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FIDUCIAL PREDICTION AND SEMI-BAYESIAN INFERENCE

By A. PuiLip DawiD aND JINGLONG WANG

University College London and East China Normal University

We investigate the problem of fiducial prediction for unobserved quan-
tities within the framework of the functional model described previously
by Dawid and Stone. It is supposed that these are related to a completely
unknown parameter by means of a regular functional model, and that the
observations are either given as known functions of the predictands, or are
themselves related to them by means of a functional model. We develop
algebraic conditions which allow the application of fiducial logic to the
prediction problem, and explore the consequences of such an application—
some of which appear unacceptable unless still stronger conditions are
imposed.

A reinterpretation of the fiducial prediction problem is given which can
be applied to yield an inferential distribution for the unknown parameter
in the presence of partial prior information, expressible as a functional
hypermodel for the parameter, governed by a completely unknown hyper-
parameter. This solution agrees with the fiducial distribution when the
hypermodel is vacuous and with the Bayes posterior distribution when the
hyperparameter is fully known, but allows in addition for intermediate
levels of partial prior knowledge.

1. Introduction. Dawid and Stone (1982) introduced the general concept
of a functional model, expressing an observable X as a function of an
unknown parameter ®, and an error variable E having a known distribution,
independent of the value of ®. This notion encompasses the structural model
of Fraser (1968), and is closely related to the pivotal model of Barnard (1980,
1985). Dawid and Stone (1982) showed how, under some additional algebraic
conditions, functional models (called in this case regular) can support a form
of fiducial inference about ©. However, no claim was made that this frame-
work is either necessary or sufficient for the drawing of valid fiducial infer-
ences. Indeed, it was shown that, without further conditions, an inconsistency
can arise between two possible methods, both apparently reasonable, of condi-
tioning in a fiducial distribution. The purpose of the analysis of Dawid and
Stone (1982) was not to recommend fiducial inference, but to explore its
properties, both good and bad, within the functional model framework.

In this paper we extend that exploratory analysis to cover fiducial predic-
tion of unobserved random quantities. Special cases of fiducial prediction have
previously been considered by Fisher [(1935), (1973), pages 117-122],
Kitagawa (1957) and Hora and Buehler (1967). Here we identify and analyse
the additional algebraic structure needed in order that predictive fiducial
inferences may be drawn within the functional framework, and we explore
.some of the properties of the resulting predictive distributions. Again, some of
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these are counterintuitive, suggesting the need for further restrictions on the
application of fiducial logic.

Section 2 gives a brief résumé of the underlying structure, as described by
Dawid and Stone (1982), with which we work, and Sections 3 and 4 develop
some necessary algebraic apparatus. In particular, in Section 3 we investigate
necessary and sufficient conditions for a function Y of X to be describable by a
regular functional model when X is; while in Section 4 we demonstrate how
any regular functional model can be decomposed into a ‘“‘basic’’ model and an
ancillary part.

In Section 5 we study fiducial prediction when the observed variable Y is a
function of the full predictand X. We also construct a joint fiducial distribu-
tion for (X, ®) given Y, and note that further conditioning of this distribution
on O can give an answer at variance with the sampling distributions for X
given Y and O, unless the functional model for Y has the special property of
being pivotal. In Section 6 we turn to the more general case of a stochastic
relationship of Y to X, itself described by means of a functional model. Then
Section 7 takes up the study of fiducial prediction for X based on Y in such a
model. Here there are seemingly two possible approaches, the ‘“global”’ and the
“stepwise,”’ which generally disagree; however, we argue that there is no
inconsistency here, since only the global approach takes into account all the
available information. Finally, Section 8 applies these results to develop a
methodology of ‘‘semi-Bayesian” inference when there is a hierarchical prior
structure. The Appendix collects together some purely algebraic proofs.

The main findings of our analysis are, in summary, that whilst the logic of
fiducial prediction within regular functional models possesses a good measure
of internal consistency, it can deliver answers at odds with sampling be-
haviour. Similar warnings, from a different standpoint, have been sounded by
Stone (1976).

2. Background. We recall the following background from Dawid and
Stone (1982), which should be consulted for further details. A functional
model relates three quantities: an observable, X, taking values in a measur-
able space (£, 3,); a parameter ©, with values in (0@, 3); and an error, E,
with values in (&, 2 ). We shall largely ignore the (nontrivial) technicalities
associated with measurability questions, and simply assume that all sets and
functions introduced are suitably measurable. We suppose that E is a random
variable with a specified distribution P over &, independent of the value of ©.
The relationship between these quantities is specified by a known surjective
function ® X & - &£, we do not introduce a special name or notation for this
function, but denote its value at (6, e) simply by e (or 6 e, 0 * e etc. when we
need to distinguish different functions). The functional model is then defined
by the relationship X = @F; it may be denoted by (X = OF, E ~ P) or just
(X =0E).

For any 0 € ©, we can identify # with the function & —» 2 given by
e — fe. It is clear that any value 6 for ® induces a probability distribution P,
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for X, viz. that of 0E when E ~ P, and hence that the functional model
induces a statistical model & = {P,: § € 0}.

This interpretation of ® as a set of transformations on & is fairly standard,
for example, in Fraser’s structural model [Fraser (1968)], where the set is
further required to form a transformation group. However, for our purposes it
will prove more helpful to identify each e € & with the function ® - 2 given
by 6 — fe, thus regarding & as a set of transformations (written on the right)
from O to 2.

We call x € X, e € & compatible if x = §e for some 0§ € @, and write &,
for the set of e € & compatible with x € X. The functional model is invertible
if, for any compatible pair (x, e), the solution 6 of x = fe is unique. We then
express this solution as 6 = xe™'. The model is simple if such a solution exists
for all x € X, e € &; or, more generally, partitionable if, for any x,,x, € &,
¢, and &, are either identical or disjoint. Partitionability is equivalent to the
existence of surjective functions a: 2> & and u: & —» &, such that x and e
are compatible if and only if a(x) = u(e). The functions a and u are deter-
mined up to an invertible transformation. We call A = a(X) = u(E) the
functional ancillary. Defining the canonical reduction a* by a*(x) = &,
partitionability thus holds if the range &/* of a* is a partition of &; and one
possible choice for the functional ancillary is then A* = a*(X), which we then
term the canonical ancillary.

A functional model which is both invertible and partitionable will be termed
regular; if, moreover, it is simple, it will be called basic. Partitionability is a
fundamental algebraic requirement on a model if the observation of a value x
for X is to be used to update the distribution of E, for then and only then has
the logical information obtained about E the form of an observed value [a(x)]
for a function of E [u(E)]. One can then argue that one should use, as the
appropriate inferential distribution of E after observing X = x, its conditional
distribution given the observed information #(E) = a(x). Invertibility ensures
that, given the data x, ® is a function of E. This function then induces, from
the inferential distribution of E, an inferential distribution—the fiducial
distribution—for @. Thus, in the regular case, the fiducial distribution of © is
that induced by the fiducial model ® = xE !, where now the distribution of
E is that calculated from its unconditional distribution P by conditioning on
the observed value a(x) of u(E). [For a basic model u(E) is trivial, and no
conditioning is needed.]

The logic of the above ‘fiducial inversion,” which is similar to that pro-
pounded by Fisher, has (to say the least) not met with universal acceptance.
The principal assumption to which objection can be made is that it is appropri-
ate to use, as an inferential distribution for E based on data X = x, its
conditional distribution given u(E) = a(x). While it is true that this informa-
tion exhausts all the logical knowledge of E conveyed by observing X = x, it
is not clear that no additional (perhaps probabilistic) information is conveyed.
For this reason, Fisher, Fraser and other proponents of such fiducial argu-
ments have been at pains to limit the applicability of fiducial logic to cases in
which there is, in some intuitive sense, ‘‘no prior information’’ about 0. Our

)
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attitude towards its applicability even in that case remains noncommittal,
beyond considering that the argument has enough prima facie appeal to make
it worthwhile to investigate its implications. These, in turn, may shed more
light on its acceptability. This is the programme initiated by Dawid and Stone
(1982), and continued here.

3. Regular contractions. In this section we consider algebraic condi-
tions under which the regularity of a functional model is preserved on replac-
ing the observable X by a function Y of X (so that fiducial inference for © is
still available if only Y is observed.) All proofs are confined to the Appendix.

Suppose then that we have a regular functional model (RFM) M;: (X =
®FE), with functional ancillary A = a(X) = u(E). Let k be a surjective func-
tion from 2" to some space %, and define a new operation * by 6 e = k(fe).
Let Y =k(X). Then Y = O * E. The new model M,: <Y=0=+E, E ~P) is
the contraction of M, defined by k. In general, M, need be neither invertible
nor partitionable. If it is both, so that M, is regular, we call it a regular
contraction (or a basic contraction if M, is basic).

Examples. For Examples 3.1 and 3.2, we take M, to be the RFM with
Z=&=R",n>1, 0=R, X=(X,,...,X,), E=(E,...,E,), and loca-
tion structure X, =0 + E;, i = 1,...,n. A possible choice for A is (X, —
X,..,X,-X)=(E,-E,.. ,E, — E).

ExampLE 3.1. Let 2'=[0,), Y = X7 X2, yielding reduction M,: (Y =
O+ E), where 0xe =Y" (0 +¢,)®=n(0 + &)+ s, with & = '_je,/n, s2 =
Y (e; — @)% Given y € %, e € &, there exists no value § € @ with y = e
if y < 52 just one such value if y = s2, and two distinct values if y > s2. In
particular, M, is not invertible. Since the condition that y and e be compatible
is that y > s2, and as y varies the sets {e: y > s2} do not constitute a partition,

M, is not partitionable.

ExampLE 3.2. Let 1 <m <n and take Y = (Y;,...,Y,,) with ¥, = X, /s.
Thus 6 e = (0 +e;)/s.: i = 1,..., m). (We should really remove from & the
set {e: e; = e, = -+ =e¢,}, and similarly for 2". With a continuous distribu-
tion for E, this is of no consequence.) Then, for y € Zandec &,y = 0*xe =
¥i—y,=(e; —e)/s,, i =2,..., m. Conversely, if this condition holds, y;, = y,
+(e; —e)/s, = (0, +e)/s,, i =1,...,m, where 6, = y;s, — e;, so that y =
0, * e. The condition for y and e to be compatible is thus that y, — y; = (e; —
e)/s,, 1 =2,...,m, which shows that M, is partitionable. If m = 1, M, is
simple.) Furthermore, 6, e = 0,xe = (6, + e,)/s, = (6, + e,)/s, = 0, = 0,,
so that M, is invertible. Hence M, is regular (basic if m = 1). Note that M,
is net a “location model.”

We shall now investigate when a contraction M, of M,, defined by a
function k: 2°— %/, will be invertible, partitionable or simple.
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THEOREM 3.1. M, is invertible if and only if
{a(x;) = a(x;) and k(x;) = k(x3)} = x;1 = %
[In this case we call the functions a(-) and k(-) transverse.]

Proor. See the Appendix.

In order to investigate the partitionability of M,, we need some general
notation. For surjective functions f: - & and g: /> &, write [ < g if
there exists a function ¢: & — Z such that f= ¢o g [ie, f(s) = ¢(g(s)), all
s € 7). In this case f is a reduction of g. The function ¢ is uniquely
determined. We write ¢ = fo g™ 1.

Given any f: #— % and g: ./ — &, there exists a surjective function A:

- # with the following properties:

G h<f.
Gi) h <g.
(i) If ¥ <fand k' < g, then b’ < h.

We denote such a function & by fA g. Then fA g is unique up to an
invertible transformation. If all spaces and functions are measurable, then
Siag = 2N 2, where 3, denotes the o-field in ./ generated by f, and so
on.

Returning to the problem at hand, define b: 2> #Z by b=a Ak and let
6 =bok ™, y=boa'. Then B=>5(X) is the maximal random variable
which is determined both by Y [B = ¢(Y)] and by A [B = y(A)]. B contains
the “information in common” between Y and A. It is clear that {a(x):
k(x) = y} C {a(x): b(x) = ¢(y)} = {a: Y(a) = ¢(y)}. If, for each y € Z, these
sets are identical, we shall say that the functions a(-) and k(-) permute. We
note, without proof, that this property is logically equivalent to any of the
following, which may be easier to check in applications.

(a) There exists a surjective function f: 2" — # such that f<a, f<k,
and, for all # € #, {(a(x), k(x)): f(x) = h} is a product set.

(b) There exists f as in (a) and a function g: & — &, such that {a(x):
k(x) =y} = {a(x): f(x) =g(y),al y e Z.

(¢) Whenever a(x) = a(z) and k(x") = k(2), x, %',z € Z, there exists w €
Z such that a(x’) = a(w) and k(x) = k(w).

If (a) or (b) hold, we may further deduce that f = b; and then, in (b), that
g = ¢. Note that it follows from (a) that the permutation relation is in fact
symmetric as between the functions a and k. At a purely formal level, the
relation shares many of the abstract properties of probabilistic conditional
independence [Dawid (1979)].

THEOREM 3.2. M, is partitionable if and only if a and k permute. In that
case the functional ancillary in M, may be taken to be B = o (Y).

Proor. See the Appendix.
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CoOROLLARY 3.2. M, is simple if and only if the range of (a(-), k(%)) is
& X % [that is, the functions a(-) and k(-) are “variation-independent’’].

To summarise, we have shown that M, is a regular contraction of a RFM
M, if and only if the functions a(-) and k() are transverse and permute. We
shall then say that a(-) and k() communicate. In that case the functional
ancillary in M, is a reduction of that in M, (and is, in fact, the maximal
reduction of Y having this property). We remark that these conditions involve
the specific form of the functional model M; only through the implied specifi-
cation for its functional ancillary a.

ExampLE 3.3. We reanalyse Example 3.1 using the above conditions. We

have k(x) =X7 x% a(x)=(xy —x,...,%, — x,). The two distinct values
x=1(1,0,...,0)and x' =1 - 2/n,-2/n,..., —2/n) satisfy k(x) = k(x') =
1,a(x) =a(x’)=(-1,—-1,..., —1). Thus a and % are not transverse, and so

M, is not invertible.

It is easy to see that a A & is trivial, so that M, will be partitionable if and
only if, for all y, {(x; —x;: j=2,...,n): T}_;x? =y} = R*"'. But this is
clearly false, since (a;: j = 2,...,n) is in this set if and only if

n
j=1

(defining a; = 0and @, = n " 'I}a ;)- Alternatively, we can apply condition (c)
with say x = (3,4,0,...,0), x' = (5, —6,2,...,2) and z = (5,6,2,...,2), and
note that if a(w) = a(x’) =(—-11,-3,..., —3) and k(w) = k(x) = 25, then
25 > w? + (w; — 11)%, which cannot hold for any w, € R.

The regularity of M, in Example 3.2 may similarly be confirmed using
Theorems 3.1 and 3.2.

4. Decomposition of a regular functional model. Let M;: (X = OF)
be a RFM, with functional ancillary A = a(X) = u(E). Let k: 2 - % define a
contraction M, (Y =0+ E), with Y = k(X), 6 +e = k(fe). Introduce the
mapping m: 2 - 2 X & defined as m(-) = k() X a(-), so that m(x) =
(k(x), a(x)).

THEOREM 4.1. M, is a basic contraction of M, if and only if m is a
bijection.

Proor. The proof follows from Theorem 3.1 and Corollary 3.2. O

" It follows that, given any basic contraction M,: (Y = @ * E) of M;, we can
reexpress M, in the form

(4.1) M:((Y,A) = (0% E,u(E)))
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and then, for each 6, 6 * E and u(E) are variation independent. Furthermore,
if (Z = @ E) is any other basic contraction of M, then Z = g(Y, A) where,
for any value a of A, the function g(-,a): > Z isa bijection.

Recasting any RFM M, in the form (4.1), using a basic contraction, enables
us to solve for ® = Y+ E~! for any values of Y and E, without worrying
about compatibility restrictions. Fiducial inference then follows by condition-
ing E on u(E) = a(x).

If the full model M, is pivotal, then E is determined by (Y, 0, A). Then,
for each value a of A, with E ranging over {e: u(e) = a}, the reduced model
M, is pivotal; and conversely. A special case of this arises when there exists a
pivotal basic contraction of the form (Y = @ U), with U a function of E. The
bijective correspondence y =6 cu (' € © fixed) then establishes that U is
variation independent of A. In this case M; may be ‘termed strongly pivotal.

ExampLE 4.1. Take m = 1 in Example 3.2, yielding the contraction Mj:
(Y =(® + E,)/sg), where Y = X,/sx. We thus have k(x) =x,/sx, a(x) =
(x5 — Xy, ..., %, — X1). Since M, is basic, m(-) = k(+) X a(-) is a bijection. The
(pivotal) model M, is thus equivalent to

M (X /sx; Xy — Xy, .., X, — X))
=((®+E,))/sg;E;—Ey,...,E, - E))).

Fiducial inference for ®, based on data x, is now obtainable by solving for ®
using M}, thus expressing © = (x,/s,)sy — Ey; and assigning to E; its distri-
bution conditioned on (E, — Ey, ..., E, — E}) = (x3 — xy,...,%, — x,). Under
this condition, sy = s, is fixed, and M} becomes pivotal. The fiducial model
for ® thus becomes identical with that based on the alternative pivotal
contraction (X, = ® + E;)—whose existence shows M, to be strongly piv-
otal. Yet another pivotal reduction which might be used is (X = @ + E).

In order to apply the above method, we must first construct a basic
contraction. By Theorem 4.1, this involves finding a function k: -
which is complementary to the functional ancillary a: A — & in the sense
that the map £(-) X a(+) is a bijection. This may be achieved as follows.

Choose a to be the canonical ancillary a*, so that a*(x) = &,, and &* isa
partition of &. For each value a of o, select a representative value z, € a.
Thus @ = {z,; @ € &*} C & is a cross-section for the partition &/*. Since x
and z,x,, are compatible and M, is invertible, there exists a unique n(x) € @
with x = 7(x)2gx . Define m(x) = (n(x), a*(x)). Then the map m: Z"— @ X
& is clearly a bijection, and hence n: 2" — © defines a basic contraction of
M,.

5. Fiducial prediction from a regular contraction. Let M,: (Y =
© + E) be a regular contraction of the RFM M;: (X = OF), defined by k:
2" — %. Suppose that Y = k(X) is observed, and we require predictive infer-
ence about X. In this section we shall attempt to apply fiducial logic to this
problem.
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Let A = a(X) = u(E)and B = ¢(Y) = v(E) be the functional ancillaries in
M, and M,, respectively. We know from Section 3 that B is a function of A:
B = ¢(A). If we now observe Y =y, we learn (A) = ¢(y). Moreover, since B
is the maximal function of A observable in M,, we can argue that this is the
full extent of the information about A obtained by learning Y = y—this point
is considered further below. This then suggests that it is now appropriate to
assign to A, as an inferential distribution, its distribution conditioned on
#(A) = ¢(y). But, since M, is invertible, Theorem 3.1 ensures that X is
completely determined by (Y, A). Thus, fixing Y =y and regarding A as
having its conditional distribution given ¢(A) = ¢(y), we obtain an induced
fiducial predictive distribution for X.

We remark that the above construction does not depend on the full struc-
ture of the model M,. All we require is specification of a functional ancillary a
and of a distribution for A = a(X)—what may be termed a “partial proba-
bilistic model” for X. We can then make fiducial predictions for X as above, on
observing Y = k£(X), whenever £ communicates with a. While it is debatable
whether “fiducial logic” should be regarded as sanctioning predictive infer-
ences given only this minimal structure, the generality of this approach is
appealing.

Returning to the case that M, is given as a full RFM, we can go on to
construct a joint fiducial distribution for (@, X). Since ® =Y+ E -1 and
X=0E !, 0 and X are jointly determined by (Y, E). Again, we can argue
that the relevant distribution to assign to E, after observing Y =y, is that
conditional on v(E) = ¢(y), and this specification, together with the fixing of
Y at y, then induces a joint distribution for (0, X). It is clear that the margins
of this distribution yield the ordinary fiducial distribution for ® and the above
predictive fiducial distribution for X, each based on data Y = y. It may also be
verified that if we construct, from the joint fiducial distribution, the condi-
tional distribution of ® given X = x, we recover the fiducial distribution of ©
based on X = x.

It should, however, be noted that the conditional distribution of X given
® = 60, in this joint fiducial distribution based on data Y =y, need not coincide
with its sampling counterpart, viz. the conditional distribution of X given
Y = y, calculated from the sampling distribution of X specified by © = 6. The
distribution of E used in the former case is that conditional on (v(E) = ¢(y),
y* E~! = 6); and in the latter is that conditional on (v(E) = ¢{y), 6 * E = y).
That these are typically different is an instance of the celebrated ‘‘Borel
paradox.” The logical content is the same for both conditions, but they are
embedded in different partitions, which can induce different conditional distri-
butions: cf. Section 6 of Dawid and Stone (1982), from which it may be
deduced that these two answers will coincide if the model M,: (Y = @ % E) is
pivotal.

ExaMPLE 5.1. Again consider Example 3.2. We have A = (X, — X;: i =
2,...,n)=(E,—E;: i=2,...,n), B=(Y,-Y;: i=2,...,m)=(E; -
E)/sg: i =2,...,m) (trivial if m = 1). Note also that B = (A,/s,: i =
2,...,m). On observing Y = y, we should thus regard the appropriate distri-
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bution of E, or of A, as that obtained by conditioning (if m > 1) on (E; —
E)/sg=y—y,i=2,...,m,oron A;/sy=y,—y,i=2,...,m. We have
also learned that X,/sy =y;, i = 1,..., m. Given this information, and A =
(X, - X;: i=2,...,n), we have sy =s,, and can thus deduce X; =y,s,,
whence X, = y,5, + A;, i > 1—hence determining X as a function of A when
Y =y is known. (Note that other formulae are available to express
this solution for X. In particular, we must have X; =y;s, for any i <m.
However, these formulae must all give identical values for X when A is
constrained to satisfy A,/s, =y; — y1, ¢ = 2,..., m, as holds here as a conse-
quence of the conditioning employed.)

The fiducial predictive distribution of X given Y = y is thus that induced by
expressing X; = y;84, X; = X; + A; =y;5, + A;, i > 1, where A is assigned
its distribution conditioned on A;/s, =y; — y;, i = 2,..., m. A joint fiducial
distribution of (X, ®) is produced by appending the equation ® = y,;s5 — E;
and by reexpressing the condition as (E;, — E)/sg=y; =y, i =2,...,m,
thus extending its force to the whole of E. (Again, other formulae for © are
available, but the conditioning renders them all equivalent.)

Conditioning further on X = x in this joint distribution is equivalent to an
overall conditioning of E on{(E; — E{)/sg =y; —Yp i =2,...,m; Sg = X1/¥1;
and E, - E, = x; — x;, i = 2,...,n}. These equations are mutually consistent
when y, = x;/s,, i = 2,..., m, viz. when x is still a possible value of X after
observing Y = y; and the above conditioning is then equivalent to conditioning
just on E; — E; = x; — xy, i = 2,...,n. The consequent distribution for O is
then just its fiducial distribution based on X = x.

Finally, note that, in the joint fiducial distribution, the conditional distribu-
tion of X given ® = 0 is obtained by expressing X; = 6 + E;, and assigning to
E its distribution conditioned on (E; — E,)/sg =y; — ¥, 1 = 2,...,m, and
y.5g — E; = 6. In the sampling distribution with ® =6, X; =0 + E,, Y, =
(6 + E,)/sp, so the conditional sampling distribution of X given Y =y in-
volves conditioning on (0 + E,)/sg=y;, i=1,...,m, or, equivalently, on
(E,—E)/sg=y;—y,i=2,...,m,and (E; + 0)/sg = y;. Although y,s5 —
E, = 6 holds if and only if (E; + 6)/sz = y;, conditioning on the value 6 for
y.sg — E, is quite different from conditioning on the value y, for (E, + 0)/sg,
so that the two ways of constructing a distribution for X given (O, Y) will not
agree. Indeed, by changing variables it may readily be shown that the sampling
density for X, given Y = y, when ® = 0, is proportional to |x,|f(x; — 6, x1/y1),
where f(e,s) is the joint density function of (E,, sz) conditional on (E;, -
E)/sg=7Y;— ¥, i = 2,...,m; while the predictive fiducial density for X;
given ® = 0, based on data Y =y, is proportional to f(x; — 6, x,/y).

Finally in this section, we reconsider the claim that the only information
about A [or E], obtained by observing Y = y, is that ¢(A) = (Y) [or v(E) =
#(Y)]. Let My: (Z = @< E) be a basic contraction of M,, shown to exist in
Section 4. Theorem 4.1 shows that we can reexpress Y as (Z, B), and thus M,
as M}: {(Z, B) = (@ E,v(E))). On learning Y =y, or, equivalently, (Z =z,
B =b), we know (i) v(E) = b and (ii) ® - E = z. However, since the model M,
is basic, any value of E is compatible with (i), for some value 6 of 0. The
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same logic as governs ordinary fiducial logic now holds that, if © is initially
completely unknown, no useful information about E can be extracted from (ii),
and hence that the condition v(E) = b is the full extent of the information
gained about E.

6. Chainable RFMs. In this section we lay the algebraic groundwork for
an extension of fiducial prediction to cases in which the observed Y is not a
function of the predictand X. All proofs are confined to the Appendix.

Suppose then that, in addition to the functional model M;: (X = OE), a
RFM with functional ancillary A = a(X) = u(E), we have another functional
model M,: (Y = X o F') (not necessarily regular) relating Y to X.

Note that, in M,, we are taking the “parameter’”’ to be X, so that M, is a
model for the structure of Y, conditional on the value of X. We regard (E, F)
as logically independent, with a joint distribution. In most cases of interest, E
and F will be probabilistically independent. Then the model M, for Y given X
is unaffected by further (exact or probabilistic) information about ® in M,
and the sequence ® — X — Y is a (functional) Markov chain. In particular, in
the model for (X,Y) given ©, X is sufficient.

As an example of this structure, we might have a model in which X and Y
are sufficient statistics based on samples of size N and n, N > n, respectively,
where we require predictive inferences for X after observing Y; and functional
models are used to express both the sampling distributions for X given ® and
the conditional distributions for Y given X (which will not involve ®). Direct
specification of these conditional distributions lies at the heart of the theory of
extreme-point modelling [Lauritzen (1982)], and the present approach can
indeed be used to construct and analyse a functional-model analogue of that
theory, although we shall not do so here. As another example, X might
represent a parameter of the distribution of Y, so that M, is an ordinary
parametric functional model, while M, describes a partial prior probability
structure for this parameter, in terms of a ‘‘hyper-parameter”’ ®. Then we
would wish to draw “predictive” inference about X based on observation of
Y, taking due account of the prior structure. We explore this interpretation
further in Section 8.

The models M, and M, may be compounded to produce

M;:(Y=0x(E,F)), wheref+(e, )= (0e)of.

M describes the “sampling model” for Y as governed by the parameter 0.
If it is regular, we can use it to construct fiducial inferences for ®—and, as we
shall see in Section 7, fiducial predictions for X—based on the observation Y.
In this case we shall call M; and M, chainable. We now investigate this
property.

.~ We first note that M; is a contraction of the regular model

My:{((X,8)=00® (E,F)),
where © ® (E, F) = (OE, F), and the contraction is effected by the function
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(x,8) = x o s. The functional ancillary in M, is given by the function (x, s) —
(a(x), s). The following is then immediate from Theorem 3.1.

THEOREM 6.1. M, is invertible if and only if, for any f,

a(x) =a(x)| _
xp° f=x3°f ! z

Note that this condition may be restated: “For each f, the functions a(-)
and k() are transverse,” where & (x) = x e f.

THEOREM 6.2. Mj is partitionable if and only if, for each f, the contraction
M; of M, defined by k is partitionable, and there exists a function c: & — %
which serves as a functional ancillary in each M. In this case C = c(Y) is the
functional ancillary in M.

Proor. See the Appendix.
COROLLARY 6.2. M, is simple if and only if each M, is simple.

To summarize, we have shown that M, and M, are chainable if and only if,
for each f, the mapping x — x o f defines a regular contraction M, of M,
with a common functional ancillary in every M, which then serves as the
functional ancillary in M.

ExaMpLE 6.1. Take @ = R!, 2= =& =R? =R XRY, M
(X, X,)=(0© + E,® + Ey)) and My (Y, Y, = (X, + F)/Fp,(X; +
F))/F,)). Then we obtain My ((Y,,Y,) = (@ + E, + F))/F5,(0 + E, +
F))/Fy)y and M;: {((Y,,Y,) = (® + E| + f1)/f5,(® + E; + f1/f3)). We note
that M, is regular, with functional ancillary A = X, — X, = E; — E,; and that
M, is basic. For fixed f, M, is isomorphic to M;, and hence is a regular
contraction. The functional ancillary in M/ can be taken as Y; — Y, = (E, -
E,)/f,, the same (as a function of Y) for all f€ &. We deduce that M, and
M, are chainable, and thus M is regular, with functional ancillary Y, — Y, =
(E, — E,)/F,—as indeed is readily apparent.

7. Inference and prediction in chained models. Let M; and M, be
chainable models, as in Section 6, with composition Mj3;. We shall assume
henceforth that E and F are independent.

We can again regard M, with functional ancillary C = ¢(Y) = w(E, F) say,
as the regular contraction Y = X o S of the RFM My: ((X,S) = ® ® (E, F)).
If we now observe Y =y, we can thus make fiducial prediction for (X, S )
jointly, as in Section 5, and then marginalize to obtain a fiducial predictive
distribution for X based on Y. Essentially, we express X as a function of Y, E
and F, and then use the observation both to fix Y and to update the joint
distribution of (E, F) by conditioning on w(E, F) = ¢ = c¢(y), the observed
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value of C. We shall call this method the ‘“global”’ approach. We can also apply
the same approach to yield a fiducial distribution for ©, or for (0, X) jointly.
In all cases the relevant distribution for (E, F) is obtained by conditioning on
w(E, F) =c.

An alternative approach is possible when M, is also a RFM, with functional
ancillary B = b(Y) = v(F') say. We can first concentrate on M, to obtain a
fiducial distribution for its ‘“parameter”” X, based on observing Y =y. Then,
for each value of x, we can use M, alone to obtain a fiducial distribution for @
given X = x. The Markov property of the original chain suggests that this may
likewise be taken as the relevant fiducial distribution for ® given both X = x
and Y = y. We can then combine these two ingredients—a fiducial distribution
for X and a family of fiducial conditional distributions for ® given X—into a
joint “stepwise” fiducial distribution for (0, X) given Y = y.

We now investigate the relationships between these two approaches when
M, is a RFM. The global approach provides directly a joint inferential distribu-
tion for (E, F)—that produced by conditioning on w(E, F) = c. This in turn
induces the joint inferential distribution for X =y F"'and ® = (y e F"DE~ ..
We can then consider this as decomposed, by conditioning, into a marginal
fiducial predictive distribution of X, and conditional fiducial distributions for
0, given X. The stepwise approach, on the other hand, supplies each of these
components directly. We shall compare the corresponding components of this
decomposition, as produced by the two approaches.

THEOREM 7.1. The conditional fiducial distributions for © given X are the
same in both the global and the stepwise approaches.

ProoF. Consider forming, in the global fiducial distribution, the condi-
tional distribution for ©, given X = x. (Of course, we must require that X = x
be compatible in M, with the observation Y =y, so that, for some f& %,
y =xo f—and thus x =yo f 1) This is the distribution of xE~', given
yo F~1 = x, as calculated from the joint distribution of (E, F') already condi-
tioned on w(E, F) = c. We thus need the distribution of E, calculated by
conditioning on both yo F~! = x and w(E, F) = c in the original joint distri-
bution of (E, F). Now note that w(e, f) = c¢(x > f) if and only if, for some 6,
xo f=(6e)o f which, since M, is invertible, holds if and only if x = fe for
some 0, or, equivalently, a(x) = u(e). When y = x o f, we thus have w(e, f) =
c(y) if and only if a(x) = u(e). So the conditions “ye° f~' = x and w(e, f) =
c(y)” are together equivalent to “ye f~' = x and u(e) = a(x).” Hence the
desired conditional fiducial distribution for ® given X = x is, equivalently,
obtained from the representation ® = xE~! by assigning to E its original
distribution conditioned on y° F~! =x and u(E) = a(x). Since initially E
and F are independent, this in turn is equivalent to conditioning only on
u(E) = a(x). But this is exactly the prescription delivered by the stepwise
approach for inference about ©, given X = x. (Note that this proof still works
if M, is invertible, but not partitionable.) O
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When we turn to the marginal fiducial distribution for X, however, the two
approaches will generally disagree. Each expresses X =y F~!, but whereas
the stepwise approach uses the distribution of F conditioned on v(F ) = b(y),
the global approach conditions on w(E, F') = c(y) in the joint distribution.

We may note that B = b(Y) is a function of C = ¢(Y) [and thus v(F) is the
same function of w(E, F)]. For c(y,) = c(y,) = there exist 6,0, € ® and
(e, f) satisfying w(e, f) = c(y,) = c(y,), such that y, = (6:e)° f and y; =
(0,e)° f. In particular, y; = x,° f, 5, = Xz f (with x; = 0;e, x, = 05e), 80
that b(yl) = u( f) = b(yz)

We thus see that the global approach generally involves conditioning on
additional information, over and above that of the stepwise approach, and so
the two approaches generally produce different fiducial distributions for X,
and hence for O.

We again remark that the conditional distribution of X given © = 6 in the
fiducial distribution given Y = y (whether global or stepwise) need not coincide
with its sampling counterpart, the conditional distribution of X given Y =y,
when ® = 6. However, if the model My: (Y = © *(E, F)) is pivotal, then these
will agree if we use the global approach.

ExampLE 7.1. Take M, and M, as in Example 6.1. The global predictive
distribution for X, based on Y =y, is obtained from X, =y, F, — F}, X; =
y,F, — F, by conditioning (F;, F,) on the ancillary information in Mj, namely
(E, — E;)/F;, = y; — y5, in the joint distribution of (E,,E,, F,, F,). Since M,
is basic, the stepwise predictive distribution of X involves no conditioning at
all. And since, even with (F,, F,) independent of (E,, E;), (Fy, F,) will not
generally be independent of (E; — E,)/F,, these two results will disagree.

The global conditional distribution for ® given X =x is obtained from
® = x, — E, by conditioning E on (E;, — E;)/F, = y1 = ys, y1F2 — F1 =%,
and y,F, — F; = x,. These equations are equivalent to F; = (y125 — %192)/
(yy — ¥1), Fy = (x5 —2,)/(y, — ) and E; — E; = x; — x5. By independence,
we thus need only condition on E, — E, = x; — x,, exactly as for the stepwise
approach.

The global fiducial conditional distribution for X given ® = 6, based on data
Y =y, is obtained by expressing X, =60+ E; and conditioning on (E; —
E,)/F, =y, —y, and y,F, — E; — F; = 6. The sampling counterpart of this
distribution would involve conditioning on (E, — E;)/F, =y, — ¥y and (0 +
E, + F))/F, =y,. Because these logically equivalent conditions involve differ-
ent partitions, the results will generally disagree.

One case in which the two approaches yield identical fiducial predictive
distributions for X is when M, is simple, since then C, and hence also B, is
trivial, and no conditioning is required in either approach. By Corollary 6.2
this is the case if and only if each M, is simple.

ExaMpLE 7.2. Take 2= % = © = R, and suppose that each of the models
M,: {X = OE) and M,: (Y = X F) is invertible and monotone [Dawid and
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Stone (1982), subsection 4.2], so that, for any e € &, f€ %, 0, < 0, < 6,e <
e, and x; <x, © x;° f<xy° f. It follows that My (Y =0x*(E, F)) is
likewise monotone, and all three models are basic.

Let Fi(-) be the distribution function for X given ® = 6 implied by M,
G,(*) that for Y given X = x implied by M,, and H,(-) that for Y given ® = 6
implied by M. Then

(1.1) Hy(y) = [G.(y) dFy(x).

By Lemma 4.1 of Dawid and Stone (1982), the global fiducial distribution I,
for © given Y = y satisfies
(7.2) I,(0 > 0) = Hy(y).

Similarly, the stepwise approach delivers the fiducial distributions [, for X
given Y =y and &, for ® given X = x, where

(7.3) I(X=2zx) = G(y)
and
(7.4) D (0 > 0) = Fy(x).

The implied stepwise distribution IT), for ® given Y =y then satisfies

I,(® > ) = —fcpx(@ > 6) dI,(X > x)
(7.5)
= — [Fy(x) d.G.(9).
Since Mj is basic, however, II, and IT), must agree. This implies that
(7.6) Hy(y) = - [Fy(x) d.G.(y),

as indeed follows from (7.1) by partial integration (under boundary conditions
which are satisfied in the present context).

Note that the exact functional structure of the component monotone models
is irrelevant. Whenever the families {F;: 6§ € @} and {(G,: x € 2} are Fisher-
ian [see Example 2.1 of Dawid and Stone (1982)], so is {H,: § € @}, and the
fiducial distributions implied by any underlying monotone models are just
those produced by Fisher’s technique [Fisher (1930)] based on the probability
integral transform. We have thus shown that inference in a chain of such
models is the same, whether performed globally or step by step. (Note,
however, that the fiducial and sampling distributions for X given ® and Y
need not agree.)

«When M; is not basic, we have the following result.

THEOREM 7.2. If w(E, F) is expressible in the form k(E,v(F)), then the
global and stepwise approaches will yield the same fiducial distribution for X.
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Proor. Since E and F are independent, they remain so conditional on
u(F) = v. In this conditional distribution, w(E, F) = k(E, v(F)) may be re-
placed by k(E,v), a function of E alone, and is thus independent of F. We
have thus shown that w(E, F) and F are independent conditional on v(F), so
that the conditional distribution of F given (v(F), w(E, F)) is the same as that
given uv(F) alone. But v(F) is a reduction of w(E, F), so that the former
conditioning is just on w(E, F), as required for stepwise analysis; while the
latter is that appropriate for global analysis. O

It does not appear easy to reexpress the condition of Theorem 7.2 simply in
terms of the structure of the constituent functional models. Note that w(E, F)
is always a reduction of («(E), F), so that the condition is equivalent to being
able to express the ancillary C = w(E, F)in Mjasa function of the ancillaries
A=u(E)in M, and B = u(F) in M,.

Which approach? We have seen that, when we have chainable RFMs M;:
(X =0E) and M,: (Y =XoF), the global and stepwise approaches will
generally deliver different fiducial predictive distributions for X, given data
Y = y. Which (if either) should be preferred? Recall that the logic underlying
fiducial inference is only supposed to apply when, initially, ‘“nothing is known”’
about the parameter. The stepwise approach uses the fiducial method on M,
to infer about its “parameter’” X from Y =y. However, it is not true that
initially nothing is known about X. For instance, if M, imposes X, =0 XE,
i = 1,2, then, even when nothing is known about ®, we do have a fully
specified distribution for X,/X,, so that it is plainly wrong to assert that
nothing is known about X. Consequently, we argue that the stepwise ap-
proach, tempting though it is by virtue of its simplicity, is incorrect. The global
approach, which conditions on additional information, produces the correct
fiducial distributions—so long, at any rate, as we have no further information
about the parameter ® of M, but can regard that as initially “completely
unknown.”

The considerations of Sections 3 and 5 through 7 may be extended to the
case that we have a sequence of more than two models, suitably related by
contraction, or by ““single-step”” functional models.

8. Bayesian and semi-Bayesian inference. In this section we investi-
gate connections between Bayesian and fiducial inference and a compromise
between them. The idea of such a common framework has been promoted by
Barnard (1985).

Consider first the trivial functional model M;: (X = E), with effectively a
one-point parameter space; together with an invertible functional model M,:
(Y=X-oF), with E and F independent. Their composition is Mz (Y =

JE o F), and both M, and M, are trivially regular, with respective functional
ancillaries A =X =E and C =Y = E-F. On observing Y =y, the fiducial
predictive distribution for X = E is thus obtained by conditioningon E° F =y,
viz. on Y = y. In other words, we simply condition the original (known) joint
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distribution of (X, Y) on Y = y. In this degenerate case, fiducial inference thus
agrees (fortunately!) with the standard prescriptions of probability theory.

Now consider an arbitrary RFM (X = @FE). In the absence of any prior
information about ®, we should use the fiducial distribution of ® to make
inference from data X = x.

However, suppose instead that we have a known prior distribution II for ©.
This can be expressed in the form of a trivial functional model (® = F,
F ~ TI); moreover, since it is implicit in any functional model (X = OF) that
the distribution of E is the same for all values of ®, and here ® = F, we have
E and F independent. The argument above now applies to yield, as the
relevant fiducial distribution for ® based on data X = x, that calculated by
conditioning on X = x in the induced joint distribution for (8, X). In other
words, in the presence of a fully specified prior distribution, fiducial inference
is the same as Bayesian inference.

The above cases—no knowledge of ® and a fully specified prior distribution
for ®—are just the two extremes of a range of possibilities. More generally, we
could have partial prior information about 0, specified in terms of a functional
model (® = Ao F'), where the hyper-parameter A is completely unknown
(alternatively, this itself could be just the first link in a chain of models
constituting a hierarchical structure for ®). The techniques of Section 7 can
then be used to derive the fiducial distribution of ® relevant for the specific
degree of knowledge implicit in such structuring.

ExampLE 8.1. Let 2= @ = & = R", with the sampling model embodied in
M;: (X,;=0,+E;, i=1,...,n, (E) ~NIDQ, 1)). Thus (X;) ~ NID(6,, 1).
We consider inference for ® based on X =x, in various states of prior
information about ©.

(i) No prior information. The appropriate inferential distribution is just
the fiducial distribution constructed from M;. Since M, is simple, this yields
©, = x, — E; with (8,) ~ NID(x;,1). This happens to agree with the formal
Bayesian posterior derived from a uniform prior for ©.

(ii) Full prior information. Suppose, for example, (®;) ~ NID(A, 1), with A

known. We can express this as

(8.1) , M, ,:(®,=A + F,, (F;) ~ NID(0,1)).

The compound model for X is then

(8.2) M ,:{ X; = A + U, (U;) ~ NID(0,2),

where U, = E; + F,. This is trivially regular, with functional ancillary U = (U;:
i=1,...,n) (recall that A is known). Consequently, the relevant inferential

distribution conditions E on E; + F. = x; — A, i = 1,...,n, which, with (E,)
and (F,) all initially NID(0, 1), produces (E;) ~ NID(3(x; — A), 1). Then O, =
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x; — E; yields (®,) ~ NID(:(x; + A), 3)—identical with the posterior distribu-
tion of O for the specified prior distribution.
(iii) Partial prior information. Now suppose (8.1) is replaced by

(8.3) M,:(®;, = A + F,, (F;) ~ NID(0,1)),
with A completely unknown. The compound model is
(8.4) My:(X; = A + U, (U;) ~ NID(0,2)).

This is again regular, but now the functional ancillary can be taken as
X, -X:i=1,...,n)=(U, - U:i=1,...,n)(X = L' X,/n, etc.). We must
therefore condition on (U, — U) = (x; — %),i=1,...,n. Let V.= E, — F,. We
have ©, = XX, +X) - iU-V, A=X-T, with U~ N(0,2/n), (V,)~
NID(0, 2), independently of each other and of (U, — U: i = 1,...,n). Thus the
fiducial marginal distribution of A is N(x,2/n), and the fiducial conditional
distribution of ® given A = A is (®;,) ~ NID(3(x; + A), 3), this latter agreeing
with case (ii) above because the model Mj is pivotal. These inferential distri-
butions are the same as formal Bayes posterior distributions based on the
improper hierarchical prior: (,)|A ~ NID(A, 1), A uniform.

Note that, if n = 1, both cases (i) and (iii) yield the same distribution. For
data x from the model (X =0 + E, E ~ N(0, 1)), inference about ® is the
same whether 0 is regarded as completely unknown or structured by (® =
A+ F, F ~N(,1)), with A completely unknown.

ExaMpLE 8.2. Let 2= 0 = R?% &= R! X R*, with the sampling model
expressed as M;: (X, = (O, + E))/E,, i = 1,2).

(1) No prior information. Since M, is basic, the relevant inferential distri-
bution for ® based on X = x has 0, = x; E, — E,, with (E,, E,) assigned its
initial distribution. Expressing E; = (0, X, — 0,X,)/(X; — X,), E, = (0, —
0,)/(X, — X,), we find ey, e,)/d(x,, x5) = (6, — 0,)?/(x; — x,)® = J}, say,
and d(e,, e5)/3(6,,0,) = 1/(x; — x5) = J,, say. Since the sampling density is
f(x16) = fz(e)lJ,| and the fiducial density is 7(8|x) = fz(e)lJ,|, where f5 is
the unconditional density of E, we find that this fiducial solution agrees with
the formal Bayes posterior based on the improper prior density 7(6;,6,) o
(0, — 6,)72

(ii) Partial prior information. Now take the prior knowledge about ® to be
structured as M,: (@ = A + F,, i = 1,2), with the distribution of (Fy, F,)
specified but A completely unknown. We obtain the compound model

M;:(X,=(A+F, +E)/E,,i=1,2).

This is again regular, with functional ancillary X, — X, = (F, — F,)/E,. The
relevant fiducial distribution for ® is thus obtained by conditioning on (F; —
F,)/E, = x;, — x,, yielding a conditional density for (E,, E,) proportional to
leylfz(e1, €5). A matching improper prior density for ©® is now (6, 8,)
|6, — 6,] . Similarly, the fiducial density for A is the Bayes posterior, based
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on the sampling model for X given A, and an improper uniform prior density
for A. However, the joint fiducial density for (A,®,,®,) is the posterior
obtained from the prior m(6;, 85, A) o 10, — 8, " 'fx(8; — A, 0, — A), fr being
the density for (Fy, F,). If we had, instead, started with a known value A = A,
the correct analysis would have been the fully Bayesian one obtained using the
implied prior density fz(8; — A, 8, — A). Thus in this case the effect of incorpo-
rating the information “A = A” depends on whether this is done before or
after observing the data.

In the above examples, all the fiducial distributions happen to have a
Bayesian interpretation; that this need not always be the case is evidenced by
Example 2.2 of Dawid and Stone (1982).

9. Discussion. Our analysis has shown how, under certain algebraic
restrictions, the logic of ““fiducial inversion” in a functional model may be
extended to problems of prediction. We have also uncovered some problematic
aspects of this approach, to add to the “conditioning inconsistency’ of para-
metric fiducial inference displayed by Dawid and Stone (1982). In particular,
the predictive fiducial distribution for X based on Y, when conditioned on 0,
need not coincide with the sampling distribution of X given 0, conditioned on
Y. Not only is this a clearly unacceptable inconsistency with the sampling
model, it may be transformed into an internal inconsistency of fiducial infer-
ence on noting that, were a prior distribution to be specified for O, fiducial
inference would then coincide with ordinary (Bayesian) probabilistic analysis,
leading to a conditional fiducial distribution for X given ©, based on Y, which
is consistent with the sampling model. It is paradoxical that a distribution
conditioned on ® should be affected by whether or not a marginal distribution
for O is assigned. In the semi-Bayesian context of Section 8, the inferential
distribution for ©, conditioned on A = A, is seen to depend on when this
condition is incorporated—again unacceptable behaviour.

Another inconsistency has been noted, that between global and stepwise
inference in chained models. However, we have argued that this presents no
logical difficulty, since only the global method is properly consistent with
fiducial logic.

What lessons may be drawn from our analysis? Whilst fiducial logic, in the
context of regular functional models, has a fair degree of logical cohesion, it
nevertheless produces some unacceptable answers. These appear in problems
involving conditioning. They can, however, be made to disappear if one re-
stricts attention to pivotal models, in which the error variable is required to
be a function of the data and the parameter. It thus appears that fiducial logic
may be more generally applicable when restricted to such pivotal models. Even
though this restriction will not remove all the inconsistencies between fiducial
and sampling distributions—such as the strong inconsistency of Stone (1976)
—it may be that it is sufficient to ensure a measure of internal self-con-
sistency. However, this requires further investigation.
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APPENDIX
Proofs of algebraic results.

PROOF OF THEOREM 3.1. Assume first that M, is invertible, and suppose
a(x,) = a(x,) and k(x,) = k(x,). Take e € & with u(e) = a(x,) = a(xy). Then
there exist 0,0, € ® with x, = §,e and x, = 6,e. Thus 6,*e = k(x,) =
k(x,) = 0, e, and so 6; = 0,, whence x; = x,.

Now assume that a(-) and k(-) are transverse and that 6,*e = 0, *e.
Then, with x; = 6,e and x, = 8¢, k(x;) = k(xy) and a(x,) = ule) = a(xy).
Hence x, = x,, whence 6, = 0, by invertibility of M,. O

PrOOF OF THEOREM 3.2. It is enough to prove the result when a is the
canonical ancillary in M;. The canonical reduction of M, is ¢: &' — 2¢, where
c(y) = {e: y = k(fe), some 6 € ©}. Then c(y) = U{&: k(x) =y} = Ula(x):
k(x) = y}. Letting €, = {a(x): k(x) =y}, it is clear that the range of c is a
partition of &, and thus M, is partitionable, if and only if, for all y,,y, € &,
¢, and €, are either disjoint or identical.

If a and & permute, then &, = {a € & ¢(a) = ¢(y)}. Thus ¢, =%, if
d(yy) = ¢(y,), while €, N €, = & otherwise, and hence M, is partitionable.
Clearly also in this case c(y;) = c(y,), or, equivalently, €, = €, , if and only if
#(y,) = ¢(y,), so that B = ¢(Y) may be taken as functional ancillary.

Conversely, suppose M, is partitionable, and define b(x) = €, Clearly
b < k. Also a(x) € b(x), which property, by partitionability, determines b(x)
uniquely, whence b < a. Furthermore, a(x) € ¢, if and only if C, = b(x), so
that {a(x): k(x) = y} = €, = {a(x): b(x) = €,}. Thus, applying property (b) in

Section 3, a and k& permlite, and b=a A k. O

Proor oF THEOREM 6.2. Let a*, ¢* and c} be the canonical reductions
in M;, M; and M/, respectively. Then cf(y) = Ufa*(x): x° f =y}, while
(e, f) € c*(y) if and only if, for some x € 2 and 6 € @, e = x and x ° f=y,
that is, for some x, e € a*(x) and x° f=y. Thus c*(y) = U, a*(x) X {f:
xo f=y} = U;ci(y) X {f}. The range of c* is thus a partition if and only if:

(i) The range of c} is a partition, for each f.
(i) Whenever c}(y,) = cf(y,) for some f, this holds for all fe &.

Condition (i) states that each M, is partitionable. Fix fo € &, and define
c(y) = cf{y). Then condition (i) states that, for any f € &, c is an invertible
transformation of c}, and so serves as a functional ancillary in each M,.
Clearly c is then also an invertible transformation of c¢*, and hence a func-
tional ancillary in Mz. O

(It may be noted that the above proof does not require either M, or M, to
be regular.)
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