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COMPLETE CLASS THEOREMS FOR ESTIMATION OF
MULTIVARIATE POISSON MEANS AND RELATED PROBLEMS®

By L. D. BRowN AND R. H. FARRELL

Cornell University

Basic decision theory for discrete random variables of the multivariate
geometric (power series) type is developed. Some properties of Bayes esti-
mators that carry over in the limit to admissible estimators are obtained. A
stepwise generalized Bayes representation of admissible estimators is devel-
oped with estimation of the mean of a multivariate Poisson random variable
in mind. The development carries over to estimation of the mean of a
multivariate negative Binomial random variable. Due to the natural boundary
of the parameter space there is an interesting pathology illustrated to some
extent by the examples given. Examples include one to show that admissible
estimators with somewhere infinite risk do exist in two or more dimensions.

1. Introduction. A complete class theorem for estimates of a one-dimen-
sional Poisson parameter, A\, was worked out by both authors some years ago.
One author viewed the result as decomposing the set of risk functions into certain
faces which are convex and which correspond to the largest integer n such that
the estimator 6(x) = 0, for 0 = x = n. Details are given in Section 5. This
viewpoint does not easily generalize to higher dimensions. To the other author
was suggested the possibility of a stepwise generalized Bayes representation
somewhat analogous to that in Brown (1981) for problems with finite sample
spaces. This type of representation does lend itself to generalization to higher
dimensions. Section 4 contains a description of this stepwise Bayes representation
for multidimensional parameters, which is formally described in Theorem 4.1.
The representation in Section 4 contains two features not present in Brown
(1981): at each step the estimators need not be (conditionally) Bayes but instead
may be only (conditionally) generalized Bayes; and the sequence of subsets of
the parameter space appearing in the stepwise representation is no longer
necessarily finite, but may be well ordered as a transfinite sequence.

The results in this paper apply to geometric type discrete probabilities as
defined in (2.1), of which the Poisson and negative Binomial probabilities are
special cases. Except for examples in Section 7 and the discussion of the negative
Binomial in Section 8, no further reference is made to particular parametric
families.

Basic theory about convergence of sequences of Bayes estimators is briefly
outlined in Section 2 and is developed more fully in Brown and Farrell (1983).
Here it is shown that admissible estimators have continuous risk where the risk
is finite and that admissible estimators are pointwise limits of sequences of
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estimators which are Bayes relative to discrete measures supported on finite sets
of points. Notations used throughout are established in Section 2.

Bayes estimators for the loss functions used have some monotonicity and
convexity properties which carry over in the limit to the limit estimators. Also,
an important property, called in this paper the product rule, carries over to the
limit estimator. These results are developed in Section 3. They are applied in
Brown and Farrell (1985) to resolve the question of which p X p matrices M give
rise to estimators Mx + v which are limits of Bayes estimators. That paper also
settles the question of which of these estimators are admissible.

The stepwise decomposition of the sample space, discussed in Section 4, uses
the results of Sections 2 and 3. The results here are similar to Brown (1981) but
the arguments are very different. The reader can get a better feel for the stepwise
result if he or she tries to apply the theory of Section 4 to the examples of Section
7.

The complete class described in Section 4 includes many inadmissible esti-
mators. Section 6 presents some very partial results concerning admissibility and
dominance of estimators in the complete class. These results depend on a
description of the set of zeros of the estimators in question. Some of the results
are applied in the examples in Section 7.,

A theorem showing that a broad subclass of admissible estimators of the mean
of a multidimensional Poisson variable could be represented as generalized Bayes
was used in Johnstone (1981, 1984, 1985). Johnstone’s Proposition 8.1 appears
as Corollary 6.3 of our paper.

2. Notations, preliminary decision theory. Let @ denote the integers
and Q. the nonnegative integers. Let e; denote the ith coordinate vector and the
superscript ¢ denote transpose. For A\, \; € R” define the multivariate orderings
A < A1 (A = M, respectively) to mean ei\ < ef); (efA = ef\),i=1, -+, p. The
sample space is X = Q4. We write A for the parameter space. For the multivariate
Poisson measures A = (0, ©)? and for the multivariate negative binomial A = (0,
1)?. The decision theory depends on the lattice of x values being unbounded but
needs only that A C (0, ©)”.contains the intervals {A € (0, ®)?: 0 <\ = A}
whenever \; € A. (0 denotes the zero vector.) Define A C [0, »)? by

A={A€[0,0)?: I\ € A, N < Ny},

and let A denote the closure of A (and of A). In the multivariate Poisson case
A =2, but not in the multivariate negative binomial case.

A nonrandomized estimator is a function é: X — A. Throughout we use only
nonrandomized estimators except in Lemma 2.3 where randomized estimators
are introduced in order to prove that the nonrandomized ones are a complete
class. The discrete probability density functions are of the geometric form

(21)  palx) = c)REIAD, AW =TIE, (&NE, x€ X, A€},

where 1 = ¥.,20 c(\)h(x)A\®. While not entirely necessary it is convenient to
assume that h(x) > 0, x € X, and we do so throughout. In estimation of the
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parameter vector A the loss (L) and risk (R) are defined by
L\, 8(x)) = T2, (eiN)%(ef(d(x) — N))?,
R(\, 8) = Y=o cANR(x)APL(A, 8(x)),

where «;, - - -, o, are specified constants. R

Note that p) and R(), *) are defined on A but admissibility is defined relative
to the parameter space A—that is, 6 is admissible (relative to A) if R(\, 6’) =
R(\, 6) A € A, implies R(\, 6’) = R(\, §), A € A. This is done only to avoid
having to treat certain pathologies as special cases in the proof for the general
characterization of Theorem 4.1. See Remark 2.2 and Example 7.5.

Some general theory is presented but applications are dependent on the
specification of the parameters a;, - * , a, in the loss function. In particular, the
character of the stepwise reduction of the sample space is dependent on the
choice of these parameters and in order to simplify the discussion specific
constructions are limited to two special cases:

(2.2)

Case 1: o =ay=++r=a,=0;
Case2: oy=ap=-"+=aqa,=-1.

The Case 1 loss function is used in Peng (1975) and in Ghosh, Hwang, Tsui
(1983); the Case 2 loss is used by Clevenson and Zidek (1975), Johnstone (1981),
and Tsui (1982). See Section 8 on the estimation of a negative binomial mean
for a different loss function.

In general, the notation of (2.2) is simplified by writing

(2.3) R(\, 8) = T£; Tezo ¢ MAx)AE*(ef(8(x) — N))%

In the sequel we will say a parameter set A is monotone (to the lower left)
provided A € A and 0 <\’ < X implies A’ € A. (The complementary concept of
monotonicity (to the upper right) is defined and used in Section 4.) The finite
risk set of an estimator is defined by A* = A*(6) = {A € A:R()\, §) < ). Let
(A*)° denote the relative interior of A* considered as a subset of [0, «)”.

LEMMA 2.1. Consider any procedure, 6. Then A* is monotone. If \y € (A*)°
then R(s, 6) is continuous at Xo. If N\o is a boundary point of A* then
lim)\_,)‘o')\s)‘oR(x, 6) = R()‘09 6)'

ProoOF. For any 4, R(), §) < » if and only if
(2.4) H(\, 8) = T2, Tizo h(x)A*#) (efd(x))? < o

by Cauchy-Schwartz and the fact that R(\, 0) < o, for all A € A. H(*, 6) is
monotone nondecreasing. Hence A* = {\: H()\, §) < o} is monotone. If R(\, §)
= oo then limy_,,R(\, ) = R(\o, 6) = ® by Fatou’s Lemma. The remaining
continuity assertions follow from the dominated convergence theorem and
(2.4).0

REIV}ARK 2.2. If R(\, ) < o for all A € A then R(+, §) is continuous on
A* = A. It then follows that 6 is admissible (relative to A) if and only if it is
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admissible relative to A. This result holds more generally if the closure, ((A*)°),
of (A*)° satisfies

(2.5) ((A*)°)” D A~

It can be shown that if é is admissible then (A*)° # §. However it may be that
A—A*# ¢. See Example 7.4. Furthermore, Example 7.5 shows that (2.5) is not
always valid. When (2.5) fails it may be that & is admissible relative to A but not
admissible (relative to A). Estimators failing to satisfy (2.5) are of no apparent
practical interest. For this reason, and for simplicity of presentation, our results
are formulated only to characterize admissibility (relative to A).

LEMMA 2.3. The nonrandomized estimators form a complete class.

PROOF. Let p(*|x) denote a randomized estimator. If p is admissible
then R(\g, p) < o for some Ao € A. (Otherwise O would be a better estimator.)
Note that p, (x) > 0 for all x € X. Jensen’s inequality now yields that é(x) =
[ ap(da| x) is well defined and R()\, ) < R(A, p), A € A, with strict inequality
for Ao (in fact for all A € A* N A) unless p({a(x)} | x) =1, x € X,—that is, unless
p is actually nonrandomized. 00

The complete class results of Sections 4-6 are based on a standard decision
theoretic result. For the sake of completeness we now state this result.

THEOREM 2.4. Suppose 6 is admissible. Then there is a sequence of Bayes
procedures {8,} relative to priors having compact support in A such that

(2.6) on(x) > 0(x) Vx € X

PROOF. (2.6) can be deduced from results in Wald (1949). A more elegant
method would be to use the Stein-LeCam theorem (see Farrell (1968)) as in
Brown (1971, Theorem 3.1). An elementary proof is given in Brown and Farrell
(1983). 0

_ 3. The structure of the Bayes rules. If » is a o-finite Borel measure on
A, we will work with the integrals 7, (x) = w(x) defined by

3.1) “ w(x) =IC(A)A(”) v(dM).

Note that = is defined (but possibly infinite) for all x € Q2. In terms of the
functions 7 (x), the generalized Bayes estimator 6 determined by » is given (see
(2.2) for the loss function) by the ratios

3.2) mw(x + (o + 1)e))/m(x + aie;) = efd(x).

If v is a finite measure with compact support in A then R? = {x: 0 <
m(x) < x}, so that the corresponding Bayes estimator is unique and well defined
by (3.2).
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The product rule, so called, depends on integral values of the parameters a;,
-+, ap. We state results for the two cases of special interest.

LEMMA 3.1. Let 6 be well defined by (3.2). If &y = -+ = a, = 0, then with
e, =0, (Case 1)

(33) [Ii1efdlx+e,+ - +e ) =mx+e, + - +e)/r(x)
Ifo,=+++ =ap=—1(Case 2)
(3.4) Miiefdx+e, + - +e)=nx+e + - +e)/r(x)

PrROOF. Immediate after substitution in (3.2). 00

THEOREM 3.2. Let 6 be admissible and be a pointwise limit of the Bayes
estimators 6, relative to v, for which (3.2) is well defined. If

ma(x) = f cMA® v, (dN)
then in Case 1,
limg omn(x + € + -+ + €,)/mn(x) = [[Jo1 fo(x + €, + - -+ + e ),
and in Case 2,
limpwma(x + € + <+ - + €,)/mn(x) = [[f-1 €fo(x + €, + -+ + &)
PROOF. Immediate from Lemma 3.1.0
This yields the product rule for admissible estimators:
COROLLARY 3.3. Let 6 be admissible. Lete; + --- + e, =¢; + -+ +e¢;,. Then
in Case 1,
(35) Ilkiefd(x+e,+ -+ +e,_)=1Ili168x+e,+ - +e¢.),
and in Case 2,
(86) Iltueld(x+e,+ -+ +e)=1Il4160(x+e + - +¢).

PrOOF. Immediate from Theorem 2.4 and Theorem 3.2. 0

4. Proof of the pointwise decomposition of the sample space. The
basic idea to be followed here was introduced by Brown (1981). We seek to
construct a decreasing well-ordered sequence of subsets X; D X, - - - indexed by
ordinals such that Nz Xs = @. It can be seen that indexing by integers may not be
enough, and that limit ordinals may occur; see Example 7.2. Each set X will
have a monotonicity and a convexity property to be stated below.

At step 8 + 1 it is to be shown in Case 1 that the values of 6(x) of the
admissible estimator 6 for x € X5 — X1 are given by an expression somewhat
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like a generalized Bayes rule, i.e., as a ratio of two integrals. A similar represen-
tation also holds for Case 2. This is stated formally in Theorem 4.1.

Let C C Q. We say C is monotone (to the upper right) if x € C and y = «x,
y € QP, implies y € C. We say C C Q7 is convex if C = QP N (convex hull C). C is
bounded (below) if there is an x € QP such that y € C implies y = «x.

In the following, C denotes a convex, monotone, bounded subset of Q7. It is
shown in Lemma 4.2 that C possesses a finite set of minimal points. (y € C is
minimal if x < y, x # y implies x & C.) Denote this set by .#(C). A family of
finite nonnegative measures {w,: y € #(C)} on A is called nontrivial if w, 3 0
for some y € .# (C). It is called compatible if for any two points y,, y. € .#(C),
and x = y;, i = 1, 2, the two measures in (4.1) are equal.

(4.1) AEMW @, (dN) = N, (dN).

For a set of compatible measures on A indexed by .#(C) let C* = {x € C:
dye #(C),y < x, w,#0},and let C* = C — C*. If x € C* define

(4.2) w(x) = f A= o (dN) for y==x, w,#0.

If x € C° define (x) = 0. = is well defined because of (4.1). Examples of nontrivial
compatible sets of measures other than the obvious w,(d\) = A?w(d\) for a

measure w on A are given in Section 7.
A compatible family {w,:y € # (C)} is said to satisfy condition L if there exists
a sequence v, of finite measures with compact support in A such that

(4.3) Wny(AN) = APe(N)v,(dN)

satisfies w,y, — w, weakly, y € .#(C).

Example 7.6 displays a compatible family which does not satisfy condition L.
Many related examples exist. However they all appear to be related to procedures
which are rather artificial. Thus, the important feature of the stepwise description
in the following main theorem is the appearance of compatible families and the
resulting integral representations, (4.5) or (4.6). The further restriction that these
families satisfy condition L does not further reduce the size of the complete class
to an important extent.

THEOREM 4.1. Suppose 6 is admissible. Then there exist a well-ordered de-
creasing sequence, {Xz}, of convex, monotone, bounded subsets of QP, indexed by
ordinals, and corresponding nontrivial, compatible families of measures satisfying
condition L, {wg,: y € # (X5)} on A with the following properties: NgXs = @, with
X3} as defined following (4.1),

(4.4) Xp = Np<pX%(= X3_, if B is not a limit ordinal),

wg(x) < o for all x € X, wg defined by (4.2) relative to the family {wgy: y € # (x5)},
and in :

Casel (1= +++=ap=0):X;=Xand
(4.5) efd(x) = mp(x + ¢)/mp(x) x € X} = X5 — Xp41, orin
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Case2 (1= =ap=-1):X;=1{2:3i=1,---,pand z + ¢, € X} and
(4.6) efo(x) = mg(x)/mp(x — &), x— e € Xj.

See Example 7.2 for a case where the well-ordered sequence X;, X, --- ,
requires transfinite ordinals.
The following lemmas are used in the proof of Theorem 4.1.

LEMMA 4.2. Let C C QP be monotone and bounded below, C # §. Then .# (C)
is finite.

ProOF. It suffices to consider the case where C C Q% and we do so below.
The proof is by induction on the dimension p.

Case p = 2. We suppose p = 2 and C is nonempty. The hypotheses then
imply that C is countably infinite. There exist points (a;, b;)¢ and (az, b;)% in C
such that a; = minfeix: x € C} and b, = minf{etx: x € C}. Cons1der (as, bs). If
(as, bs) & {x:x* = (a1, by)} then b3 < bl If (a3, bs) €& {x:x* = (a2, b)} then
a3 < ay. Thus

z & {x:x' = (a1, by)} U {x:x° = (az, bs)}

implies z < (aq, b;). The set of such z is finite and contains .# (C). Hence .# (C)
is finite.

Inductive step that truth for p — 1 implies truth for p. Pick z € C. Then
x & {x:x = 2z} means eix < e!z for some { = 1, - - -, p. Consider the hyperplanes
H;. = {x:eix = ¢} with ¢ an integer satisfying 0 < ¢ < e!z. There are only a finite
number of such hyperplanes. The set C N H;, is a convex monotone subset of
H;.. Hence .# (C N H;_) is finite by the induction hypothesis. If y € .#(C) then
either y = z or y € H; for some i, 0 < ¢ < e}z. In the latter case y € .#(C N H;,.).
Hence

#(C) C {2}U(U;.#(C N Hy.)).

This proves that .# (C) is finite for the given p. 00
LEMMA 4.3. Let C be any set of lattice points, C; a nonempty subset of C, and
{wy, ¥ € Cs} a family of nonnegative measures on A, and let = be determined as in
(4.2). Then C° is also convex and monotone.
PrROOF. Lety € C,. For x =y write z = x — y. Then
m(x) =n(y+2)= f A @, (d)\)

Clearly {z: #(y + z) = 0} is convex and monotone. Consequently {x: x = y,
J A& @, (d\) = 0} also has these properties, as does C° since

C’ = ﬂyec,{x: x=y, f A& o (dN) = 0}. 0
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LEMMA 4.4. Let C be convex, monotone, and bounded below. Let {wy: y €
#(C)}, i =1, --- be a sequence of compatible families of measures on A, with
corresponding functions =;, such that

4.7 Yyewc mi(y) =1.
and
(4.8) lim sup;_.mi(x) < x € C.

Then there exists a subsequence {i’} C {i} and a nontrivial compatible family
{wy: y € #(C)}, with corresponding function =, such that

49) wiy > wy (weakly), y € #(C), and my(x) > w(x) <o, x€C.

PrROOF. Fix y € #(C). Let my(2) = [ APw,(d\) = IIi(y + 2z). By (4.8)
lim sup;_,.my(2) < . Hence there is a subsequence {i’} such that w;, con-
verges, say wjy — wy, and such that m;,(z) — m,(z) where m,(z) corresponds
to w,. The subsequence {i’} can be chosen so that this convergence holds for
eachy € .#(C).

Ifu,vE€ #(C) and x = u, x = v, m;,(x — u) = m;,(x — v) since {w;} is
compatible. It follows that m,(x — u) = m,(x — v) so that the limit family {w,} is
compatible. It obviously then satisfies (4.9). It is nontrivial since Y, ,c.¢c) ()
=1 by (4.9) and (4.7).0

PROOF OF THEOREM 4.1. The construction in Case 1 proceeds inductively
on Xj, beginning with X, = X. Suppose the construction has been carried out,
and (4.5) holds, for all 8 < B. Define X3 by (4.4). Assume Xp # (. Note that X5
is convex and monotone by Lemma 4.3 and Xg is bounded below.

By Theorem 2.4 § is the limit of procedures 4., each of which is Bayes with
respect to a prior », with compact support in A.

Let M = .#(Xp) and

(4.10) Yn = Dyem T, ()

with 7, defined from v, via formula (3.1). (Note that =, (x) > 0 for all x € X, so
that v, > 0.) Define the compatible family {w,,:y € M} by

(4.11) . wny(dN) = cA)Av,(dN)/vy-
Let 7, denote the function defined from {w,,} via formula (4.2). Then for x =y
Tn(x) = 0, (X)/Yn.
Also,
(4.12) Zyem ma(y) = 1.
Now, for x € X5z
elon(x) = m, (x + e)/m, (x) = ma(x + €;)/mn(x) — €i6(x).

By Lemma 4.4 there is a subsequence {n’} and a compatible family {w,: y € M}
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and corresponding 7 such that =, (x) — 7 (x) for x € Xg. Consequently
(4.13) eid(x) = w(x + €)/n(x) = limp umn (x + €)/7n (x) for x € X3.

This is the desired result, (4.5).
The proof in Case 2 is similar. Because of the representation (3.2) the
construction here begins with X; = {x:x + ¢; € X, for some i = 1, -+, p}. The

argument then proceeds as above with (4.13) replaced by
eto(x) = m(x)/m(x — e
(4.14) (x) = w(x)/7( )
= limy'—omn (x) /7 (x — &) for x — e; € X3.

- This yields (4.6), and completes the proof. O

Note that the families {wg,: y € .#(X5)} constructed above satisfy
(4.15) Yreaxy T(y) =1
by (4.12) and Lemma 4.4.
5. The one-dimensional problem. For p =1 it is easy to give a concise

and more precise statement of Theorem 4.1. Let A denote the set of estimators,
8, such that 6(0) = -+ =6(k) =0.

THEOREM 5.1. When p = 1 § is admissible only if for some k= —1, -+ 6 €
A — Ap+1 and there is a finite measure w on A such that

(5.1)  8(x) = f &R w(d)\)/f AEED (dN) >0, x=k+ 1.
PrOOF. If 6 € A, — Ap41 and is admissible, then by Theorem 4.1 there must

be a measure w such thaton X3 o ={x €EX:x =k + 1}

o(x) = m(x + 1)/n(x)

(5.2)
=f>\"‘"” w(dk)/f AEED G (dN) for x € Xiis.

Since 8 & Ag+1, 6(k + 1) > 0. Hence #(k + 1) > 0. It follows that w(A — {0}) >0
sothat m(x) >0 forallx =k + 1 (i.e., Xisz2 = Xp+2). (5.2) is thus valid whenever
8(x)#0.0

Whenever k = —1 or w in (5.1) satisfies w({0}) = 0, then (5.1) can be written
in a more conventional form. Let

(5.3) v(d\) = ¢ EANE DV (dN)

with c¢(\) given in the definition (2.1) of p\. Then (5.1) says that 6(0) = -.. =
0(k)=0andforx=k+1

(5.4) 5(x) = f ADA(®) ¥(@N) / f Pr() v(@N).
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Thus, é is determined in the usual manner as a generalized Bayes rule on the set

where it is not 0.
It is useful to note that if § € A, and §’ dominates 6 then 6’ € A,.

LEMMA 5.2. Let 6(0) = -+ = (k) = 0 and & have finite risk for some \ > 0.
Let 6’ be as good as 6. Then 6’ (0) = «-- =46"(k) =0.

PrOOF. By induction. Since ¢(\) > 0 comparison of the risk functions gives
im0 R(x)N*(87 (x) — N)® = Timo h(x)N*(8(x) — N2

Since both risk functions are finite for some A > 0, both are analytic functions
of A on a neighborhood of 0. By continuity at A = 0, the right side, hence the left
side, vanishes. Since h(0) > 0, it follows that §’(0) = 0. Thus A%k(0) may be
cancelled from both sides and then both sides divided by A. This establishes the
inductive step which if repeated (k + 1) times gives the result. 0

The following example shows that not every admissible estimator can be
determined as in (5.4).

EXAMPLE 5.3. Let
(5.5) 6(0)=0, 6(1) =%, o6(x)=1 for x=2.

This estimator cannot be described as in (5.4) since every estimator determined
by (5.4) is either identically constant on {x | x = k + 1} or is strictly increasing in

this set.
On the other hand, é in (5.5) is the member of the complete class of Theorem
4.1 described by X; = X, 0, ({0}) = 1; X, = {x| x = 1}, w2({0}) = wa({1}) = 2.
Furthermore, 6 is admissible. Therefore, if 6’ dominates 4, then by Lemma 5.2
6’(0) = 0. Hence, 6’ must also dominate § in the conditional problem given
x € X;. The probability function in this problem is

(5.6) d\h(x)N*, x =1, with d7'(\) = T5 A(x)A* = O(N)

But § is unique Bayes in this conditional problem relative to the prior distribution

(5.7) v2(d\) < (d(M)N)wa(dN).

(In this formula when A = 0 interpret the factor (d(A\)A\)™" in the natural way as
limy o (@(A)N) ™ = Limy oA H(E3=1 h(x)NF)) = h(1).)

Thus 6 is admissible in this conditional problem and 6’ (x) = 6(x), x € X,. It

follows that 4 is admissible in the original problem, as asserted. O

The converse assertion in Theorem 6.2 of the next section generalizes and
codifies the procedure used above to prove admissibility.

6. Estimators when p=2: Theory. Theorem 5.1 and Lemma 5.2 provide
a structural analysis of admissible estimators when p = 1. A complete structural
analysis when p = 2 is also possible but we have found no concise description.
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(For example, when p = 2 we find it necessary to examine sixteen separate cases
at each stage of the reduction.) Instead, in this section we present several partial
structural results based on the zeros of the estimator.

We first state the main results and then provide the proofs.

THEOREM 6.1. Let C be convex, monotone and bounded below. In the following
6 and 8’ are two estimators with 6’ as good as 6 and R(\, §) < o for some \ € A.
Let

Sy =1{6:6(x) =0 Vx & C}
and
S;=1{0:eld(x+e)=0VxE€C,x+e€X,i=1,---,p}

In Casej,j =1, 2, suppose 6 € S;. Then 6’ € S;. Also, if § is admissible relative to
the estimators in S; then 6 is admissible (and, of necessity, 6’ = §). 0

A trivial application of the theorem shows that the estimator 6(¢) = 0 is
admissible.

THEOREM 6.2. Let 6 be a given estimator. Define

(6.1) Ci={x€ X:elé(x) >0,i=1, ---, p}
and
(6.2) Co=fx:x+e€ X, elo(x+e)>0,i=1, ---, pl.

In Case 1 (Case 2, resp.) suppose C, (C;) is convex and monotone. Then, if 6 is
admissible there exists a compatible family,

oy €XZ(CY, J=1(j=2),

satisfying condition L and w(x) < o, x € C, (x € C;) such that CT = C,
(C$ =C,) and

(6.3) ed(x) =7(x + ¢e)/m(x), x€C,
(6.4) (eo(x + e) = w(x + ¢)/m(x), x € Cy).

As a partial converse, suppose Cf = C, (C3 = C;) and (6.3) ((6.4)) ho{ds with
8(x) = 0 for x & C, (eo(x + ;) = 0 for x & C;). Suppose w,(A — A) = 0,
y € #(C;),j=1(j=2). Define

g1y(A) = Tazy (@) (1612 + I XN,y € .£(Cy),
and
&2y(\) = Y=y T2t h(x + ) ((efd(x + €))® + (AN, y € #(C,).
Assume
(6.5) gy(\) <o, NEA, yEA(C), for j=1(j=2)
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and
(6.6) fgjyo\) wy(d\) <o, yEZ(C) for j=1(j=2).
Then 6 is admissible.

REMARKS. Note that (6.3) agrees with (4.5) and (6.4) agrees with (4.6).

In general C; and C; need not be convex and monotone even when ¢ is
admissible. See Example 7.3.

Theorem 6.2 does not constitute a necessary and sufficient condition for
admissibility for two important reasons.-The most conspicuous reason is that the
converse in Case 1 applies only to estimators for which 6(x) = 0 for x & C;, with
a similar condition for Case 2. There exist many admissible estimators which do
not satisfy this condition. See Examples 7.1 and 7.3. The second reason lies in
the finiteness condition (6.6). (The condition (6.5) is a minor and perhaps
removeable technical condition.) Condition (6.6) is akin to requiring that the
estimator be Bayes with finite Bayes risk. There are very many estimators which
are admissible and are useful in applications which do not satisfy such a condition,
for example, the estimator 6(x) = x. Se¢ Example 7.1.

To see more clearly why (6.6) conveys this finite Bayes risk character,
consider the Case 1, multidimensional Poisson problem. Suppose C; = X and
6(x) =01 + || x||). Then g1(A) = O((1 + || A]|®)c™*(N)) and (6.6) requires that
S I A 12¢7*(A) w(dX) < . This is precisely the condition for é to have finite Bayes
risk under the finite prior measure »(d\) = ¢™*(A\)w(dX).

Johnstone (1981) has given a shorter, direct proof of the special case of
Theorem 6.2 which follows.

COROLLARY 6.3. Suppose A = X. In Case 2 suppose & is admissible and
eid(x) = 0 if and only if eix = 0. Then § is generalized Bayes in the sense that
there exists a o-finite locally finite measure v on A such that

(6.7) eid(x) = m(x)/m,(x —e) if elx=1.
PRrOOF. Apply the first part of Theorem 6.2. Here C; = X. Hence .#(C;) =
{0} and there exists a measure w, for which the corresponding 7 function—call it

wo—satisfies (6.4). Let »(d\) = ¢”*(A\)wo(d)). Then m, = 7 and (6.4) is the same
as (6.7).0

The analogous result in Case 1 is
COROLLARY 6.4. Suppose A = A. In Case 1 suppose & is admissible and

eid(x) >0 forallxandalli=1, - -, p. Then § is generalized Bayes for a o-finite
locally finite measure v on A. Thus

(6.8) eio(x) =m,(x + ¢)/m,(x) x€X.

PROOF. Similar to Corollary 6.3.0
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PROOF OF THEOREM 6.1. Consider Case 1. Let 6 € S;. Suppose §’ & S;.
Then there is a value x’ & C such that 6’ (x’) # 0. Since x’ & (convex hull of C)
it may be strictly separated from C; so there is a vector a # 0 and a constant ¢
such that a’x’ < ¢ and a‘x = ¢ for all x € C. Since C is monotone a’(x + ne;) = ¢
for all n = 0, x € C. This implies that a’e;=0foralli=1, ---,p

Let ), be the vector with e‘\, = 79°%; so that A = 7°*, Let

(6.9) d = infla’x: x € X, 6’ (x) # 0} = 0.

Then d < a'6’(x’) < c and there exists an x” & C such that 6(x”) # 0 and
a’x” = d since there can be only a finite number of values of a‘x < ¢, x € X. Then

M) (RN, 7)) — R(\, 8))
=3 (18" (x) = M2 = 18(x) — N, [I2)h(x)ro™
= Y eatema (187 (x) = A |12 = | A 12)R(x)r*

= T satsma | 8(x) = N, || 2h(x)77%.

R(\,,, 6) < o for some 7o > 0 by Lemma 2.1 and the fact that R()\, §) < o for
some X € A. Hence

(6.10)

T (3G I2 + | A I12)h(x)76* < co.
It then follows from the dominated convergence theorem that
(6.11) lim,jo Sratea (1312 + I A 12)R(x)7¢ = 0.
Combining (6.10) and (6.11) yields
(6.12) limyo(c* (A )7#(R(\,, 87) — R(M,, 8))) = |8/ (x”) | *h(x") > 0.

This contradicts the assumption that 6’ is as good as 6. Consequently 6’ (x) =
for all x & C as asserted in the first conclusion of the theorem. The second
conclusion of the theorem is a logical consequence of the first conclusion.

The proof for Case 2 is similar. Note that now

(6.13) R(\,, 8) = Y rreex (efd(x + &) — eN,)?h(x + )7

Let x’ & C be a value such that e{6’(x’ + ¢;) # 0 for some i =1, - -+, p. Define
the vector a as before and

(6.14) d=infla’x: x + e € X, €6’ (x + ¢) # 0 forsome i =1, -+, p}l.

It is no longer always true that d = 0. Nevertheless, using (6.14) and proceeding
as in (6.10) and (6.11) yields

limrlo(c—l(xf)T-d(R(Ar’ 6’) - R()“r’ 6)))
= (efd’ (x” + ¢))h(x” + ¢)
— 1lim, g Datemgrracx (i + €) — 799)2h(x + )7~

= (efd’ (x” + ¢))*h(x” + ¢;) >0

(6.15)
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as the analog of (6.12), where by construction x” and x” + e¢; satisfy a‘x” = d and
eld’ (x” + ¢;) # 0. This then yields the conclusions of the theorem in Case 2.0

ProOF OF THEOREM 6.2. Consider Case 1. Suppose é is admissible and
examine the characterization of Theorem 4.1. Let 8, = inf{8: X} N C, # @}. Let
%1 € Xg, N Cy. Then x = x, implies x € Xj, N C, since both X, and C, are
monotone. Let x; = y; for some y; € #(X;,). Then

(6.16) 0<m(m+e)= f A g (@), i=1, -, p,

by (4.5) since 6;(x;) > 0,i=1, + -, p. This shows x, = x; + &; € X3, N Cy, and
repeating the above reasoning w1th x, and replacing x; shows x; + e; + e € X3,
N C,, etc. It follows by induction that (x, + 1) € X3 N C,. Hence

(6.17) 0<wlx+1)= f A=) oo (dN).

Note that ef(x;, + 1 —y;) =1fori=1, -, p. Hence (6.17) implies
(6.18) wgpy, ({N: €IX>0,i=1, ---, p}) > 0.

The compatibility condition then yields that (6.17) is satisfied by every wg,y, ¥y €
# (Xg,). Consequently X3, = X and C; D Xj,. The minimality of 8, then yields
C, = Xj,. Choose the compatible family {w,: y € .#(C,)} to be {ws,,: y € # (X5,)},
and then (6.3) is satisfied.

To prove the converse assertion in Case. 1, begin by letting .#(C,) =
{yi:i=1, -+, I} and defining

(6.19) Di={xix=zy,x#¢y,j=1---,i— 1} CC.

Let {v;} and {w,,: y € #(C,)} be the sequences promised by condition L,
satisfying (4.3) and w,, — w,, y € #(C,). If necessary, one may define sequences
{vn} and {w,,} by truncating », to the set {A: | A | < m,, 81y(A) < m,, y € #(Cy)}
and letting m, tend to infinity sufficiently slowly so that {r,} and {w,,} satisfy
(4.3) and wpy — wy,y € #(Cy),

(6.20) f O G (dN) — f O o, (d)), t=0,
and
(6-21) fgly(x) wny(dx) _)fgly(x) wy(dx)-

(In establishing (6.21) we use (6.5) and the fact that w,(A — A) =0, and also
that g,, is continuous on A by virtue of an argument like that in Lemma 2.1.)
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Then
lim, e f Ysec, 16(x) = NI2R(x)APe(N) va(dN)
(6.22) = limpe 25 Y xeD, f | 6(x) — X||2h(x)\&? Wny, (dN)
=¥, Siep, f I8(x) = N I2h(x)AE? w, (dN)
by (6.6).

Now, suppose ¢’ is better than 6. Then 6’ (x) = 0 for x & C,, by Theorem 6.1.
Thus

0<lim inff (R(\,8) —R(\,8")) va(dN)
(6.23)  =liminf¥i, ¥.ep, f (Io(x) = M2 = 118" (x) = M)A wny, (dN)

=Xk Zeen, h(x) f (8¢x) = ND)* = 187 (x) = NN @y, (dN)

by Fatou’s lemma. The condition that C{ = C, guarantees that w,(A) >0, i =
1, - -+, I. This, together with (6.3), shows that each integral on the right of (6.23)
is nonpositive, and at least one is strictly negative unless 6’ (x) = 8(x). It thus
follows that 6’ (x) = 6(x), x € C,, which shows that ¢ is admissible.

The proof of Theorem 6.2 for Case 2 is similar to the above. It requires only
modifications like those which appear in the Case 2 proof of Theorem 6.1 in
order to accommodate the changed form of the loss and of the corresponding
estimator (6.4). We omit the details. O

REMARK 6.5. The method of proof in the converse to Theorem 6.2 can be
used to yield somewhat more. Let & be an estimator constructed according to the
paradigm in Theorem 4.1. Suppose at each stage of the process the sets
X;s (= C;) and corresponding measures {ws,)} satisfy (6.5) and (6.6). Then § is
admissible. In this case it is not necessary either that 6(x) = 0 for x & Xj, etc.,
or that X} = X, as would be required by a straightforward reading of Theorem
6.2.

7. Estimators when p = 2: Examples. The following examples show
how Theorems 4.1, 6.1 and 6.2 may be applied and demonstrate some of the
peculiarities and technicalities associated with these theorems. Except where
noted (as in the second paragraph of Example 7.1) these examples concern the
p-dimensional multivariate Poisson problem in Case 1. In the following examples,
measures w, are specified by giving their value on their support. Their value is
zero elsewhere. We also write \; instead of ef\, etc.

EXAMPLE 7.1. The estimator 6(x) = x is in the complete class of Theorem
41(nCasel).Letp=2.Set X; =X, X, =X—-{0}, Xs={x€ X: x= (1, 1)}.
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Then .# (X;) = 0, #(Xz) = {(1, 0), (0, 1)}, #(X5) = (1, 1). Set w;,0({0}) = 1. For
A C R, a measurable set, let

wa,1,0)((4, 0)) = w2,0,1((0, A)) = J; et dt/2,

and for A C R?, a measurable set, let

(7.1) ws,a,n(d) = J; f ettt dt, dt,.

Easy calculations in (4.5) show that the corresponding estimator is 6 (x) = x. The
argument for p = 3 is similar but requires p + 1 steps.

8(x) = x is also in the complete class in Case 2. Again, let p = 2. Here,
X, ={x € Q: x> (-1, —1)}. Set X, = {x: x = 0}, and

wl,(—l,O)((O, 1)) = wl,(p,—l)((l, 0)) =%

(7.2)
w2,(0,0) (A) = f f e_(t1+t2) dtl dt,.
A

(Other choices of w,, are possible as long as wy,(-1,0) is concentrated on the line
(0, [0, ®)) and gives mass to (0, (0, »)); and symmetrically for wy,«,-1).) (4.6) then
easily yields that §(x) = x. The argument for p = 3 is entirely similar.

Note that §(x) = x is admissible in Case 1 only for p < 2 and in Case 2 only
for p = 1. A comprehensive treatment of admissibility questions for §(x) = x and
all other linear estimators can be found in Brown and Farrell (1985). 0

EXAMPLE 7.2. Consider p = 2 and
(7:3) o) = {g riroraise (0 € (0, ).
Set X; =X, X=X - {0}, Xs = X; — {(1,0), (0, 1)}, --+ and Xo = N1, X; =
fx:x=(1,1)}. Then.#(X;) = {(i —1,0), (0, — 1), (1, 1)} foro > i = 2. Set
wl,O({O}) =1
wi,({0}) =%, 2=<i<owo, y=(G@-10),(0:i- 1),

w1, = 0, 2= 1 < oo,

we,,n({0}) = 1.
Then 6(x) satisfies (4.6) so it is in the complete class of Theorem 4.1. Further-
more, it is admissible by Theorem 6.2 since we, 1) trivially satisfies (6.6) by virtue
of having bounded support.
Suppose, more generally, that (x) = 0 if x;x, = 0 and § is admissible for the
conditional problem given X., = {x: x = (1, 1)}. Then Theorem 6.1 yields that ¢
is admissible. For example, the estimator

_ 0 X1X2 = 0
(7.4) b(x) = {x otherwise

is admissible.
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Note that the estimator (7.3) requires a transfinite sequence of reductions,
X1, Xs, + ¢+, X», in order to satisfy the characterization of Theorem 4.1. 0

EXAMPLE 7.3. A peculiar admissible estimator, mentioned also in Brown and
Farrell (1983), is (for p = 2)

(7.5) 5(x) = (g (l))x.
This fits the characterization of Theorem 4.1 upon setting X; = {x: x = (i — 1, 0)
orx=(0,1)},i=1,2,---,and Xos; = fx: 22 (0,0 +1)},i=0,1, --+, and
wiG-1,00) =1 i=1,2, -+
(7.6) wion=0 1=2,%--
Wari0i+n((E+1,0) =1 i=0,1, ---.

Admissibility of 6 follows via Remark 6.5 from this stepwise representation.
A minor modification of this estimator, while still admissible, shows yet
another peculiarity. Let

01 x xt# (0, 2)
(7.7) d(x)=4\0 0
0 xt = (0, 2).
(An easy addition to the preceding argument shows this estimator is admissible.)
Then
C=fx:0(x)#0}=X—-({(G0),i=0,1, ---,} U {(0, 2)})
is not monotone or convex.
EXAMPLE 7.4. Here is an admissible estimator whose risk is somewhere

infinite. Let f(y) > 0 be real valued such that Y7o f(k)7* is convergent if 7 < 1
and is divergent if 7 > 1. Let the estimator be

(7'8) 6((x11 x2)) = (f(x2)1 0)-

This estimator can be seen to be admissible by applying the argument of Example
7.3 with we+; in (7.6) changed to be

(7'9) ' woo+i,(0,i+l)((f(i + 1)9 O)) =1 l = 09 11 e
Then
R((\1, N2), 8) = Si=0 (f(R) — N2)?e™2\3/k! + A}

= o0 if A2>1.

Thus, A* = {A: \a< 1} # A. 0O

EXAMPLE 7.5. When p = 3 the above can be used to lead to yet more
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pathological behavior. Define

0 if x1x5 + x2x3 + X303 =0

0, f(x3), 0) if xx3>0, % =0
(7.10) 8((x1, x2, x3)) = 1 (0, 0, f(x,)) if x%23>0, =0

(f(%2),0,0) if x20>0, x3=0

v if x%2x3 > 0.

This results in an estimator for which
A*={AM=0N=<lorX=0\=<1
or\3=0,<lor\=1i=1,2, 3}

We thinkv;<1,i=1,2,3,is _the correct condition here. Otherwise the estimator
is not admissible relative to A. Here ((A)*)°) " ={A: N\ <1,i=1, 2, I pAIf
v, < 1,i=1, 2, 3, then this estimator is admissible relative to A, but is not
admissible (relative to A). (If it were admissible (relative to A) it would have to
be a limit of Bayes procedures for priors concentrated on (A* N A). All such
Bayes procedures have §; < 1, i = 1, 2, 3. But, f is an unbounded function. So, §

in (7.10) cannot be a limit of such Bayes procedures. Admissibility relative to A
follows from an extension of Remark 6.5.) 0

EXAMPLE 7.6. A compatible family need not satisfy condition L. Let p = 2
and
C={x:x=(0,2)orx=(1,1)o0rx=(20)].
Let
w0,2(0) = we0(0) =0
wa,(0) = 1.

Then {w,} is compatible. However, if », is any finite measure on A and w,,(d\)
=c(AMA?p,(d\) then

(7.12) In wn,2,00(A) + In wn0,2(A) = 2 In wsq,1(A)

by Holder’s inequality (or, here, by the Cauchy-Schwarz inequality). If w satisfies
condition L then w,,(A) — w,(0) so (7.12) yields In w2 (0) + In we,(0) =
2 In w(,1)(0) as necessary for condition L. {w,} defined by (7.11) does not satisfy
this condition.

Consider the estimator

6(x)={0 x1+x<1 o x=(1,1)

(7.11)

(7.13) (1, 1) otherwise.

This estimator can be described by a sequence of compatible measures (of length
four) in the manner of Theorem 4.1. However it is not in the complete class of
that theorem, and hence is not admissible, since the sequence of compatible
measures would have to contain (7.11) which does not satisfy condition L.
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EXAMPLE 7.7. When A # X it may be necessary to have wgy (X — A) > 0 in
Theorem 4.1. The simplest example involves the one-dimensional geometric
distribution, whose probability function is

(1.14) px) =1 =M\ x=0,1, -+~ .
Then A = (0, 1), A = [0, 1), and X = [0, 1]. The estimator
(7.15) éx)=1

is admissible and is produced in the manner of Theorem 4.1 by setting
wi0({1}) = 1. (5 cannot be proved admissible by Theorem 6.2 since that theorem
requires that wg, ((A — A) = 0.) Similarly the estimator

(7.16) 0*(x) =(2*+ (%))/2*+1) x=0,1, ---

corresponds to wyo({¥2}) = w({1}) = 1. Again Theorem 6.2 does not apply.
Nevertheless this estimator is admissible. To see this note that

(T1T)  Bemy (0*(1) = NN = 2 Tomy (6%(x) = DIA* + 2 By (1 = N)2A*
converges to zero uniformly on (0, 1) as y — o. It follows that 6* uniquely
minimizes

(7.18) Y% lim supy_,1 (1 — A)7IR(}, 8) + (£)(1 — %) 1R(%, §)

and hence must be admissible. (When é = 6* in (7.18), the limit as A — 1 exists,
not merely the lim sup.)

8. Estimation of the negative binomial mean. In this section we give a
brief, nonformal, reduction of the problem to a ratio of integrals similar to the
ratio obtained for Case 2 loss when estimating the power series parameter, A.

Consider the case p = 1 and the negative binomial distribution

(8'1) p)\(x) = (x Z EI 1>(1 - A)kAx’ X = O’ 19 e

The preceding sections give results for estimating the parameter \. However for
various applications it is more natural to estimate the expectation parameter,

(8.2) 0(\) = Ex(X) = RN/(1 — M).
For example, ‘Tsui (1982) has considered this problem, using the loss function
(6 — 6)2/6.

Given an a priori measure » on (0, 1) the Bayes estimator é then minimizes
(8.3) f 6(x) — 0N (A)Ac(N)w(dr)
with ¢(A\) = (1 — \)* so that

(8.4) o(x) =k f )\’c(k)v(d)\)/f (1 = M)A Te(N)v(dN).
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Defining £(x) = 8(x)/(3(x) + k) and manipulating (8.4) yields

6(x)/(0(x) + k) = f A’C()\)v(dk)/f A*Te(N)w(dN).
= 1r,,(x)/1r,,(x - 1)-

Thus £(x) has the same expression here as did 6(x) in (3.2) for Case 2 loss in
estimating \. The same is, of course, true in the multivariate case where

(8.5) £(x)

(86) pa(x) = c\) [T <x‘ ,:_ f" I 1) 5 x€ Q%

c(\) = IT% (1 = N)%, .
and the loss function is
Y (8 — 6:)*/6; with  6;:(\;) = k:i/(1 — N),
and the Bayes procedure 6 for v satisfies
8.7) £i(x) = 8:(x)/(8i(x) + k) = m,(x)/m,(x — e).

Thus, Theorem 4.1 for Case 2 describes a complete class by virtue of describing
the functions £(+) which correspond to estimators § in this class. (One minor
change may be noted. The value £ (x) = 1 is impossible for an admissible estimator,
hence measures, such as w({1}) = 1, which lead to such results need not be
considered.) The main results of Section 5 and 6 also carry over to this problem;
the only major change necessary is that the definition of g,y in Theorem 6.2 must
be modified to match the new loss function. 0
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