1)+k-3)
and
(3.2) v+ 1Dw—-383+2k) —vk) <@+ 1)@+ Ek-3).

Clearly, an ABIB (v, b, k — 1; 1) is A-optimal in D (v, b, k) if its parameters v
and k make the left sides of inequalities (3.1) and (3.2) nonpositive. This happens
whenever

(3.3) (k=2)(k—-3)wk—-2) <(k-1)(v-—1)°
(3.4) (v + 1)(v — 3+ 2k) < vk2

In the next theorem, we give a simple expression equivalent to (3.3) and (3.4).

THEOREM 3.1. Positive integers v, k satisfy inequalities (2.2), (3.3) and (3.4)
if and only if they satisfy (2.2) and

(3.5) k-2 +1=sv=(k—-1)>2

Consequently, an ABIB (v, b, k — 1; 1) is A-optimal in 2 (v, b, k) whenever v and
k satisfy (3.5).

PROOF. When % = 3, the intersection of (2.2) and (3.5) is v = 3, 4. Moreover
g§ince k = 3, (3.3) is always satisfied, and it is not difficult to see that the
intersection of (2.2) and (3.4) is v = 3, 4. Henceforth, we shall deal only with
k = 4. Fix such a k arbitrarily and define

) =v:= (k- 1%+ 1)v + (2k - 3),
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and
g:(v) = (k=102 - (2(k—1) + k(k—2)(kE—3))v
+ ((B—=1) + 2(k — 2)(k — 3)).

Clearly, (3.4) is equivalent to ¢;(v) = 0, and (3.3) is equivalent to ¢,(v) = 0.
Moreover, it may be verified that g;(v) and q.(v), for each fixed k, have the
following properties:

(3.6) a(k-1?) <0
3.7 a((k-1)%*+1)>0
(3.8) a((k—22%+1)<0
3.9) @((k=-2%+1)>0
(3.10) g:((k-2)?%) <0
(3.11) g2(1) < 0.

Suppose, v;, v, are the real roots of q;(v) = 0 and vs, vy are the real roots of
g2(v) = 0 (all vy’s exist). Since q; and g; are convex in v (we have fixed k
arbitrarily), q:(v) < 0 if and only if v € [v;, vs] and g2 (v) = 0 if and only if
U € (—, v3] or v € [vy, ®). To prove the theorem, we have to identify the integers
v in the set

S = [vy, v2] N (=, v3] N [v4, ) N {positive integers].

But, (k- 1)2<v; < (k- 1)2+ 1, from (3.6) and (3.7), and the integer (k — 2)% +
1 € [v1, v2]. On the other hand, (3.9) and (3.10) imply (k — 2)2 < v, < (k — 2)* +
1, and (3.11) implies v3 < 1. Clearly

S =[(k—-2)?+1, (k- 1)%] N {positive integers}.
This completes the proof of Theorem 3.1.

For each v, k satisfying (3.5), there are plenty of integers b for which ABIB
(v, b, k — 1; 1) exists. We thus get many families of optimal designs. In particular,
let v=uv,=(k—2)%+ (k—2) + 1. v, and k satisfy (3.5), and choosing b = v, a
BIB (vg, Ur, k — 1) may be constructed from a finite projective geometry. Clearly
every ABIB (vi, vx, B — 1; 1) obtained from this BIB design is A-optimal.
Similarly, if v=v{=(k—1)?>and b= (k — 1)> + (k — 1) then a BIB (v}, vi + k
— 1, k — 1) may be constructed from an Euclidean geometry. The corresponding
ABIB (v, vi + k=1, k — 1; 1) is A-optimal. Unions of copies of such designs
are also optimal.

‘EXAMPLES 3.1. (i) k = 3. Any ABIB (3, 3m, 2; 1) and any ABIB (4, 6m, 2; 1)
is A-optimal, m=1,2,3, ..-.

(ii) k=4. Any ABIB (v, b, 3; 1) with 5 = v =9 is A-optimal. ABIB (7, 7, 3; 1)
can be constructed from a finite projective geometry. ABIB (9, 12, 3; 1) can be
constructed from an Euclidean geometry.
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Let us summarize our findings. If we denote by & the set of all (v, b, k) which
satisfy (3.1) and (3.2) then we know that any ABIB (v, b, k — 1; 1) is A-optimal
as long as its parameters (v, b, k) are in % Condition (3.5) picked up a good
chunk of % Denote this part by %;. A question of interest is this: How many
more (v, b, k) are in & which are not in %;? Surprisingly, not much. The precise
answer is this:

COROLLARY 3.2. Consider those ABIB (v, b, k — 1; 1) for which (v, b, k) is in
% but not in %,. Then these (v, b, k) have to be of the form either
(v, b, k) = (5, b, 3)
or )
=((k—27%b k), k=4
or
=((k—-17%+1,b k), k=4

ProoF. First suppose that (v, b, k) satisfies (3.1), (3.2) but v € [k, (k — 2)2].
Clearly % = 4, since (k — 2)? < k when k = 3. We shall use the functions g, (v)
and g,(v) defined in the proof of Theorem 3.1. We may point out that any v in
[k, (k — 2)?] satisfies (3.2). But for such a v, g»(v) < 0. Therefore (3.3) is violated,
and using the Fisher’s inequality b = v for a BIB (v, b, k — 1), we obtain from
condition (3.1) that h,(v) = 0, where

hh()=(k-3)v+k=3)(vE—-1)+k—3)
—v(k—1)((k— 2)(k - 3)(vk —2) — (k— 1)(v — 1)?).

It can be shown that h;(v) is a cubic in v for each arbitrarily fixed k, with at
most two positive roots. Moreover, h; (0) > 0, h; (1) <0. Some computations show
that (using the relation (k — 2)> — 1 = (k — 1)(k — 3)),

hi((k —2)%—1) = (k — 3)(k(k — 3)* — (k — 1)*((2k* — 6k + 6)(k — 3)
- (2k—-1)(k-3°-(k-1))
< (k—=3)((k— 1%k —3) — (k — 1)*((2k* — 6k + 6)(k — 3)
- 2k-1)(k—-3°—-(k—-1)) <0

for each k = 4, our region of interest here. Hence for each v € [1, (k — 2)* — 1],
hi(v) < 0, or in other words, (3.1) is violated. Therefore, any v in [k, (B — 2)?]
satisyfing (3.1) and (3.2), can only be (k — 2)°. We shall give some examples of
A-optimal ABIB ((k — 2)% b, k — 1; 1) in Examples 3.2.

Now consider a (v, b, k) satisfying (3.1) and (3.2), but v > (k — 1)*. The proof
here is similar to the previous case. Any v > (k — 1)? satisfies (3.1), but violates
(3.4). Using Fisher’s inequality, (3.2) yields h2(v) < 0, where

ho@) =v{w + 1) (v — 3 + 2k — vk} — (v + 1)(v + k- 3).
If k = 3, the roots of hy(v) = 0 are 0, .385 and 5.615, while (k — 1)> + 2 = 6.
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For any fixed k = 4, h,(0) > 0, hy(1) < 0 and h,((k — 1)* + 2) > 0. Since h,(v)
is a cubic in v with a positive coefficient of v® we get hy(v) > 0 for every
v = (k — 1)? + 2. This is true for each k = 3. Hence v can only be (k — 1)* + 1.
Optimal designs with such a v are given in Examples 3.2. This establishes
Corollary 3.2.

EXAMPLES 3.2. (i) The only A-optimal ABIB ((k — 1)>+ 1, b, k — 1; 1) we
could find has parameters k=3,b=10; v =(k— 1>+ 1 =5.

(ii) Some examples of A-optimal ABIB ((k — 2)?, b, k — 1; 1) are given in the
following three series:

Series 1. k=4,v=4and b =4, 8, 12, 16 or 20.
Series 2. k=5, v =9 and b = 18, 36, 54, 72 or 90.
Series 3. k=6, v =16 and b = 48, 96, 144, 192, 240 or 288.

Finally, we give some examples of A-optimal ABIB (v, b, k& — 2; 2). These are
obtained from Theorem 2.6 by substituting ¢ = 2 in (2.3) and (2.4).

ExaMPLES 3.3. (i) k =8, v = 8. Any ABIB (8, b, 6; 2) is A-optimal. For
example ABIB (8, 28, 6; 2).

(ii) k = 8, v = 9. Any ABIB (9, b, 6; 2) is A-optimal. For example ABIB
9, 12, 6; 2).

(iii) k=8, v = 10. Theorem 2.6 yields no optimal ABIB (10, b, 6; 2) since (2.4)
gives b < 12.

(iv) k=9, v = 10. Any ABIB (10, b, 7; 2) is A-optimal. For example ABIB
(10, 120, 7; 2).
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