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ASYMPTOTIC INFERENCE WITH RESPONSE-ADAPTIVE
TREATMENT ALLOCATION DESIGNS

By WiLLiaM F. ROSENBERGER

George Washington University

A response-adaptive treatment allocation design for a clinical trial
attempts to place the majority of patients on the treatment that appears
more successful, based on the responses of patients already treated. One
example of such a design is the randomized play-the-winner rule developed
by Wei and Durham, which randomizes the treatment assignment probabil-
ities according to the outcomes of treatments previously assigned. For a
trial with dichotomous treatment responses and a randomized play-the-
winner assignment scheme, exact small sample permutation tests of the
hypothesis of equal treatment effects and large sample tests based on a
population model have previously been developed. We present a large
sample permutation test statistic for this case; under certain conditions on
the sequence of responses, the test statistic is shown to be asymptotically
normal. For a trial with a continuous response variable, we develop a
rank-based analog of the randomized play-the-winner assignment scheme.
Simulation evidence in both cases suggests that a normal approximation to
the test statistic works well for moderate-sized trials, with some conser-
vatism in the extreme tails.

1. Introduction. Response-adaptive treatment allocation rules use accu-
mulating information to assign patients to treatments in a clinical trial, with
the goal of placing more patients on the more effective of two treatments.
Ethical considerations make adaptive treatment assignment attractive, at least
in principle.

For dichotomous responses, the randomized play-the-winner (RPW) rule
[Wei and Durham (1978)] has been proposed as a form of response-adaptive
treatment allocation. The design can be described in terms of an urn model. At
the start of the trial, there are a balls of each color, say red and black, in the
urn. When a patient is available for assignment to either of treatments A or
B, a ball is drawn at random from the urn and replaced. A red ball generates
an assignment to A, a black ball to B. When a response of a previously
assigned patient becomes available, 8 red balls are added to the urn if the
response is a success on treatment A or a failure on treatment B, and
otherwise, B black balls are added to the urn. This rule will be denoted
by RPW(a, B). '

In Section 2, we present a large-sample permutation test statistic for the
RPW design. This result may be regarded either as a large-sample approxima-
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tion of the exact -permutation test of Wei (1988) or as a permutation test
analog of the large-sample analysis of Wei, Smythe, Lin and Park (1990) under
a simple population model on the responses. We show that, under certain
conditions on the sequence of responses, the test statistic is asymptotically
normal, and the normal approximation works well for even moderate-sized
trials.

In Section 3, we introduce a nonparametric response-adaptive design for the
case of general (not necessarily dichotomous) responses, in the spirit of the
RPW rule. At each stage in the trial, the next treatment assignment is
generated from a rank-type statistic, giving higher probability of assignment to
the treatment that is ‘‘winning’’ at that stage. A large-sample permutation
test statistic may then be calculated. Although a rigorous proof of asymptotic
normality has thus far eluded us, numerical evidence for both ranks and
normal scores suggests that the normal approximation is again good for
moderate-sized trials.

The methods used for both the dichotomous and general cases are similar,
and employ a martingale central limit theorem.

2. A permutation test statistic for dichotomous outcomes. Permu-
tation tests are derived under the null hypothesis of no treatment effect; a
patient’s outcome does not depend on the treatment assigned, and hence the
outcomes can be thought of as deterministic [Lehmann (1975)]. In this vein, let
zy,...,2, be a sequence of outcomes treated as deterministic, which take on
the value 1 if the treatment is successful and —1 if not. Let Y;,...,Y, be a
sequence of dichotomous treatment assignments, where Y; = 1 or 0 according
to whether patient j is assigned to treatment A or B, respectively. Let
F=0(Y,,...,Y), j=1,...,n, the sigma algebra generated by the first j
treatment assignments, and let %, be the trivial sigma algebra. For the
design RPW(q, 1), it is easily seen that the conditional probability
P(Y; = 1|¥,_,) is given by

b1 = 1/2>
(2.1) a+S;_; s 1
= — >
P a+i-10 T
where
(2.2) S;= L{z(%-3)+3), i=1,...,n
j=1

The test statistic of interest has numerator

é{zj(yj -

D=

)}

which will take extreme values if there are a significantly larger number of
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successes on one treatment than on the other treatment, leading to rejection of
the hypothesis of equal treatment effects. It can also be thought of as half the
difference between the number of balls of the two colors in the urn.

Let {b,,}, j = 1,...,n be a deterministic triangular array, chosen to make
n n
Y zi(Y, - 3)= X b,.z(Y; —py)
j=1 j=1

for each n. This choice of b;, gives the equivalence of
_ 2Z?=121(Yj - 1)
n n 2 1/2
(X5-187)
where the array {W,,}, £ = 1,...,n, with
W = j-10,n2,(Y; — b))
nk — n 9 1/2 ’
(X7-105)

forms a martingale. It is not difficult to verify that the desired sequence {b,,} is
given by

(2.3) b,y = 11[ (1 _zk_)

+
k=j+1 20+ k-1

and W,

nn’

j=1,...,n — 1. We can now apply a martingale central limit theorem to W,,
in order to establish the asymptotic normality of T,.

By Corollary 3.1 of Hall and Heyde [(1980), pp. 58—59], under the following
two conditions:

n
(2.4) max bfn/benaO asn — o
l<j<n j=1
and
(2.5) S,/n = % in probability as n — o,

[S, is defined by (2.2)], T, converges in distribution to a standard normal
variate.

Because we are treating the responses {z;} as a deterministic sequence, one
could never discern from a finite sample whether (2.4) and (2.5) will hold.
Indeed, at one extreme (all z; = 1), we have a Pélya urn model, and neither
condition holds; in this case, S,/n has a beta limit [Athreya and Ney (1972),
page 220]. At the other extreme (all z; = —1), we have Bernard Friedman’s
urn [Friedman (1949)], and asymptotic normality follows from Freedman
(1965).

To determine how a ‘““‘typical” response sequence might behave, consider
the {z;} to be realizations of a sample Z,..., Z, from a sequence of centered
(1, —1) Bernoulli trials with parameter p. Let random variables {B;,} be
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defined via (2.3) from the {Z}}. It is easy to see, conditioning on Z,,...,Z
that under these assumptions,

n’

LI

i=1J=i+1

(2.6) Var(S,) = (1 + M).

1
4 20 +j -1

THEOREM 2.1. When the {z;} are realizations of independent centered
Bernoulli trials with success probability p, then

Var(S,/n) -0 asn - » foranyp <1,

where the expectation is taken over the {Z}} and the {Y};}.

Proor. From (2.6),

Var(S,) = i ﬁ (1+

i=1Jj=i+1

2(2p - 1)
2a +j— 1

N
ot

Y In

J=i+1

[Vja

exp

N

2a+]—1

1
20 +j—1

L 22— )}

i=1

exp{2(2p - 1) Z

J=i+1

20 +n
{2a+l} ’

IA
N
i1

<

||[V]=

1
4,
which is o(n?) for p < 1. O

ReMaRK 1. Note that the rate of convergence of Var(S,) is O(n) for
p <0.75,0(n Inn) for p = 0.75, and O(n*?~2) for p > 0.75. The value p =
0.75 plays an important role in the next theorem as well.

THEOREM 2.2. Under the assumptions of Theorem 2.1, if p < 0.75,

l<j<n

max B? / Y. B} — 0 in probability as n — .

Proor. We have that, for j < n,
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so that
n Zk
Binl = exp{ . W—l}
(2.7) .
- 29p — 1 -
exp(P; )eXP{( p-1) _}j:+12a+k }
where
P = " Z,-(2p-1)
j”_k5j+1 20+k—-1 °

Consider the set

By Kolmogorov’s inequality, since

" Z -(2p-1)
J
Var(z e+ = 1 )32 Va

Jj=a
we have P(A,) < 16/X%. On A%, we have from (2.7) that
2a+n -1 )2p_1

=1,...,n,

IB;,| < exp{A, + 1}(

20 +j -1
so that
exp{2A, + 2} ip—2
. 2 - T (9 — 1) )
(2.8) llélja;{n B;, < (2a) 7" (2a +n —-1) +o(n)
Now

E{ max Bz/z Bfn}
1<j<n j=1

2
[ maXI<J<n i dP + max,_;., Bj, dP
AC - B? ’

Let A, = In(In n). Since max B?, / LB?, < 1, the first integral does not exceed
P(A, ) < 16/A% - 0. For the second integral, the numerator of the integrand
can be bounded by (2.8). It follows from an argument of Wei, Smythe and
Smith [(1986), pp. 272-273) that ¥ B? > nc for a constant c. Hence the
second integral is

< —1—-E{ max B2, I( A°, )}

cn l<j<n
exp{2A, + 2}(2a + n — )" o(n)
< + .

B c(2a)*%n n




INFERENCE WITH ADAPTIVE ALLOCATION 2103

This term tends to zero as n — «, provided p < 0.75. Hence the theorem
holds. O

Thus for p < 0.75 and for almost every realization of random sequences
{Z;} generated in the fashion above, Theorems 2.1 and 2.2 imply that T,
converges to a normal law along a subsequence.

REMARK 2. It is easy to see that the proofs of Theorems 2.1 and 2.2 remain
valid for somewhat more general sequences {Z}. If the {Z,} are an independent
centered Bernoulli sequence with P{Z; = 1} = p;, Theorem 2.1 holds, provided
that, for some p < 1, p; > p as j — »; Theorem 2.2 holds if p; < p < 0.75 for
all j.

REMARK 3. It can be shown under a population model, such as the Bernoulli
sampling assumption, that asymptotic normality fails when p > 0.75 [Smythe
and Rosenberger (1993)].

Extensive simulations were conducted to examine the behavior of the test
statistic under the Bernoulli assumption. Simulations were run in Pascal on a
mainframe. One hundred sequences {Z;} were generated under the Bernoulli
assumption for a particular p, using an algorithm by L’Ecuyer (1988), and
then 1000 test statistics were calculated for each sequence {Z;}. Values of n
were 30, 50 and 100; two values of « (1 and 5) were used. Values of p used

TaBLE 1
Proportion of test statistics generated with values in the extreme tails.of the normal distribution
(100,000 statistics generated), a = 5

Proportion of statistics falling

1 orobabil in left (L) or right (R) tail

Tail probability

of normal N=30 N =50 N =100

p distribution L R L R L R

0.50 0.01 | 0.003 0.003 0.004 0.004 0.004 0.004
0.05 0.024 0.023 0.024 0.023 0.024 0.023
0.10 0.046 0.047 0.050 0.049 0.050 0.048
0.20 0.099 0.098 0.100 0.097 0.102 0.097

0.60 0.01 0.003 0.003 0.004 0.004 0.004 0.004
0.05 0.022 0.023 0.023 0.023 0.024 0.023
0.10 0.048 0.049 0.048 0.048 0.048 0.049
0.20 0.103 0.104 0.099 0.099 0.100 0.100

0.75 0.01 0.003 0.003 0.003 0.003 0.003 0.003
0.05 0.022 0.021 0.022 0.021 0.022 0.022
0.10 0.049 0.047 0.048 0.048 0.047 0.047

0.20 0.103 0.101 0.099 0.098 0.099 0.097
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were 0.50 to 0.80, incremented by 0.05. Coverage probabilities were calculated
and are compared to the nominal significance levels of 0.01, 0.05, 0.10 and
0.20.

For a = 1, the test statistic is conservative, very much so in the extreme
tails, and only the results for « = 5 are given in Table 1. The results are
somewhat conservative in the extreme tails, but even for n = 30 and n = 50,
coverage is close to nominal levels.

An attempt was made to ascertain the test statistic’s behavior under
““average” conditions; 100 sequences {Z j} were generated; for each sequence,
Z; was assumed to be a centered Bernoulli variable with parameter p;, with p;
ranging linearly from 0.75 to 0.50. Then 1000 test statistics were calculated
for each sequence {Z;} and coverage probabilities obtained. Again, conser-
vatism in the extreme tails is noted, with coverage otherwise close to nominal
levels.

3. A permutation test statistic for general outcomes. The use of the

RPW rule is limited by the assumption of dichotomous responses. If the
outcome of interest is a measure of some continuous (or at least polychoto-
mous) quantity, it may still be desirable to use response-adaptive treatment
allocation in some circumstances. In this section, we propose a response-adap-
tive design along with a large sample test statistic based on scores calculated
from a general response variable.
For each j =1,...,n,let r;;, for i <j, be the rank of the ith patient based
on some outcome variable after j outcomes are available, where a larger rank
indicates a better response to treatment. Define scores a;; to be some function
of the r,;,, 1<i<j<n, where ©/_ja;;=0, j=1,...,n. Define a/;=
a;;I(a;; > 0), where I is the indicator function, and, as before, let & =
a(lYl, ..., Y)), with Y; defined as in Section 2. Let

~ ~

P1=P2=%
and
]- Zi';la ji— Y - l
(31) p,=E(Y|Fi,)=S|1+— At IE (k) , i=23,4,....
2 =12 i-1

The better the responses of previous patients on treatment A, relative to those
on B, the larger will be the probability that the next patient is assigned to A.
Proceeding as before, we define the array {b;,} to make

Y a;u(Y-3)= oY -5)
Jj=1 j=1

for each n. The test statistic
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is then equivalent to

V =2 J lJn(Y pj)
(Z;=1~. )1/2

In the present case, however, the b » depend not just on {a;,}, but also on
{a;} for k < n. We have

(3.2) b .+ Z a;, J(z)
i=j+1
J=1,...,n, where h (i) is defined for i > j by the recursion
h,(i) =1,
3.3 . il .
(23 B0 = T gt i), i

221 1@

We define

N

)-

The analog of conditions (2.4) and (2.5) are now given. Under the following
two conditions,

. n
= Xau(Y -
j=1

(3.4) max bz/szn—ao asn — o
l<j<n

and

(3.5) S,/ ¥ af, > 1/2 in probability as n — o,
j=1

T, converges in distribution to a standard normal variate.

As before, we cannot guarantee that (3.4) and (3.5) will hold for every
conceivable sequence {a;;}. Thus, as in Section 2, we consider the case of
responses generated by a probability mechanism to study the behavior of (3.4)
and (3.5) under “average” conditions. Assume now that the responses arise
from an independent sequence X;, X,, ...with a continuous distribution. Let
R;; be the rank of the ith patient after j responses are available.

ExampLE 3.1 (Simple rank scores). For j even, these are defined by
R,. i+ 1
Ai j= 8( —J - ‘1__"
J 2J
Let B, denote the random analog of b in in (3.2).

, 1<j=1,...,n.
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THEOREM 3.1. When the responses are generated from an independent
continuous sequence, Var(gn /n) = 0 as n — o, where the expectation is taken
over both the {Y;} and the scores.

The proof can be found in Rosenberger (1992). Thus (3.5) holds in some
average sense. Due to the complicated expression for the {5jn} in (3.2) and
(3.3), we have not been able to show that (3.4) holds in the same sense;
however, as noted below, simulation evidence strongly suggests that (3.4) holds
for this case. For an arbitrary rank sequence {a,}, it is easy to show that

n
Y. 5%, >8n for some 6 > 0,
j=1

and hence that

n
2 i2
jmax bjn/jg1 2 =0 asn — o,

Further simulations were designed to check condition (3.4) and the rate of
convergence of T to normality under the distributional assumption. One
hundred sequences of uniform responses were generated for n = 30, 50 and
100. For each of these sequences, 1000 test statistics were calculated using the
design proposed in this section. The results, shown in Table 2, are conservative
in the extreme tails, especially for n = 30, but overall, a reasonable approxi-
mation to normality is demonstrated. Condition (3.4) appears to be holding at
the same rate [O(n~1)] as {max A%, /L A% }.

ExampLE 3.2 (van der Waerden scores) The van der Waerden scores
[Lehmann (1975), page 97] are defined by A;; = @~ {R,;/(j + 1)}, where ® is
the standard normal distribution function. For these scores, the behavior of
{max BJ“-",L / EBfn} is even closer to that of {max A%,/ EA?,L} [O(r~1)] than for
simple ranks, and the analysis corresponding to Table 2 gives almost identical
conclusions (not included). It can be shown that Theorem 3.1 holds for van der

Waerden scores as well as simple rank scores [Rosenberger (1992)].

TABLE 2
Proportion of test statistics with values in the extreme tails of the normal distribution (100,000
statistics generated) for the simple rank scores

Proportion of statistics falling
in left (L) or right (R) tail

Tail probability of N=30 N =50 N =100
normal distribution L R L R L R
0.01 0.002 0.002 0.002 0.002 0.003 0.004
0.05 0.018 0.017 0.018 0.019 0.021 0.022
0.10 0.041 0.041 0.043 0.043 0.046 0.047

0.20 ) 0.092 0.092 0.094 0.093 0.095 0.097
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4. Conclusions. For dichotomous outcomes, the large-sample permuta-
tion test statistic based on the RPW treatment assignments performs well for
moderate-sized or large trials when the success rate is less than 0.75. The
normal approximation is improved by starting with more than one ball of each
color in the urn.

For general outcomes, simple assignment schemes based on ranks leads to a
permutation test which, although somewhat conservative, assigns most pa-
tients to the better treatment and, on average, gives reasonable approxima-
tions to normality in moderate-sized or large trials.
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