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I would like to thank Professor Huber for a most thought-provoking paper.

I will restrict myself to discussion of projection pursuit regression, in particular
to describing an approach to PP regression different than and possibly comple-
mentary to that of linear combinations of ridge functions as introduced in Section
9. This approach may be called partial spline modelling. One models a function
of, say, k + d variables, parametrically in k variables and as a (thin plate) spline
function in the remaining d variables. The role of projection pursuit is to
determine which d of the k + d variables must be splined. Partial spline modelling
can also be extended to the context of GLIM models, whereby again the depend-
ency on some variables is via the usual GLIM approach while the dependency on
other variables is only “smooth.” It will turn out that partial spline estimates are
linear combinations of (uniquely determined) polynomials and shifted versions
of certain spherically symmetric functions (in the d splined variables). These
splines are known to nicely model in a nonparametric way the interaction effects
among a small number of variables (provided there is enough data), so they in
some sense have properties that are complementary to ridge function approxi-
mation, and thus may be expected to do well where ridge functions do not. The
structure of these estimates hopefully allows the benefits of the lesser data
requirements of parametric modelling where that is warranted, while doing
smooth nonparametric regression where it is not. By analogy with Huber’s
definition of “interesting” as “nonnormal” in multivariate density estimation,
one could define “interesting” in this context as having a dependence more
complicated than that modellable by a low-degree polynomial. With that defini-
tion, projection pursuit with the models being proposed here would, if successful,
identify the “interesting” directions, particularly if the choice of d is part of the
“pursuit.” i

Several authors have proposed partial spline models with one splined variable,
with notable success (Engle, Granger, Rice and Weiss, 1983; Green, Jennison
and Seheult, 1983; Anderson and Senthilselvan, 1982; Shiller, 1984). In all of
these interesting applications the choice of the (single) splined variable was
dictated by the context, so that projection pursuit is not necessary. Gaver and
Jacobs (1983), however, consider the problem of predicting low level stratus
conditions at Moffet field using surface meteorological measurements of east and
north wind velocity, temperature, dew point and existence or nonexistence of low
level stratus on preceding days. They use subset selection combined with logistic
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regression to make this forecast, but suggest that further work with this data set
is warranted. We will below describe projection pursuit partial spline models,
both in the context of normally distributed data, and in the context of alternatives
to (or rather as bona fide generalizations of) logistic regression, and then propose
that this approach merits further investigation as a procedure for modelling the
Gaver-Jacobs data and similar multivariate data sets.

For ease of exposition, we will describe only a rather simple partial spline
model, splined in d = 2 variables and linear in k other variables. Several (much)
more general forms may be found in Wahba (1984a,b). For normally distributed
data, this model is

(1) ¥i = fx10), x2(0)) + The1 0i2(G) + &, i=1,2, -

where f is a “smooth” function and the {e;} are iid. (0, ¢*). f and
0 = (6, -+, 0;) are obtained as the minimizers, in an appropriate space, of

(2) (1/n) Tk (3 = f(x1(), %)) — Ti=1 6;2:(0))* + NI (f)

where J(f), the smoothness penalty, is given by

(3) J(f) = f . f (i, + 2f3s, + [2,) dx1 dxs.

It is known (see e.g. Wahba and Wendelberger (1980) and references cited
therein) that if A > 0 and the (k + 3) X n design matrix T for (inhomogenous)
linear least squares regression in x;, x; and 2i, - -+, 2 is of rank k + 3, then (2)
will have a unique minimizer (in an appropriate space) in (f, 6) with a represen-
tation of the form

4) falx) = bo + bixy + bexo + Y1 GE(|x — x(0)])

where x = (x1, x2), |x — x(i)| is the Euclidean distance between x and x(i),
E(|7]) = |7|%log| 7|, and T’c = 0. Due to the radial nature of the E’s as a
function of x, this form of approximation is quite different than approximation
by ridge functions. The smoothness parameter A may be chosen as the generalized
cross-validation (GCV) estimate X\ of A (see Craven and Wahba, 1979). Given )\
the coefficient vectors b, ¢ and 0 satisfy a linear system and may be obtained, for
fairly large data sets, by the numerical methods in Bates and Wahba (1983). In
particular when n is very large, the sum in (4) can frequently be well approximated
by a smaller sum. When f is of the form (4), J(f) is a (known) quadratic form in
¢. As A = o, ¢ — 0, and the result reduces to linear least squares regression on
X1, %2, and 2y, - - -, zx. (More general partial spline models result in this limiting
least squares linear regression being replaced by low degree polynomial regression
in d + k variables with d general.)

Now, if we are doing exploratory semiparametric regression given data sets
(yi, #1(0), Z2(i), * + -, Zr+2(i)) we may ask which variables should play the role of
x, and x,. If x; and x, are to be a two-member subset of %, - - -, %42, then we
only have to choose from among the (5*2) possibilities. If, however, we let x, and
%, be linear combinations of these variables, then we are seeking an “optimal”
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two-dimensional subspace of Euclidean d space in which the splining takes place,
and this leads to challenging search problems. We do not so far claim to know
what good projection indices (Q in Huber’s notation) are. Two possibilities which
suggest themselves are A and J (f3) since both are in some sense measures of the
deviation of the model from linear regression. Letting A(\) be the influence
matrix (which relates the data vector y to the estimated data vector ), one might
consider as candidates for projection indices the residual sum of squares, RSS

RSS(A) = /n) I (I — A(R)yI12
the estimate 62 of o2 given by
&* =1 = AR)ylI*/trd — A(R))
or the GCV function V given by
VA) = 1 - AR yI¥/[trd = AR)P

These are candidates for the projection indices since all of them are related to
model fit in some way (we remark that J(fi) = A\7'y’(I — A(N))A(\)y), although
they only really make sense if a good value of X is used. Criteria based on the
spline regression diagnostics of Eubank (1984) may possibly be of use, along with
some clever procedure which looks for patterns in the residuals. In attempting to
develop asymptotic properties of these criteria, one will probably find that the
results depend on whether or not there is some partial spline model which
describes the “truth.” I will stick my neck out and conjecture that if some partial
spline model within the class tried is the truth, then the GCV function will
asymptotically find it (or, maybe, at least have a local minimum). What happens
if no partial spline model within the context tried is true is anybody’s guess.
Fully splined models have nice convergence properties with respect to all members
of certain Sobolev spaces (see e.g. Cox, 1984). Thus, one would very much like to
have some criteria for determining whether splining in two of the given variables
is adequate or whether one should go on and try to spline in three or more of the
available variables.

In the Gaver-Jacobs data, we will suppose that y is an indicator function for
low level stratus and is binomial B;(1, p) with p = p(&;, - - +, Z4+4). In the special
case p = p(x1, x2), O’Sullivan (1983) and O’Sullivan, Yandell and Raynor (1984)
have proposed estimating the logit f(x)

i f(x) =In[p(x)/(1 — p(x))]

via a maximum penalized likelihood method which estimates f as the minimizer
of

(5) —{2k1 yif (x(@)) — In(1 + D)} + AT (f).
Note that the term in brackets is just the log likelihood
In m{p?(1 — p:)' ™} = ¥ y:[p:/(1 — p)] + In(1 — p;)

The minimizer f, is known to have a representation of the form (4). O’Sullivan
and O’Sullivan et al. provide an approximate form of GCV for estimating \ and
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an iterative method for computing f;. The penalized GLIM models in O’Sullivan
(1983), of which this is one example, immediately extend to partially penalized
GLIM models by (for example, here) simply replacing f(x(i)) in the term in
brackets by f(x(i)) + 3%, 6,2;(i). Since

p =exp(f + X 6;2)/(1 + exp(f + ¥ 6;2))

this model reduces to the (usual) logistic regression model as A — «. We hesitate
even further here to suggest a projection index. The modified GCV function as
proposed by O’Sullivan and O’Sullivan et al. is one possibility. In examples such
as the Gaver-Jacobs problem where huge quantities of data are available one
might just use the classical cross-validation procedure of reserving a large data
set and letting @ depend on predictive ability with respect to the omitted data.
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