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DETECTING A CHANGE OF A NORMAL MEAN
BY DYNAMIC SAMPLING WITH A PROBABILITY BOUND
ON A FALSE ALARM

By Davip Assar!, MosHE PoLLak ?, Ya’acov Ritov?!
AND BENJAMIN YAKIR

Hebrew University

We show that when dynamic sampling is feasible, there exist surveil-
lance schemes for which the probability of a false alarm is bounded and
which have a bounded expected delay when detecting a (true) change. In
the case of detecting a change of a normal mean, we probe optimality and
suggest procedures. These procedures compare favorably to those having a
fixed sampling rate which have been developed for an expectation con-
straint on the average run length until a false alarm.

1. Introduction and summary. The classical change-point problem con-
sists of minimizing the time to detect a change subject to a constraint on false
alarms. The usual setup is one where independent observations X;, X,,...,
X,_; are identically distributed according to some F,, and ensuing observa-
tions X,, X, ,... are iid with distribution F;, where the change-point v is
unknown.

A detection scheme consists of a stopping time T for the process { X;, X,, ...}
at which one stops and declares a change to have occurred. The speed of
detection of a scheme may be measured by the maximal expected delay
Sup; _, <o E(T — v|T > v). The classical formulation for containing the rate of
false alarms is an expectation constraint; that is, T is required to satisfy
E(T|v = ) > B for some prespecified (large) constant B.

A more restrictive, though appealing, condition on the rate of false alarms is
a probability constraint: P,_ (T < ) < @ where 0 < a < 1 is a given constant.
It turns out that all of the classical procedures for detecting a change
(Shewhart, CUSUM, Shiryayev-Roberts etc.) have P(T < |y = ©) = 1. The
reason for foregoing a probability constraint is that the price is too high; the
expected delay is unbounded if a < 1. [This was noticed by Pollak and
Siegmund (1975). Formally, this can be derived from Theorem 2 of Pollak
(1985).] In fact, perhaps also for this reason, apart from Pollak and Siegmund’s
1975 work, no procedures have been formulated for a non-Bayesian setting of
detecting a change under a probability constraint.
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The state of affairs for the continuous time version is similar.

Assaf (1988) introduced dynamic sampling to the surveillance context. In
certain situations, one can control the amount of sampling. For example, in an
ice cream production context, at each point in time one can sample an
arbitrary amount of ice cream; or if sampling continuously, the sampling rate
can be varied. It is reasonable to allow such variations, as long as the average
sampling rate is fixed (or bounded). Assaf (1988) and Assaf and Ritov (1989)
noticed that employing such dynamic sampling can result in a dramatic
reduction of the expected delay sup,.,. . E(T —v|T >v). In the non-
Bayesian setting, their work considers only stopping rules T satisfying
P(T < o|ly = x) = 1.

Here we reconsider the surveillance problem under a probability constraint,
when dynamic sampling is feasible. The main result of this paper is that when
dynamic sampling is feasible, one can satisfy a probability constraint yet keep
the expected delay bounded. In fact, the expected delay is significantly smaller
than the corresponding delay for classical procedures with an expectation
bound. This is not given free, since one still may need to sample an increasing
(ad infinitum) amount as v — . The reason why this is feasible is that
dynamic sampling allows sampling plans that do an unbounded amount of
sampling in a fixed amount of time.

The details are given here in case the observations are Brownian motion
and one is alert to a change in the mean parameter. We first study the case
where average sampling is required to be bounded only as long as there is no
change in mean (Section 2). In this case it is shown that it is possible to devise
an optimal procedure under a probability bound a = 0. An explicit formula is
given for the resulting expected delay. Though not applicable in real circum-
stances, this case is of theoretical interest. A comparison is made to dynamic
sampling schemes satisfying expectation constraints and to classical sampling
schemes.

In some situations, one may be obligated to maintain a bound on the
average sampling rate, both before and after a change. This situation is
studied in Section 3 (where a typical example in which these constraints arise
naturally is discussed). Dynamic sampling schemes satisfying a probability
constraint of 0 < a < 1 are considered. A scheme is constructed for which the
expected delay is for all 0 < @ < 1 within a constant of the lowest possible
(a-dependent) expected delay.

2. Prechange average sampling constraint.

2.1. Continuous sampling at equidistant time periods. We begin with a
model in which sampling may be done on a continuous basis at discrete equally
spaced points in time. (This may reasonably describe hourly inspection of an
ice cream production process.) Denote the sampling points n = 1,2,... . Sup-
pose that, should one be sampling an infinite amount at each period, one
would be observing independent Brownian motions with unit variance parame-
ter, with zero mean before a change, and with mean parameter u, > 0 (of
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known value) after a change. Let v denote the first sampling period for which
the mean parameter is u,. Let {B(¢): 0 <t < o}, {By(t): 0 <t < },... be the
observable Brownian motions at the sampling periods 1,2, ..., respectively. In
the classical fixed sampling rate setting, the part of {B,(¢): 0 <t < =} which
will be observed is B,(s,), where s, is a constant reflecting the fixed amount
sampled at each period. In the notation of Section 1, X; = B (s¢). The dynamic
sampling setup allows variation on the part of {B(¢): 0 <¢ < o} actually
observed, resulting in an observed sample path {B,(#): 0 < ¢ < t,;}. The inter-
pretation of ¢; is the sampling time of observation at the real time period i.
Formally, ¢, is a stopping time for B,(#) such that {¢, > ¢} is in the o-field
generated by {B;(s): 0 <s <¢;, j= 1,...,i — 1 and B,(s), 0 <s <t}. Let
0 < y < » be a bound on the average sampling rate, in the following sense:
Allowable sampling schemes are such that as long -as no change occurs, the
expected sampling time until (the end of) sampling period » may not exceed
yn, n=1,2,... . In other words, we require the stopping variable sequence
t1,t, ... to satisfy

n
E Y t, <vyn, n=1,2,...,v—1,v=1,2,...,
i=1

where E, (and P,) represents expectation (respectively, probability) when the
first real time period at which the change is already in effect is ». (v=o
denotes that no change ever occurs.) This requirement is equivalent to

(1) E,_.Y t<vyn, n=12,....
i=1

In certain situations one may be willing to sample at an enormous rate after a
change takes place so as to detect the change quickly. A typical situation of this
type occurs when production following the change is worthless (e.g., medicine
failing to meet required standards). In this section, we model this by not
requiring the rate of sampling after a change takes place to be bounded. For
this case, consider first the constraint a = 0. The case a > 0 is discussed in
subsection 2.3. Let N be an integer-valued stopping time with respect to the
observed process; that is, {N > n} is in the o-field generated by {B,(¢):
0 <t <t;1<i<n} Denote

I = {(N,{): { satisfies (1) and P,_(N < ®) = 0}.

THEOREM 1.

(@) nf s B(N-uINzv) = e /(1 - e /0,
,i)ell 1<sv<ow

(b) The infimum in (a) is attained by (N, ) such that
t, = min{¢: B,(¢) < suit — 11y}
= o ifno such texists,
N = min{n: ¢, = »}
= o if nosuch n exists.
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Proor. Clearly
(2) inf  sup E(N-vIN>=v)> inf E,_N-1.
(N,Hel 1<v<wx (N,Her
We will calculate the right-hand side of (2), and then show that the inequality
in (2) is an equality. Let (N, #) € T' and define
g, = P,,=1( max ¢; < oo).

i=1,...,n

Note that
PV=°°(NS n, max t; < 00) =0 e P,,=1(Ns n, max ¢ < 00) =0.
i=1,...,n i=1,...,n
Since P,_ (N < x) = 0, it follows that
P_(N>n)=> P,,=1(' max t; < 00) =q,-
i=1,...,n

Therefore

Eu=1N -1> Z qn-
n=1
Let W(¢) be a Brownian motion with drift parameter u. Consider testing
H,: p = p, versus Hy: u = 0. For fixed n, consider the test which applies #; to
Wiz, + ) — W(ZiZlt;,): t =0, j=1,...,n, and which rejects H, when
..... . t; < . Because (1) is satisfied, it follows that this is a test of
power one and of significance level ¢,. When finite, the sampling time of this
test is L7 ¢, and so its H,-expected sampling time is E,__ X7 ;¢;,. Among all
power one tests with this H;-expected sampling time, the one with the lowest
significance level is a power one sequential probability ratio test. This has as
its stopping time
T, = min{¢: W(¢) — 3u.¢ < —c,}
= oo if no such ¢ exists,

where c, is a constant such that E4 T, = E,_ X7_.¢;.

Now
PHO( Tn < w) = e_l’vlcn
and
EHlTn = 2071//“‘1
so that
Py (T, < =) = exp[ —(1/2)uiEx T, ].
Hence
n
q, > exp| —(1/2)W3E,_., ¥ t;| = exp[ — (1/2)uiyn]
i=1
and so
® , e~ (1/2uky
(3) E_N-1> E e~ 1/uiyn —

i 1 — e~ W/2udy’
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The (N, ) described in Theorem 1(b) attains equality in (3). Furthermore
for this (N, %), E,(N — vIN > v) is constant in 1 < v < o, so that equality is
attained in (2). O

REMARK. The proof of Theorem 1 depends only on the fact that W(¢) is a
process with stationary and independent increments which increases continu-
ously in ¢. Therefore, if, for example, the observable process is a Poisson
process instead of Brownian motion, and one is alert to a change of the
intensity from A, to A; < A, the same proof will yield an analog of Theorem 1.

2.2. Continuous sampling in continuous real time. Suppose one may sam-
ple continuously, being permitted to vary the sampling rate subject to a bound
vx on the P -expected sampling time during the first x time units, 0 < x < .
[A rigorous treatment involves expressing variations in sampling rate in terms
of the instantaneous variance; cf. Assaf (1988).]

Regard three statisticians: Statistician A may sample continuously as above,
and receives the information as it arrives. Statistician B may view the informa-
tion gathered by Statistician A in a given time interval ((n — 1)8, n8] (in the
chronological sequence at which it was gathered) only at the time point n4,
n =1,2,... . Statistician C may sample (and view) only at times n§, subject to
a bound nvy/§ on the P, -expected sampling time during the first n sampling
points (6,23, ...,n8). To emphasize the differences between the statisticians,
note that Statisticians A and B have the option of behaving like Statistician C.
This can be done by sampling only at times x = n 8 (subject to the appropriate
constraints on the expected total amount sampled).

Note that the optimal expected delay of Statistician B does not exceed that
of Statistician A by more than 6. Argue that since Statistician B should make
decisions only at times nd, the best information for a decision is the most
up-to-date information; hence the optimal behavior for Statistician B is to
gather information only at points n5. More formally, sufficiency considera-
tions imply that Statistician B pays no penalty for viewing the process only at
points nd. In other words, Statisticians B and C should behave the same way.
By virtue of the results of Section 2.1 (with time scale né instead of n),
the optimal procedure for Statistician C is to make a power one SPRT
(of Hy: = py vs. Hi: p=0) every § time units, such that the expected
(v = ) sampling time per observation period is §y. Let 8§ — 0. By Theorem 1,
it follows that the infimal expected delay for Statistician A is

e~ (1/Dutys 9

4) ;1—1)1(1)8 1 — e~ /2udys - iy’

2.3. Comments and comparisons to other schemes. Assaf and Ritov (1989)
study the non-Bayesian continuous time model with an expectation constraint
of‘the type E,_,.T > B. The rules suggested in their paper are of the (A, c, §)
type: Perform an SPRT every § > 0 time units with lower stopping level —cé
and upper stopping level A. The stopping time T is defined as the first time
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that the upper level A is hit. The “best” procedure is attained in the limit as
8 — 0, and is denoted as (A, ¢, 0).

The (A, ¢, §) procedures yield a (scaled) geometric distribution for 7', thus
forcing @ = P,_ (T < =) to equal 1. The procedure suggested in Section 2
above may be thought of as an (A,c,8) procedure with A = «, yielding
a=P,_(T <x)=0.

The expected delay with finite A will evidently be shorter. However, since B
is usually set to be fairly high, the saving in expected delay is far from being
dramatic. As an example, consider a typical case where y = 1, B = 793 and
w; = 1. By virtue of (3), the procedure suggested in this paper yields an
expected delay of 2 with a = 0. The (A, ¢, 0) procedure has an expected delay
of 1.96 and « = 1 [Assaf and Ritov (1989)]—a saving of only 2% at the price of
increasing a from 0 to 1.

Evidently, any procedure satisfying a probablhty constraint of 0 < a <1
cannot yield a better expected delay than one with an expectation constraint
E,_.T > B, B - », which will result in the same expected delay of the
procedure suggested in this paper which has a = 0. It is however theoretically
possible to devise procedures having any 0 < a < 1 by taking a time dependent
upper limit A(#) and using an obvious (A(?), ¢, 0) procedure. Of course, a = 0
cannot be attained by any practical procedure. A suitable function A(¢)
[necessarily lim, ., A(¢) = ] may be chosen to obtain any specified value of
0 < @ < 1. These procedures will yield improved expected delays for some
value of » but not for the supremum.

The reader should note that the fixed rate sampling procedures such as
CUSUM and Shiryayev-Roberts yield expected delays of approximately 10 for
the same problem [Pollak and Siegmund (1985)] and all of them have a = 1.

3. Pre- and post-change average sampling constraints. In this sec-
tion, we consider the situation in which the expected average sampling rate is
required to be bounded all the time, including the period after the change. We
envision a somewhat flexible sampling budget, so that the statistician may
guardedly borrow against the future, as long as on the average the expenses
remain within limits. We regard the situation in which surveillance will
resume after an alarm is raised and the process is (putatively) reset to its
in-control state, that is, u = 0. Therefore, we formally regard pairs (N, £) as in
the previous section, but with the added proviso that if N =n, then
(t,+1,tn+9 ---) will have the same structure as (¢, ¢,,...), and N will next be
applied to (¢, ,1,%,.9,-..). We will call this a renewal structure. We replace (1)
with the more restrictive set of constraints

E,_ mZt n=1,2,...,
i=1
(5) N
E Y t,<yEN, wv=12,....

i=1

(Of course, one can contemplate even more restrictive constraints.) Since the
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repeated surveillance is in a sense a renewal process, the average sampling rate
per observation will be bounded by vy in the long run if (5) is satisfied. [We
stipulate a renewal structure because it seems reasonable from a practical
point of view. Formally, Theorem 2 below and its proof will be valid if we drop
the renewal structure requirement. However, the second requirement of (5)
seems to make no sense unless we consider a renewal structure. If we assume
a renewal structure, then it means that the long run average sampling rate is,
indeed, gamma.]

Practical situations in which this scenario arises are conceivable. A typical
case is when a false alarm has severe consequences, whereas sampling past the
change-point is relatively tolerable. As a more specific example, consider a
clinic conducting a trial using a new and delicate instrument to measure
certain characteristics in a blood sample. The instrument is difficult to cali-
brate, and comparison of measurements made after different calibrations is
difficult. Therefore, the instrument is calibrated once, and measurements on
blood samples are made consecutively, until the instrument goes out of
calibration. (As in all instruments, measurement has variance.) The clinic
prepares a very large quantity of identical copies of a blood sample with known
characteristics. To monitor the calibration level, the clinic may send any
number of samples from the known lot to the laboratory for measurement.
Clearly, there is a great premium for not stopping the measurement process in
order to recalibrate when the process is in control. A probability bound on a
false alarm would be an appropriate constraint. Dynamic sampling is clearly
feasible. (While the sampling units in this scenario are discrete, if the measure-
ment variance is large then continuous sampling would be a good approxima-
tion.) Since measurements made after the change-point will be discarded, one
would want to stop and recalibrate as soon as possible after a change.

It is clearly not possible to satisfy an a = 0 probability constraint and have
N stop with positive P,-probability. It is, however, possible to meet any
0 < @ < 1 level. Formally, we add the constraints

(6) P_ (N <) <a, P(N<w)=1 forl<wv <.
So, let
Q = {(N, f): (N, ) has a renewal structure and satisfies (5) and (6)}.

TuroreM 2. There exists a constant C (which depends on u, and vy) such
that

2 1.
(7N —210g(——) —1< inf sup E(N-vIN=v)
YH1 a (N,DeQ 1<v<w
(8) 2 1 (1) C
< —logl—]+C.
yui \a

ReMARK. In the fixed sampling rate case, among all stopping times satisfy-
ing E.T > B, the least upper bound of the expected delay is of the order
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(2/(u3yNlog B as B — « [Lorden (1971)]. Theorem 2 implies that there exists
a dynamic sampling scheme satisfying « = 1/B with comparable expected
delay. -

Proor. Note that if (N, 7) € Q, then N can be used to define a power one
test of Hy: v = o versus H;: v =1 with significance level a. Therefore,
(by the optimality of the SPRT) the H 1-expected sampling time until stop-
ping is at least (2/u?)log(1/a). From (5) we therefore obtain E,_ N>
(2/(yu?Mlog(1 /a), from which the inequality on the left of (7) follows.

We proceed to prove the inequality on the right of (7) by construction. Note
that it suffices to show the inequality for all 0 < & < @y, where 0 < ay < 11is
arbitrary. Set 0 <& < 1, whose exact value will be specified later. Let b —
(1/ulog(1/a), b, =b + (n — e for n = 1,2,...  Let T, ;= inf{t: B,(¢) -
(1/2)u,t & (—¢,b,)}, where B, is as in Section 2. Now construct (N, 1), as
follows. Let ¢, = T, 1. If B(T, ;) — (1/2)u,T; , = —¢, define ¢, = T, »; other-
wise define ¢, = T, ;. Continue this recursively: Formally, denoting J(n) =
max{;j: 1 <j<n, B(t;) - (1/2)p,t; # —¢}, J(n) =0 if no such j exists,
define ¢, =T, ,_;,, Let X(t) be the process obtained by concatenating
{B,(¢) — (1/2)u,t: 0 < ¢ < ¢,)7_; in other words, letting n, = max{j: j > 0,
Y it <t}, write for 0 <t < »

ng n ng
X(t)y= % [Bj(tj) - %/’thj] + Bn,+1(t - X tj) - %,Uq(t - X tj)'
Jj=1 Jj=1 Jj=1

Define 7 = min{¢: X(¢) > (1/ulog(1/a)}, 7 = = if no such ¢ exists. Clearly
P,_(r <) = a. Define N = n_. (Note that if N = n, then X"_¢, will equal
7.) Now modify the sequence # so that if N = n, then (¢,,1,¢, ,5,...) will have
the same structure as (¢;,%,,...). We will show that for appropriate &,
this (modified) pair (N,?) is contained in Q and that, for all 1 < v < oo,
E(N —vIN = v) < 2/(yu*)log(1/a) + C for some constant C < o,

We first show that (5) is satisfied. Consider the first constraint in (5).
Clearly T, ; < inf{t: B,(¢) — (1/2)u,t < —¢}. Hence E.T, ; < 2g/p,, implying
EX7 1t <2en/u;, n=1,2,.... Therefore, the first constraint in (5) is
satisfied if we take ¢ < yu,/2.

We now turn to the second constraint in (5). Denote

1
b, = Pv=1(Bn(Tn,n) - E/’LITn,n = bn)

et® — 1
et1E — o~ H1b,

et — 1



PROBABILITY BOUNDED DETECTION 1163

The sequence {q,,};_; is increasing. Note that

E(N-(v-1)IN=v) = i P,_(N—-(v—-1)=nIN=v)
n=1 :

o v+n
=1+ ) 1_[ q;
n=0 =V
> ) q;
n=0
1
=1 .
et — g~ mlb+(@—12]
- et — 1
1—e b
> —
M1
and that
NA(m+1) NAm
E| Y t- Y t|=Et, . l(N>2m+1)
i=1 i=1
= w(N =m + l)Eme+1,m+1
2¢
<P(N>m+1)—
1231
so that
NA(w-1) 2¢ v—1
(9) E, E t; < — EPm(NZn).
i=1 H1n=1

Hence, since P{(N >n)>1—a,
E XN ¢, EXNA Yt + E,(1(N 2 v)EL,t;

E,N ‘.’EW(N A(v—1) +E(LN=v)(N-(v-1)))
(2e/p) Y PAN = n) + (2/p)(b + (v — 1)e) PN > v)

= TP (N=n) + ((1—e *?)/ue) PN > v)
2¢ 2eb 2(v — 1)eP(N = v)/p,y
<—+ — +
P T R T P
2b 2(2 - a)

< + .
ST T (-
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Therefore, (5) will be satisfied if we take

Y
(10) FT 21— ) 122 —a) (1 - )

(Note that this also satisfies the previously derived condition ¢ < yu,/2.) Now

© v+n

E(N-(v-1IN=v)=1+ } [la

1—eme

Since (1 —e*)"! <1+ 1/x for positive x close enough to zero and since
b - xas a — 0, it follows from (10) that there exists 0 < ay < 1 such that if
a < a, then

E(N-(v-1)IN=>2v) < — + 1,

+
pry |1 —e™™®  py(1 - ag)

so that by the definition of
be b 2 - a,

b+ +
L—e ™ uy(1 - ag)

2
E(N-vIN=v) < —
K1Y

2 1
< Tlog(—) + C,
a

where C is an upper bound of

2
1Y

be ~H1® 2 - a

+
1—e 8 p(1—a)

over b’s for which o < a. O

4. Additional comments. In this paper, we dealt with the case of known
;. While one can come up with examples where this may be realistic (detec-
tion of the presence of a signal of known frequency from an airplane or a
submarine), the case usually encountered in practice is when w, is unknown.
The methods proposed in this paper depend heavily on the knowledge of ;.
The primary problem arising when w; is unknown is that of sampling design;
the expected sampling rate must be bounded under all w,. Nevertheless,
_extensions of ideas contained in this article enable a treatment of the unknown
wq case. Also, the whole problem may be thought of anew by reconsidering the
constraints (5). A possible alternative would be to require that X7 ¢, < yn,
n=12..., as. (P), v=1,2,...,0. These questions are under study by
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Benjamin Yakir in his Ph.D. dissertation and partial results have already been
obtained.

Acknowledgments. The authors would like to thank an Associate Editor
and the referee for their constructive criticism and comments.

REFERENCES

Assar, D. (1988). A dynamic sampling approach for detecting a change in distribution. Ann.
Statist. 16 236-253.

Assar, D. and Ritov, Y. (1989). Dynamic sampling procedures for detecting a change in the drift
of Brownian motion: A non-Bayesian model. Ann. Statist. 17 793-800.

LorDEN, G. (1971). Procedures for reacting to a change in distribution. Ann. Math. Statist. 42
1897-1908.

PoLLag, M. (1985). Optimal detection of a change in distribution. Ann. Statist. 13 206-227.

PoLrak, M. and SiEGMUND, D. (1975). Approximations to the expected sample size of certain
sequential tests. Ann. Statist. 3 1267-1282.

Porrak, M. and SieGmMUND, D. (1985). A diffusion process and its application to detecting a change
in the drift of Brownian motion. Biometrika 72 267-280.

DaAviD ASSAF BENJAMIN YAKIR

MosHE PoLLAK DEPARTMENT OF BIOSTATISTICS
Ya’acov Ritov UNIVERSITY ROCHESTER
DEPARTMENT OF STATISTICS RocHESTER, NEW YORK 14620

HeBREW UNIVERSITY
JERUSALEM



