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BIAS ROBUST ESTIMATION OF SCALE!

By R. D. MArTIN AND RUBEN H. ZAMAR
University of Washington and University of British Columbia

In this paper we consider the problem of robust estimation of the scale
of the location residuals when the underlying distribution of the data
belongs to a contamination neighborhood of a parametric location-scale
family. We define the class of M-estimates of scale with general location,
and show that under certain regularity assumptions, these scale estimates
converge to their asymptotic functionals uniformly with respect to the
underlying distribution, and with respect to the M-estimate defining score
function y. We establish expressions for the maximum asymptotic bias of
M-estimates of scale over the contamination neighborhood as a function of
the fraction of contamination. Using these expressions we construct asymp-
totically min-max bias robust estimates of scale. In particular, we show
that a scaled version of the Madm (median of absolute residuals about the
median) is approximately min-max bias-robust within the class of Huber’s
Proposal 2 joint estimates of location and scale. We also consider the larger
class of M-estimates of scale with general location, and show that a scaled
version of the Shorth (the shortest half of the data) is approximately
min-max bias robust in this class. Finally, we present the results of a
Monte Carlo study showing that the Shorth has attractive finite sample
size mean squared error properties for contaminated Gaussian data.

1. Introduction. A main theoretical approach to robustness has con-
sisted of studying the asymptotic behavior of an estimate when the underlying
distribution of the data belongs to some neighborhood (e.g., e-contamination
or Levy neighborhood) of a parametric model. In this context one tries to
obtain estimates which optimize some appealing criterion, for example, mini-
mize the maximum asymptotic variance over a given neighborhood. Huber
(1964) is the earliest example of this approach, with focus on M-estimates of
location.

The best known part of Huber (1964) is the result that a particular
M-estimate of location, namely the one with psi-function ¢(x) =
min{c, max(x, —c)}, minimizes the maximum asymptotic variance over sym-
metric e-contamination neighborhoods of a Gaussian model. A considerably
less well known part of Huber (1964) is that concerned with asymptotic bias of
location estimates for unrestricted asymmetric e-contamination neighbor-
hoods of a nominal Gaussian model: Among all translation equivariant
estimates, the median minimizes the maximum asymptotic bias over such
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992 R. D. MARTIN AND R. H. ZAMAR

neighborhoods. The relevance of this result seems considerable in view of the
needed realism of allowing asymmetric contamination.

Recently there has been a renewed interest in bias-robustness. In particular
Donoho and Liu (1988) have shown that minimum distance estimates have
desirable bias robustness properties. Martin, Yohai and Zamar (1989) have
obtained asymptotically minimax bias regression estimates, and Martin and
Zamar (1989) have obtained minimax bias estimates of scale for positive
random variables.

In this paper we obtain minimax bias robust estimates of scale for contami-
nation models with a nominal distribution which is symmetric about an
unknown location parameter. More precisely, we assume the following:

AssumpTION 0. F, is a specified distribution function with an even and
unimodal density f,.

The distribution F for independent and identically distributed observations
X,,..., X, belongs to the e-contaminated family

X — Mo

Z={F(x):F(x)=(1—s)F0( )+3H(x),

0

(1)
x € R, ¢ fixed in (0, 0-5)},

where u, is the unknown location parameter, s, is the unknown scale
parameter and H is an arbitrary (and unspecified) distribution.

The first step in obtaining a minimax estimate is to derive the maximal
asymptotic bias B,(¢) of an estimate T over the family %. From By () one
may construct a maximum bias curve, namely a plot of B(¢) versus &. The
maximum bias curve includes the gross error sensitivity GES}, namely the
slope of By(¢) at & =0, and also the breakdown-point &}, which is the
location of the singularity where B (¢) goes to infinity. While the two-number
summary consisting of the GES; and &% provides considerable information,
one naturally would like to have the entire curve B (¢) if possible. Not only do
such curves allow one to check the range of accuracy of the GES; as a linear
approximation, they may also lead to different preference ordering of compet-
ing estimates that one might make on the basis of GES; and ¢} [e.g., see
Section 5 and also Martin, Yohai and Zamar (1989), who find min-max bias
robust regression estimates with GES, = ].

Figure 1 displays the maximum bias curves for three proposed robust
estimates of scale: H95, a Huber proposal 2 estimate of scale, adjusted for 95%
efficiency at the Gaussian model [Huber (1964)]; the median of absolute
deviations about the median (Madm); and the ‘‘shortest half”’ of the data
(Shorth). Observe that &%, ., = €¥aam = 0.5, the largest possible value of &*
and &}9; = 0.17. The breakdown point of a classical Gaussian maximum
likelihood estimate is typically zero. The GES;, lines provide local linear
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SHORTH

MAXIMUM BIAS Br(¢)

Fi1c. 1. Maximum bias curves and GES linear approximations for the 95% efficient Huber
M-estimate of scale and for the 68% efficient Madm and Shorth.

approximations to the maximum bias, which are reasonable for not too large
values of & [just how large the reader can judge for himself; see the rule of
thumb in Hampel, Ronchetti, Rousseeuw and Stahel (1986)].

The remainder of the paper is organized as follows. Section 2 introduces the
class of M-estimates of scale with general location. This class includes the well
known Huber (Proposal 2) M-estimates of location and scale, and also the class
of scale estimates called S-estimates, which are associated with so-called
S-estimates of regression [Rousseeuw and Yohai (1984)]. Section 2 also shows
that, under certain regularity conditions, the finite sample value and the
asymptotic value of M-estimates of scale are uniformly close, as F' ranges over
the family %. Moreover, prior results in Martin and Zamar (1989) indicate
that the bias is a significant component of the mean-squared error for rather
small to moderate sample sizes, depending on the value of . Section 3 gives a
class of generalized bias functions to deal with the intrinsic asymmetry of the
bias of scale estimates. Section 4 constructs minimax bias-robust estimates for
the class of Huber (Proposal 2) M-estimates of location and scale, and shows
that the bias robust estimates are well approximated by the Madm. Section 5
constructs minimax bias-robust S-estimates of scale, which are shown to be
min-max in the larger class of M-estimates of scale with general location
introduced in Section 2. Section 5 also shows that these estimates are reason-
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ably well approximated by the Shorth. Section 6 briefly discusses the difference
between bias-robust Huber estimates and S-estimates. Sections 7 and 8 give
some encouraging finite sample results. Finally, Section 9 closes with a brief
discussion of the GES linear approximation to the maximum bias curve.
Proofs of lemmas and theorems are given in Section 10.

Our results on the Shorth complement recent results of Rousseeuw and
Leroy (1988), who propose the Shorth as a robust scale estimate. They derive
the influence function, the finite sample breakdown-point, and a correction
factor to achieve approximate finite sample size unbiasedness at the normal
distribution. Another interesting recent work on the Shorth is that of Griibel
(1988), who establishes asymptotic normality.

2. M-Estimates of scale with general location. Estimates of scale are
conveniently viewed as translation invariant, scale equivariant functionals
S(F) defined over a subset F of distribution functions %, which is assumed to
include all the empirical distribution functions F, and the e-contamination
family (1). The scale estimate §, is then obtained by evaluating the functional
S(F)at F,: §, = S(F,).

Suppose the following:

ASSUMPTION 1. y is even, nondecreasing on [0, ©), bounded, with at most a
finite number of jumps, and that y(«) = 1.

Let b(x) = Ep x(X) and for each ¢ € R, let S(F,t) be the M-estimate of
scale of X — ¢ defined by

(2) S(F,t) = sup{s: Epx[(X - t)/s] > b(x)}.

AsSSUMPTION 2. & < b(y) < 1 — ¢, for a fixed value of £ € (0, 0.5).

In view of (2) and Assumptions 1 and 2, there is no loss of generality in the
assumption that y(«) = 1.

The definition (2) is needed to insure uniqueness and to handle possible
discontinuities of F and y. If y (or F') is continuous, then S(F,¢) satisfies

(3) Epx[(X —2)/S(F,t)] = b(x).

Since the location parameter u, in (1) is unknown, it must be estimated
along with s,. Let T(F) be a location and scale equivalent functional, that is,

T[F((x—t)/s)] =sT[F(x)] +¢t, VteR,¥Vs>0.
The M-estimate of scale with general location is now defined as ‘

S(F) = S[F,T(F)].
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Some particular cases are:

Huber Proposal 2. In this case T(F) and S[F,T(F)] simultaneously
satisfy (3), with ¢ = T'(F), and
(4) Exy[(X - T(F))/S(F,T(F))] =0,
where

AssuMpTION 3. (x) is odd, nondecreasing, bounded, with at most a finite
number of jumps.

In particular the Madm is obtained when y is the jump function,

_ /0, iflxl<a,

(5) Xo(%) = {1, if x| > a,
with a = F;(8/4), and ¢ is the “sign” function

-1, ifx<0,

(6) lIIO(x) = Oa lfx = 0’

1, ifx>0.

In this case T(F) = F~1(1/2) is the median of F.

S-Estimate of scale. In this case the location estimate T'(F) is a minimizer
of S(F,t), that is,

(7) S(F) = inf S(F.1).

It is not difficult to see that S(F) and T(F) satisfies (3) and (4) with
Yy(x) = x'(x). Since y(x) is bounded, ¢(x) tends to zero as x tends to infinity,
that is, ¥(x) is redescending. In particular, the Shorth is obtained when yx is
given by (5). Observe that the Madm and the Shorth have both the same
chi-function (6) but different centering functionals.

The following lemma shows that under mild assumptions the breakdown
point of the functional S(F,¢) is larger than e. The proof is straightforward
and therefore omitted.

LEMMA 1. Let K > 0 be given and suppose that Assumptions 0-2 hold.
Then, there exist 0 < s, < s, < ® such that s; < S(F,t) <s, for all |t| <K
and F € .

Theorem 1 below shows that, under some regularity conditions which
include the continuity of x, S(F,) = S(F) a.s. [F] as n — o, uniformly over
. X ¢, where ¢ is a certain class of y-functions. Unfortunately, the case of
x-functions of the jump type given by (5) is not covered by Theorem 1.
However, Theorem 6 and the Monte Carlo results presented in Sections 7 and
8 support the finite sample relevance of the asymptotic minimax-bias theory
for this important special case.
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The following definitions are needed for stating Theorem 1:
(8) & (s,t) =Epx[(X—1t)/s],  h,(s,t) =(3/9s)g,(s,?).

THEOREM 1. Suppose that Assumptions 0-2 hold. Assume also that x and
h (s, t) are continuous and that h (s,t) <0 foralls > 0,¢t € R. Let K > 0 be
fixed. Then, for all § > 0:

(a) lim,, . supyc s Pg{sup,, . ,, sup, < |S(F,,t) — S(F,#)| > 8} = 0.

(M) If S(F) is given by (7), then lim,  supp.g Pplsup,. ,IS(F,) —
S(F)| > 8} = 0.

(¢) If suppc s IT(F) < and

lim sup PF{ sup |T(F,) — T(F)|> 5} =0,
mo® peF  \nem
then
lim sup PF{ sup |S[F,,T(F,)] — S[F,T(F)]| > a} = 0.
m-® e % nx=m

(d) Let x, > 0 be fixed. The class € is defined as the set of x-functions
satisfying all the previous assumptions and (i) x(x) =1V |x|>x, and
(i) there exists h(s,t) such that h,(s,t) < hy(s,t) <0,V s>0,V¢€R.

Then (a), (b) and (c) hold uniformly on €.

REMARK. Suppose that a certain function y, satisfies Assumptions 1 and 2
and is such that

x—t\x—1
) <0, Vs>0,t€R

S

1
NODEE ;EFO[xa( -

and
Xo(x) =1, Vx| > x,.
Then the set

1 X—-t\ Xt
€= {Xﬁ X' (x) <xo(x),Yx>0and h,(s,t) = —gEFO[X’( ) ]}

) )

satisfies the assumptions of Theorem 1.

3. Generalized bias. Although the M-estimates of scale with general
location introduced in Section 2 are Fisher consistent at the nominal distribu-
tion F,, they are in general asymptotically biased for F € %. Furthermore,
the “raw” asymptotic bias B,[S(F)] = S(F) — s, can be of two distinct
kinds: When F is an outliers generating distribution, the bias' B, [S(F)] is
positive, and when F is an inliers generating distribution, the bias B,[S(F) is
negative.
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As in Martin and Zamar (1989), we consider generalized bias functions
which are scale invariant and flexible. Penalization of positive and negative
bias is independently chosen, by allowing the user to put positive and negative
bias on different scales. Specifically, we define the generalized bias

L,[S(F)/s,], if0 <S(F) < s,,

() BISIOI=Ls(ry/s, i, <500 =

where L, and L, are continuous, nonnegative and monotone, with L(1) =
Ly(1) =0 and

limL,(¢) = lim Ly(t) = .
t—0 t—>o
We are interested in the maximum generalized bias,

(10) B(e) = Iga%B[S(F)].

From monotonicity of L, and L,, it follows that
B(x,T) = max{L,[S7/so], Lo[S*/s0]},

where S~ and S* denote the supremum and the infimum of the functional
S(F) as F ranges over ..

4. Bias robust Huber estimates. In view of the historical importance
and high degree of familiarity of Huber (Proposal 2) estimates we first focus on
obtaining bias robust estimates in this class. To emphasize the dependence on
x and ¢ we use the notation S(F, x,¥), S*(x, ¢), S*(x, ¢) and so on.

The first step toward finding the bias robust Huber estimate is deriving the
expressions (16) and (17) for S~(x, T,) and S*(x, T,)). Claims which are made
below without proof can be easily verified under Assumptions 0-3.

The maximum value S*(y, ¢) of the scale functional S(F, x, ¢) is produced
by a point mass contamination at infinity 8, and such contamination also
produces the maximum value of the location estimate 7,(F). The estimating
equations in this limit case are

(11) (1-&)Epx[(X —t)/s] +&=0(x)
and
(12) (1 —E)Epolll[(X—t)/S] +e=0.

Let v,(¢) be the unique solution of (11) for fixed ¢ and let r,(s) be the unique
solution of (12) for fixed s > 0. The function m, ,(t) = r,[y,(#)] is continuous
and nondecreasing. Also, the pair (s*, #*) simultaneously satisfy (11) and (12)
if and only if #* = m, ,(t*) and s* = v,(t*).

The following lemma characterizes the maximum asymptotic bias due to
outliers of the location and scale Huber M-estimates. This lemma also provides
an algorithm for computing these maximum biases. We recall that Huber
(1964) has shown that the maximum asymptotic bias of the median (the
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minimax-bias estimate of location) is
(13) to=F;'0.5/(1 —¢)].

LEmMMA 2. Suppose that Assumptions 0-3 hold. For each n > 1 let t, =
m, (t,_1), with t, given by (13). Let s, = v,(t,) and

t* = inf{t >ty:m, () = t}.

Then, (a) lim, . t, =t* and lim, s, = v(t*) = s*; (b) the maximum
asymptotic bias of the location estimate T(F, x,¢) is t* and the maximum
value of the scale functional S(F, x,¥) is S™(y, ) = s*.

The minimum value of the scale functional S(F, x,#), S~ (x, ), is pro-
duced by a point mass contamination 8, at zero. In this case the estimating
equations are

(14) (1-e)Egx[(X —t)/s] +ex(t/s) =b(x)
and
(15) (1 - &) Engl(X - £)/s] + ew(~t/s) = 0.

By monotonicity of ¢, ¢ = 0 for all s > 0. Let g; " be the inverse of g,(s,¢)
with respect to s, for fixed ¢. Then, from (14) with ¢ = 0 it follows that

(16) S™(x,¥) =& '[6(x)/(1 - #)].

Optimal centering. The choice of ¢ has an effect on the maximum asymp-
totic bias of the scale estimate by virtue of affecting the bias ¢* of the location
estimate. Observe that since S~ (yx,¢) does not depend on ¢ [see (16)], the
optimal choice of ¥ must be based on S*(y, ¢) alone.

It follows from Lemma 2 and (11), with ¢ = ¢*, that

(17) S*(x,¥) =8x+'[(b—e)/(1 - ¢)].
For all 0 < a < 1 the function g, () is nondecreasing in ¢. Therefore, by the

Huber (1964) minimax-bias result, r,(s) > ¢, = r,(s), for all s >0 and ¢,
where ¢, is the “sign” function (6). Thus we have the following result:

THEOREM 2. For each fixed x satisfying Assumption 1 the median center-
ing functional minimizes the maximum asymptotic bias of both location and
scale among Huber estimates with  satisfying Assumption 3.

More generally, it is not difficult to show that Theorem 2 holds for the class
of all M-estimates of scale with centering functional T'(F') having the mono-
tonicity property

(18) T(F) <T[(1-¢&)F,+¢5,], VFe%Z.

The minimax-bias Huber estimate of scale. By Theorem 2 it suffices to
consider S*(y, ¢,) and S~ (yx, ¢,) and the function ¢ can be dropped from the
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notations. It will be shown that under certain conditions the maximum

generalized bias B(x) [see (10)] is minimized by a jump function x,« [see (6)].
For each a > 0, let B(a) = B(x,) and

(19) b(a) = b(x,) = 2[1 — Fy(a)].

We begin by showing that given 0 < ¢ < 0.5, F,, L, and L, there exists a*

such that

(20) B(a*) <B(x,), Va>0.

Let aq = F; '[(1 + £)/2] and a; = F; '[(2 — £)/2]. From (19), the correspond-
ing values of b are b, =b(a,) =1—¢ and b, = b(a,) = &. Hence, letting
S~ (a) =S (x,) and S*(a) = S*(x,), we have

b(a
lim S™(a) = lim go‘l[ (@) ]
a—ag a—ay 1-¢
21
Y li 1F‘1 1 —b(a) ! F;10.5 0
T aa T T 21| ay® (05) =
and
b(a) — b(a) —
lim S*(a) = lim g;l[(—)—g] > lim ggl[—(—)—i]
a—a, a—a, 1-—c¢ a—a, 1-—¢
(22)

l

, 1F11 b(a) — ¢ 1F11
—FyYl1 - ————|=—F; = +oo.
aggla 0 2(1 —¢) a; ° (1) *

Therefore, by the assumptions on L, and L,, B(a) » +» when either
a = a, or a — a,. By continuity of B(a) there exists a, < a* < a, such that

(23) B(a*) <B(a), Va,<a*<a,.

Thus, the jump function y,« is bias robust among all jump functions y,. The
following theorem gives conditions under which S(F, y,, ¢,) is bias robust
among all Huber estimates of scale.

THEOREM 3. Let s* = S*(a*), where a* is given by (23), and let t, be as in
(13). Suppose that in addition to Assumptions 0 and 1 the following condi-
tions hold:

(@ fox) >0,V x €R and fy(sx)/fo(x) is increasing in |x|, ¥ 0 <s < 1.
(b) The function kyo(x) = [ fo(s*x — £y) + fo(s*x + t]/fo(x) is decreasing
in |x|.
(©) S7(a) and S*(a) are both strictly monotone at a = a*.
Then B(a*) < B(y, ¢) for all pairs (x, ) satisfying Assumptions 1-3.

It can be shown that the conditions of Theorem 3 hold, for example, when
F, is the standard normal distribution and ¢ < 0.35 [see Martin and Zamar
(1987)].
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TABLE 1
Bias-robust Huber Proposal 2 estimates of scale when F = standard normal.
Logarithmic loss function

€ a* b(a*) B(a*) B(Madm)
0.05 0.650 0.516 0.062 0.063
0.10 0.674 0.500 0.135 0.135
0.15 0.673 0.501 0.221 0.221
0.20 0.673 0.501 0.324 0.324
0.30 0.676 0.499 0.609 0.612
0.40 0.695 0.487 1.072 1.166
0.45 0.713 0.476 1.440 1.779

Near optimality of the Madm. Let b* be the value of b(x,) = Ep xq+(x).
Since the bias robust estimate of Theorem 3 is based on y,x, using the median
for centering, it follows that the bias robust Huber estimate is the n — [nb*]
order statistic of the absolute value of the residuals about the median (scaled
by 1/a*), where a(e) < a* < ae). Since both, ay(¢) and a,(e) tend to
F;%0.75) as ¢ — 0.5, so does a*. Thus, as ¢ — 0.5, the bias robust Huber
estimate is the well known Madm, whose breakdown-point is equal to 0.5.

It came as a pleasant surprise that for a broad range of ¢, the maximum
bias of the bias robust estimate is very close to the Madm for the leading case
of the nominal Gaussian distribution and the logarithmic loss function
L,(t) = —L(¢) = log(¢). Table 1 shows the values of a*, b* = b(a*), the
minimaxbias B(a*) and the maximum bias B(Madm) of the Madm for some
values of &. The value of a for the Madm is 0.674. Therefore in this case there
is no appreciable difference between the Madm and the bias robust estimates.
Note in particular that even when we choose ¢ small, for example, ¢ = 0.05,
the breakdown-point of the minimax-bias scale estimate is very close to 0.5.

5. Bias robust S-estimates. One naturally wonders whether the greater
bias robustness can be obtained by enlarging the class of estimates over which
one searches for a minimax solution. In particular one may consider the entire
class of M-estimates of scale with general location. This larger class of course
includes joint M-estimates of location and scale with redescending as well as
monotone ¢ for the location estimate.

As a first step in dealing with this problem, we show that it suffices to
restrict attention to the smaller class of S-estimates of scale.

The following notation is needed for stating Theorem 4. Set S*(y) and
S~ (x) denote the maximum and minimum asymptotic values of the S-esti-
mate of scale based on y [see (7)]. Let S*(x,T) and S (x,T) denote the
maximum and minimum asymptotic values of the M-estimate of scale
S, [F,T(F)] with general location, based on x and the location estimate T'(F).
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THEOREM 4. Suppose that Assumptions 0-2 hold and let v, (s) = g,(s,0),
where g (s,t) is given by (8). Let T be any location-scale equivariant estimate
satisfying the condition

Then,

(@ S*(x) =y, 11 -b)/A - &) < 8*(x,T).
(®) S™(x) =y, 16/QA - )] =8 (x,T).

This paves the way for the following main result.

THEOREM 5. Suppose that Assumptions 0-2 hold. Then there exists a
Jjump function x, such that the S-estimate based on x,~ has the minimax
asymptotic bias over the class of all M-estimates of scale with general location.

Therefore, the minimax estimate is an S-estimate based on the jump
function y,«.

Near optimality of the Shorth. As in Section 4, a* — F; 1(0.75) as ¢ — 0.5.
Thus the minimax estimate of scale with general location tends to the Shorth
as ¢ — 0.5. Table 2 shows the values of a*, b* = b(a*), the minimax bias
B(a*) and the maximum bias B(Shorth) of the Shorth for some values of «.
These results show that the minimax estimate is reasonably well approximated
by the Shorth in terms of maximum bias, the approximation being less good
for larger values of ¢. One again finds that a breakdown point reasonably close
to 0.5 is obtained by the minimax estimate for a wide range of values of «.

It should be remarked that the S-estimate of location associated with the
Shorth, namely the midpoint of the shortest half of the data, has a slow rate of
convergence [Andrews, Bickel, Hampel, Huber, Rogers and Tukey, (1972)].
However, the Shorth estimate of scale has the usual rate of convergence
[Griibel (1988)].

TABLE 2
Bias-robust M-estimates of scale with general location when F, = standard normal
Logarithmic loss function

€ a* bla*) B(a*) B(Shorth)
0.05 0.650 0.516 0.060 0.060
0.10 0.700 0.484 0.127 0.135
0.15 0.716 0.474 0.201 0.220
0.20 0.726 0.468 0.284 0.322
0.30 0.751 0.453 0.495 0.612
0.40 0.763 0.445 0.845 1.166

0.45 0.746 0.456 1.236 1.779
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6. Huber estimates versus S-estimates of scale: Madm versus
Shorth. The class of Huber estimates of scale considered in Section 3
excludes centering functionals which are M-estimates of location with re-
descending . These location estimates are of course allowed in the larger class
considered in Section 5. We now show that the S-estimate of location T, (F) is
in fact an M-estimate of location with redescending psi-function ¢(x) = x'(x):
Let ¢t* = argmin, S(F, ¢). The monotonicity of x(x) on [0,) and the defini-
tion of the S-estimate of scale S(F') [see (7)] implies that

o [l I .S Y S} B VteR

— | > —| = — | = .

So, t* minimizes the function [(¢) = Epx[X — t/S(F)] and therefore satisfies

the equation I'(¢*) = 0, that is, #* satisfies the location M-estimate equation
1*(t) = Epx'[ X - £*/S(F)] = 0.

Figure 2(a) and 2(b) display the maximum bias curves of the minimax

Huber and S-estimates of scale (for the case of logarithmic loss function) for

(a) Maximum Bias Due to Qutliers

MAXIMUM BIAS
04 06 08 10 12

0.2

0.0

0.0 0.1 0.2 0.3 0.4 0.5

€

Fic. 2. Maximum bias of the optimal S-estimate of scale with general location, the optimal Huber
Proposal 2 M-estimate of scale. The Madm and the Shorth. Fy = N(0, 1), logarithmic loss.
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(b) Maximum Bias Due to Inliers

1.2

MAXIMUM BIAS
0.4 08 08 10

02

0.0

0.0 0.1 02 03 04 05
€

Fig. 2. (Continued)

outliers and inliers, respectively. The logarithmic bias for the Madm and the
Shorth are also shown. Figure 2 reveals uniformly smaller bias for the
minimax S-estimate than for the minimax Huber estimate.

We notice that in Figure 2(a) the maximum bias curve for the Shorth is
uniformly smaller than that of the minimax S-estimate, whereas the opposite
is true in Figure 2(b). This is a consequence of the relative way in which the
logarithmic loss function penalizes positive and negative bias. It is worth
noticing that if one is concerned only about outliers, then the Shorth is the
best choice with respect to bias. The better performance of S-estimates
relative to the Huber M-estimates in the case of outliers is a consequence of
the S-estimate of location being an M-estimate with redescending ¢, which
suffers no bias for gross outliers.

Also referring back to Figure 1 we would remark that the price paid for
using a high efficiency Huber estimate is in terms of maximum bias and
breakdown point. Table 3 presents mean-squared-error relative efficiencies of
the Shorth relative to Madm for finite sample sizes n = 20, 40, 100, computed
by Monte Carlo simulation. These results indicate considerable superiority of
the Shorth for outliers, and moderate superiority of Madm for inliers.



1004 R. D. MARTIN AND R. H. ZAMAR

TaBLE 3
Mean-squared-error relative efficiencies of Shorth and Madm

n =20 n=40 n =100
€ Outliers Inliers Outliers Inliers Outliers Inliers
0.00 1.09 1.09 1.10 1.10 1.18 1.18
0.05 1.11 1.11 1.06 1.12 1.06 1.00
0.10 1.08 1.07 1.00 1.02 1.07 0.90
0.15 1.10 0.98 1.04 0.91 1.12 0.83
0.20 1.10 0.89 1.14 0.82 1.27 0.77
0.25 1.23 0.85 1.27 0.76 1.39 0.75
0.30 1.43 0.83 1.46 0.77 1.61 0.78
0.35 1.62 0.82 1.66 0.77 1.83 0.77
0.40 1.74 0.85 1.86 0.80 2.01 0.78
0.45 1.87 0.92 2.00 0.85 2.16 0.82

7. Finite sample relevance of asymptotic bias robustness. Unfortu-
nately, the functions y, are discontinuous and so Theorem 1 cannot be
invoked to claim finite sample relevance for the asymptotic minimax theory.
However we can prove the following result, which is relevant to the finite
sample size situation.

THEOREM 6. Let 0 < a < «. For each A > 0,

lim supPF{S () —A<S, (F,)=8"(a) +4, Vn>m}=1.

m — o FE

So S7(a) — A and S*(a) + A are almost sure uniform lower and upper
bounds for the maximum and the minimum values of the S-estimate of scale
S, (F,) for m large enough.

The Monte Carlo results summarized in Figures 3 and 4 suggest that the
required values of m are moderately small. These figures display the finite
sample bias (logarithmic loss) for several contamination models for the Shorth
and for the Madm, as well as the corresponding maximum bias curves.
Observe that for both cases, for outliers and for inliers, the asymptotic
maximum bias curves tend to be rather close to the finite sample bias curves.

8. Finite sample comparison with other estimates. A Monte Carlo
simulation was carried out to compare the bias and the mean-squared-error
performance of the following scale estimates: the Madm, the Shorth, the
rejection-plus-standard-deviation (RPSD) estimate [Simonoff (1987)] and the
scale A-estimate [Lax (1985)].

To define the RPSD estimate let B, = {x,,..., x,} be the complete sample
and, for i < (n — 1)/2, let B; be the subset obtained from B;_; by deleting
the observation farthest from its mean. Such observation is denoted by x¢~D,
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Let x(B;_,) and sd(B;_,) be the mean and the standard deviation of B,_,,

|x(i_1) —x( Bi—l)'
sd(B;_,)

and

. n—-1
i = max{i < 3 : ESD, > d*}.

The constant d* is chosen so that P(ESD, > d*) = 0.01 for Gaussian data.
The RPSD estimate is now defined as sd(B, . ,), the standard deviation of the
“clean’ sample.

To define the A-estimate S,, let T, and S, be some initial estimates of
location and scale and set u; = (x; — Ty)/S,, i = 1,...,n. The A-estimate S,
is now defined as

n iwz(ui)/n
n—1[2
[Zl//(ui)/n

Sy =15,

2

where ¢ is a location score function. Notice that if ¢(u) = u and T, = X then
S, reduces to the classical standard deviation. In our Monte Carlo simulation
T, = Median, S, = Madm and ¢ is the Tukey’s bisquare score function with
c=4.717.

Some results for sample size n = 20 are presented on Figure 5 (MSE) and
Figure 6 (bias), for the case F, = N(0, 1) and logarithmic loss. Each simulated
sample contains exactly £20 outliers generated from the four different distri-
butions indicated at the tops of the figures. Similar results (not presented
here) were obtained for n = 40, n = 100 and for other type of contaminating
distributions. The main conclusions are:

1. When ¢ < 0.10 the four estimates perform equally well.

2. For larger fractions of outliers the Shorth and the Madm usually outper-
form the other two estimates, with the Shorth being somewhat better.

3. When the outliers are large and well separated from the rest of the data, for
example, generated from a N(10, 1), the rejection-plus-standard-deviation
estimate performs better than the other three estimates.

9. The GES approximation. Hampel, Ronchetti, Rousseeuw and Stahel
(1986) established that based on the gross-error sensitivity, the Madm is the
most bias robust M-estimate of scale for vanishingly small fractions of contami-
nation ¢. In fact the Shorth has the same influence function and hence the
same gross-error-sensitivity as the Madm, namely 0.787 [see Rousseeuw and
Leroy (1988)]. However, this leaves unanswered the question of optimality for
each ¢ € (0,0.5), and our results show that the Shorth is a better estimate
than the Madm from the global (i.e., £ > 0) point of view.
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On the other hand, it must be noted that the gross-error-sensitivity approxi-
mation is remarkably good for £ < 0.05, with the approximation being better
the more bias-robustness the estimate possesses. This provides substantial
reconfirmation of the utility of the influence curve and the gross-error-sensi-
tivity as a measure of maximal bias.

At the same time one should be aware that the gross-error-sensitivity linear
approximation may be less accurate for problems with nuisance parameters.
For example, in the present context, the GES approximation to the maximal
bias curve of the Madm does not reflects the impact of the bias of estimation of
the nuisance location parameter. Since the maximum asymptotic bias of the
Shorth is unaffected by the asymptotic bias of the location estimate, the GES
approximation is better in this case.

10. Proofs of lemmas and theorems. The following lemma is needed to
prove Theorem 1.

LEmmA 3. Let 0 < s, < s, < ® be as in Lemma 1. Suppose that Assump-
tions 0-2 hold and also assume that x and h,(s,t) are continuous and
h,(s,t) <0,VY s> 0,t€R. Then, for all K> 0, we have:

(@ xl(x — t)/s] is uniformly continuous on (s,x,t) € R X [sy, s5] X
[-K,K].

(b) S(F,t) is uniformly continuous on t € R, uniformly on F € %.

(©) xl(x —8)/S(F,t)] is uniformly continuous on (x,t) € R X[-K, K],
uniformly on F € Z.

Proor. Let 6 > 0 be fixed and let B = [s,, s,] X [-K, K]. Since y(x) is
continuous, even, monotone on [0, ©) and bounded, it is uniformly continuous.
Let A; > 0 be such that |x — x'| < A, implies [x(x) — x(x')| < 8. Also, since
lim, ., x(x) = 1, there exists x,>0 such that |x|>x, and |x'|>x, imply
[x(x) — x(x")| < 8. Let x; > 0 be such that if |x| > x,, then [(x — #)/s| > x, for
all (s,t) € B. So x[(x — ¢)/s] is uniformly continuous on {x: |x| > x,} X B. If
|x| < x,, then (x —¢)/s — (x — ¢)/s'| < x,/11/s — 1/s'| + |¢'/s'| — |t/s| and (a)
follows. To prove (b) notice that the assumptions on h (s, ¢) imply that

min |k (s,t)|>0
(s,)€B (801> 0,

and so 8, = 8(1 — e)min, , . |k, (s,8) > 0. By (a) there exists A > 0 such
that [t — #| < A, [t| < K, |¢'| < K imply

X-t ] [ X—t H 3o
“Exlsm s |< %

EeX| 570y~ S(F,t)-s|l~ 4
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and so, using the mean value theorem and
Epx((X—-1t)/s] 2 (1 —e)Epx[(X - ¢t)/s],VF € &,

X\ S(F —5 _8] - b(x)

= Epx S(F.0) =% ~b()()—f}
- ofm s | s -
"1 S(F,t) — o S(F,t) 4
6 34,
>6(1—5) m1n |h(3t)l__>T>0

Thus, S(F,t) > S(F, ¢t ) — 6 and (b) holds. Finally, (c) follows directly from (a)
and (b). O

Proor oF THEOREM 1. Let 6 > 0 be fixed. It can be shown, as in the proof
of Lemma 3(b), that there exists 0 < §, < 1 such that

S(F,t) -6
For all y > 0, let B,(¢,y) = {(1/n)ZxI(X; — t)/S((F, t) — 8)] — b(x) > v}. By
Lemma 3(c) there exist —K = ¢; <, < - - = K such that

(25) n Bn(t 0) =2 n Bn( 50/2),

lt|<K

(24) Epx

] ~b(x) =28, VItI<K VFeZ.

for all n. By (25) and Bernstein’s 1nequa11ty, for each j =1,..., m and for all
Fe %,

o)

(26) n X, -t Xt 3
{ § [S(F )—5] Erx S(F,tj)—S] >E}
< e~ (n83/12)
By (25) and (26),
PF{ItiIrg([S(Fn,t) — S(F,t)] > —5} > PF{ N Bn(t,O)}

[t|<K

>1- Y Pp{Bg(t;,8,/2)}

Jj=1

2
>1-— me—n50/12’
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for all F € #%. Analogously, we can show that

PF{ sup [S(F,,¢) — S(F,¢)] < 5} >1-me /12 VFe &,

lt|<K
Therefore,
© 2m
y PF{ sup |S(F,,t) — S(F,¢)| > 5} <——__ VFe&x
n-1  \l<k 1—e%/12

and (a) follows by the Borel-Cantelli lemma. To prove (b) first notice that,
since b(x) < (1 — &), there exists K; > 0 such that for all |¢| > K,

Xt

o (Xt
S(F,0) | = “FX

Epx ) 2(1—8)EF0X( > b(x),

1 S1

where s; is as in Lemma 1. Notice that by the dominated convergence theorem
lim Bp, x[(X = ¢)/5,] = 1.
Hence, S(F,t) > S(F,0),V [¢| > K,V F € % and so
S(F) = tinge S(F,t) = |ti31£ S(F,t).

=81

On the other hand, let K3 and &, > 0 be such that (1 — &) Pp(IX| < K;) >
b(x) + 8;. Observe now that

x—t
li inf J(lxl < K3) =I(lx| <K3), Vx€R,
K:I—Eloo Itllilex( s;+0 ) (1= 3) = 1(1a 3) *

where I(|x| < K3) = 1if |x| < K, and equal to zero otherwise. Hence, by the
dominated convergence theorem

x—t
st 0o

lim E inf
Ky—® F"{ |t|>K2X

I(IX] < K3)} =(1-¢)Pp(IX| < K3) > b(x) + 8.
Therefore, there exist K, > K, such that

>(1- s)EFO{ inf x
[t1> K,y

gl i Xt
F |t|1£K2§ S(F,0) +6

(27)

S(F,0) + o

I(1 X sK3)}

>b(x) +8;.
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Let 8, = min{82, 62} /12. By (a), (27) and the Bernstein inequality,

P{S(F,) - |t?2£23(F"")>

> PF{ inf S(F,,t) > S(Fn,O)}
[t]> K,

Pl inf 1Y L
> —_ -
=F |t|l£K2 n X S(F,0) +6

>b(x),|S(F,,0) —S(F,0)| < 8}

1
21—PF{—}: inf y

1
n |t1>K,

S(F.0) 13|~ b(X)}

- PF{|S(Fn,O) - S(F,O)| > 3}
>1— 2e "%,

Therefore,

Po{|S(F,) - S(F)| <5} > PF{I:ng |S(E,,) = S(F,1)| <3|

+ PF<S(Fn) + inf S(F,t)}

>1—-e™ ™, VFe %,
for some y > 0 and (b) follows. Since
Py{IS[F,,T(F,)] = S[F,T(F)] > 3}

0
SPF{ sup |S(F,,t) — S(F,t)| > —}
lt|l<2K 2

o
+ B {ISIF. (R - SIE TP > 5,

(c) follows from (a) and Lemma 3(c).
Finally, (d) follows by noticing that, under the given assumptions, all the
statements made in the proof of (a), (b) and (c) hold uniformly for all y in ¢.
O

Proor oF LEMMA 2. Since the median minimizes the maximum asymptotic
bias among location equivariant estimates [Huber (1964)] and since ¢, and ¢,
are the maximum asymptotic biases of the median and a location equivariant
estimate, ¢, < ¢;. Thus, ¢, = m(¢,) < m(¢,) = ¢, and in general, ¢, < ¢, . Let
t**=1lim, ¢, Since t**=lim,_,¢,.;=1lim,_,m(,)=mlim, . ¢, =
m(t**), we have t** > t*. On the other hand, if ¢ satisfies t = m(¢) > ¢,, then
t =m(t) > ¢, for all n. Therefore ¢t > t** and so ¢** < ¢*. The second part of
(a) follows directly from the continuity of y(¢). To prove (b) observe that t* is

a lower bound for the maximum bias of the Huber estimate of location. This
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lower bound is achieved if the estimate is computed by the recursion formula
t,+1 = m(t,), starting from the median. O

For each b € (¢,1 — ¢), let C, be the class of y-functions satisfying As-
sumption 1 and b(x) = b. Also let C be the class of functions satisfying
Assumptions 1 and 2, that is, C = U, ., ;_,C,. The following lemma is
needed to prove Theorem 3.

LemMmA 4. Fix b € (¢,1 — ¢) and let a = Fy 1 — (b/2)]. Under the as-
sumptions of Theorem 3 we have:

(@ S7(x,) =8 (x) forall x €C,.
(b) g,(s* t,) > g,(s*,ty) forall x € C,.

ProoF. Part (a) follows directly from (16) and Lemma A3 in Martin and
Zamar (1989). To prove (b), notice that for all y € C, we have
J2ax(®) fo(x) dx = 2/7[1 — x(x)] fo(x) dx. Thus,

5" x(@) [ fols™ = t) + fols™x + to)] d
= %[ x(x) fulx)ko(x) dx = 5*ko(a) [ x(x) folx) d
= 25"ko(a) [ [1 = ()] folx) d
— s*ho(@)| [T = x(@ fo(x) e+ [T - ()] o) de

= 5% [ 1= xCo)l ko) dx + 5% [ [ = x ()| o(#) folx) d
and (b) follows. O

Proor orF THEOREM 3. First of all notice that since S*(a) and S~ (a) are
increasing at a* and L; and L, are strictly monotone, we have LI[S *(a)] =

L[S~ (a)] = B(a*). Let x €C be fixed and set b = b(y). Let a = F; {1 —
(b/2)] so that b(x,) = b. If g,(s*,t9) > (b —&)/(1 — &), then S*(x) > s* So
B(x) = Ly[S*(x)] = L,(s*) = B(a*) On the other hand, suppose that
g,(s%,t)) < (b —¢)/(1 —¢), that is, 8*(x) <s*. Since x € C,, by Lemma
4(b) we have g (s*,t,) < g,(s*,¢,) < (b —¢)/(1 — ¢). Hence S*(a) < s* , too.
In view of the optlmahty of x,~ among jump functions we have B(a) > B(a*)
and so L,[S7(a)] = L,[S™(a*)]. For the particular b in question, by Lemma
4(a), S~ (x,) = S~ (x). Therefore,

B(x) = L[S~ ()] = Ly[S™(a)] = L,[87(a*)] = B(a*),

and the theorem follows. O
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Proor oF THEOREM 4. Let F,= (1 —¢)F, + &4,, t, = T(F,) and s, =
S,(F,). First notice that

(28) h=[(b—¢€)/(1 —¢)] = sup S(F,0) = S(F.,0),
Fe %

where S, (F, 0) is the S-scale functional based on x and the ¢rue location 0. By
definition of the S-estimate of scale, for all F € 7, S,(F) = inf,, S (F,t) <
inf, S (F,, ¢) = S,(F,,0), and so S*(x) < S (F,,0). Assume first that 5, <
and so t, < . By monotonicity of g, (s 1), b=Epxl(X-1t)/s.]=
(1 -¢e)g(s.,t) +te=(1—e)g (5,0 +&= E’Fw,\/(X /8.). Therefore,

(29) S,(F.,0) <s, <S*(x)-

Observe that, if s, = «, then (29) trivially holds. Now, (28) and (29) imply that
S*(x) <y, (6 - ¢)/Q — &)l < 8*(x,T) and (a) follows by taking T'(F) =
argmin S, (F, t).

To prove (b) write y, '[(b/(1 — &)] = infr. 5 S (F,0) = S,(F,0), where
F¥=(1—¢)F, +¢5, Forall Fe &, tc R and s > 0, Epx[(X — £)/s]
(1 —e)Ep x(X — )/s]1= (1 — &)Ep, X(X/s) = Eps x(X/s). Therefore, for all
M-estimates of scale based on the given y and for all T satisfying the
assumptions of this theorem we have, S~ (y, T) =y, 1(b/(1 -2 O

Proor oF THEOREM 5. Follows directly from Theorem 4 and Theorem 2 in
Martin and Zamar (1989). O

ProoF THEOREM 6. Let 0 < a < . It suffices to show that, for each A > 0,

(30) lim sup PF{ sup S (F,) = S*(a) + A} ~0
m-o® pe & n>=m

and

(31) lim sup Pp{ inf S, (F,) <S™(a) - A} =0.
m-© pe g n<m "¢

For each 8 > 0 the approximating (even) function p,(x) is defined as

0, if0<x<a-354,
(32) ps(x) ={1—-[(a—x)/8], fa-d<x<a,
1, ifx>a.

Notice that ps;(x) is continuous and that ps(x) > x,(x) for all x. For each
t €R and all F, let

(33) S5(F,t) = sup(s: Epp,[(x — t)/s] = b(xa)}-

Clearly, for all ¢ and all F (including the empirical c.d.f. F,) we have
S, (F,t) < S;(F,t) and so

(34) 8,(F) < 5,(F) = inf §;(F,1).
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It is not difficult to verify that, for all given A > 0, there exists §, > 0 such
that
(35) S;.

0

= sup §30(F) <S*(a) +(A/2).
Fe %

By Theorem 1,

(36)  lim supPF{supS,s(F)>S+ S+(a)+(A/2)}=
F

m-ow po A n>m

Now (30) follows from (33), (34) and (35). Finally, (31) can be proved in a
similar way, using the approximating function

0, if0 <x <a,
(37) ps(x) ={(x—a)/d, ifa<x<a+s,
1, ifx >a + 9,

and the approximating scale functional
(38) S,(F,t) = inf(s: Egp,[(x — ¢)/s] < b(x,)}- o
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