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CORRELATION CURVES: MEASURES OF ASSOCIATION AS
FUNCTIONS OF COVARIATE VALUES

By STEINAR BJERVE! aND KJELL Doksum 2

University of Oslo and University of California, Berkeley

For experiments where the strength of association between a response
variable Y and a covariate X is different over different regions of values for
the covariate X, we propose local nonparametric dependence functions
which measure the strength of association between Y and X as a function
of X =x. Our dependence functions are extensions of Galton’s idea of
strength of co-relation from the bivariate normal case to the nonparametric
case. In particular, a dependence function is obtained by expressing the
usual Galton-Pearson correlation coefficient in terms of the regression line
slope B and the residual variance o2 and then replacing g and o2 by a
nonparametric regression slope B(x) and a nonparametric residual variance
o%(x) = var(Y|x), respectively. Our local dependence functions are stan-
dardized nonparametric regression curves which provide universal scale-free
measures of the strength of the relationship between variables in nonlinear
models. They share most of the properties of the correlation coefficient and
they reduce to the usual correlation coefficient in the bivariate normal case.
For this reason we call them correlation curves. We show that, in a certain
sense, they quantify Lehmann’s notion of regression dependence. Finally,
the correlation curve concept is illustrated using data from a study of the
relationship between cholesterol levels x and triglyceride concentrations y
of heart patients.

1. Introduction. For bivariate experiments where the contour plots are
nearly shaped like lemons or ellipses, the correlation coefficient p is a very
concise and convenient measure of the strength of the association between the
two random variables X and Y. However, in many interesting cases, the
contour plots cannot be assumed to be elliptical. For instance, Fisher (1959)
reported on studies in psychology and other fields where the association
between the response variable Y and covariate X is strong for large values of
X = x, but the association is weak or nonexistent for small x. In particular,
Fisher describes studies where the association between a score X giving level
of brain disease is strongly associated with an independently assessed score Y
indicating level of pathological behaviour for patients with large values of
X = x, but the association gets weaker as X = x decreases. Fisher gives an
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Fic. 1. A typical twisted pear contour plot. x is level of symptom and y is level of disease.

associated contour plot and calls it a twisted pear. See Figure 1 which gives a
representation of J. Fisher’s contour plot.

Our next example is from financial analysis. Here studies [e.g., Karpoff
(1987)] of stock market behavior has revealed that the association between
change X in prices and volume Y moves from negative to positive as X = x
goes from negative to positive. Using Karpoff’s plot and data description, we
conclude that the contour plot in this case looks somewhat like a twisted
sausage or a banana. See Figure 2.

In the statistical literature, there is also an abundance of examples where
the strength of association changes with the levels x of the covariate X. See
for instance Anscombe (1961), Bickel (1978), Carroll and Ruppert (1982, 1988),
Breiman and Friedman (1985) and Silverman (1986). The methods proposed
for handling such situations include transformation techniques where the X’s
and Y’s are transformed according to some criteria to the case where the
strength of the association does not change with the covariate values. How-
ever, in many applications the change in the strength of association is of
interest and this change is erased by the transformations. Another approach is
nonparametric regression which involves computing estimates of the condi-
tional mean or median of Y given X = x. These regression methods only
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Fic. 2. A contour adaption of Karpoff’s Figure 1. x is change in price and y is level of volume.
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consider average (or median) conditional behaviour and do not take into
account the width (in the y direction) of the contour plot. From Figure 1 it is
clear that the width of the contour in the y direction (heteroscedasticity) is
very important for the strength of association. Thus when the strength of the
association is of interest, the regression methods need to be supplemented
with a measure of spread for Y given X = x.

2. A correlation curve. Our approach is to construct a measure of local
strength of association by combining ideas from nonparametric regression and
Galton (1888). According to Galton [see Stigler (1986), page 297; (1989)], the
strength of the co-relation between X and Y can be taken as the slope of the
regression line computed after X and Y have both been converted to standard-
ized scales X' =(X—pu;)/o; and Y' = (Y — u,)/0, where (u;,0,) and
(w4, 05) are location and scale parameters for X and Y, respectively.

When (X,Y) is bivariate normal N(uq, u,, 02, 02, p), this leads to the
familiar formula

p = o,B/0, (normal case),

where B is the regression slope when Y is regressed on X. Next we introduce
the familiar [e.g., Bickel and Doksum (1977), page 36] decomposition

of = var(Y) = variance explained + residual variance

= (0,8)® + ¢ (normal case),

where 2 = ¢(1 — p?) = var(Ylx) = var(Y|X = x) is the variance of Y given
X = x. We can now write

o B
[(01B)2 + 0'2]

In this representation we see how the correlation coefficient p is determined
by the regression slope B and the residual variance o2. The representation
also suggests that in the nonnormal world of twisted pears and sausages, a
very natural local measure of the strength of the association between Y and X
near X = x is the correlation curve

a1B(x)
[{018(x))* + o%()]

where B(x) = /(x) is the slope of ‘the nonparametric regression u(x) =
E(Ylx) = E(YIX = x), 0%(x) = var(Ylx) is the nonparametric residual variance
and of = var(X) as before. This correlation curve concept makes sense only
when X is a continuous random variable, in fact, we assume that u(x) =
E(Ylx) is differentiable. The distribution of Y can be discrete or continuous.
We assume that ¢ and o%(x) exist.

p(x) measures the strength of the association between X and Y locally at
X = x. Thus, in the price-volume example (Figure 2), the correlation curve

(2.1) p= (normal case).

1/2

(2.2) p(x) = (general case),

1/2
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would be negative for x negative and positive for x positive. More generally,
for some number x,, we could have p(x) negative for x < x, and p(x) positive
for x > x,. On the basis of price-volume data we could find the region
“x <x,,” where p(x) is significantly negative and the region “x > x,,”” where
p(x) is significantly positive. In the J. Fisher example where small x has little
or no influence on the distribution of Y while large x does (Figure 1), p(x)
would start out near zero and then increase toward one.

In most applications of linear statistical analysis, the regression slope is of
greater interest than the regression line. We are suggesting that the same may
be true in nonlinear analysis. The local regression slope, which focuses on
change in expected Y as x changes, may be of greater interest than expected Y
for a given x. Our approach provides a standardized version of the local
regression slope. Moreover, in linear statistical analysis, the Galton-Pearson
correlation coefficient, which was obtained as a standardized version of the
regression slope, is useful as a universal scale-free measure of the degree of
linear relationship. It is used to compare the results from different experi-
ments using different scales when studying the same phenomena, and it
facilitates communication between researchers in different fields as well as
between statisticians and other scientists. We are suggesting that the concept
of correlation similarly can play an important role in nonlinear curve estima-
tion by providing a universal scale-free standardized version of the local
regression slope.

ExamMPLE (A generalized linear model [GLM]) Consider the GLM of the
form

Y=0; +a,8(X)+h(X)e,
2

where X and ¢ are independent with variances of and o2, and where
E(e) = 0. By appropriate choices of g and A as well as distributions of X and
g, the contour plots of the density f(x,y) of (X,Y) will resemble the twisted
pear in Figure 1. For instance, if ¢ has a standard normal distribution, then
(Ylx) has N(a; + ayg(x),h%(x)) distribution, and if the link function g(x) has
an increasing derivative g'(x) and if A(x) is constant or decreasing, then the
twisted pear model results for most choices of the distribution of X. If A(x) is
constant, the correlation coefficient is the appropriate measure of strength of
association between g(X) and Y. However, if we are interested in the strength
of the relationship between X (the level of the symptom) and Y (the level of
the disease), then the correlation curve p(x) is the appropriate measure of the
strength of the relationship even if A(x) is constant in x. In our GLM with
g(x) differentiable, we have ‘

ay0:8'(%) .
[{azo'lg’(x)}2 + o-ezhz(x)] i

If g(x)=x2/2 and h(x) =1, x > 0 (which corresponds to a twisted pear
model), we find p(x) = ay0x/[{ay0,x}? + 021/ In this case, the strength of

p(x) =
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the association starts out at zero when x = 0 and increases until x reaches its
largest possible value. To obtain a comparison with the correlation coefficient
pxy between X and Y, we further assume that X has a uniform distribution
on [0,1]. In thise case p(x) = ayx/[{ayx}® + 120212 and pyy =
(1/2)ay/1(12/45)ai + 120212, A particularly simple and instructive case is
@, = 1 and 02 = 11/180. In this case p = 0.5 and p(x) = x/[x2 + (11/15)]'/2.
Thus p(x) increases from 0 to 0.76 as x increases from 0 to 1. On the other
hand, the correlation coefficient between Z = g(X) = X%2/2 and Y is p,y =

ay/ yaj + 4502 which in the case a, = 1,02 =11/180 equals p,y =
1/ v3.75 = 0.52.

3. Correlation curves from conditional correlation. If we apply the
usual correlation formula to the conditional distribution of (X,Y) given
X = x, we get the value zero. To see this recall that p? < 52, where 72 =
var(u(X))/var(Y) [Cramér (1946)]. In the conditional distribution L(X, Y|X =
x), n? reduces to zero since var(u(X)|X = x) = 0, while (except in trivial cases)
var(Y|X = x) > 0. If instead of conditioning on X = x, we condition on X in a
neighborhood of «x, the conditional versions of p? and 1?2 will be positive but
close to zero even when there is a strong relationship between X and Y.

One approach to overcoming the problem that the naive definition of local
correlation in terms of conditional correlation gives the value zero is to
consider the ratio of the two conditional correlations obtained by conditioning
on two small neighborhoods N,(x,) =[x, — oyh,x, + o] and N,(x,) =
[x; — oyh, x; + oyh], x4 # x,. Even though the conditional correlations tend
to zero as A — 0, the ratio

corr(X,Y|X € N,(x,))
corr(X,Y|X € Ny(x,))

R (%, %) =

will have a sensible limit. In fact, corr((X, YIX € N,(x,)) is to first order
hoyB(xy)/ V8 a(x,). This result holds whether we use the Galton—Pearson p2
or the Pearson 12 = var(u(X))/var(Y) to measure correlation.

Note that this approach is very similar to looking at the rate at which the
conditional correlation tends to zero. That is, we could define

corr( X, YIX € Ny(x)) _ oy B(x)
h/V3  o(x)

as a local measure of dependence which has the properties of correlation except
it is not between —1 and 1 and it dées not reduce to p in the normal case.
Note that when o(x) > 0,

p(x) = sign{£(x)}[1 + £ %(x)] "%

Thus p(x) has an interpretation as the conditional correlation factor £(x)
mapped onto the interval [—1,1] in such a way that it coincides with the
Galton-Pearson correlation coefficient in the normal model.

£(x) = lim
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4. General correlation curves and their properties. In Section 2 we
defined a correlation curve in terms of u(x)=E(Ylx), of = var(X) and
o0%(x) = var(Y|x). However, just as there are many measures of location and
scale, there are many correlation curves. These are obtained by replacing u(x),
o? and oZ(x) by other measures of location and scale. This may be desirable
since u(x), o and o(x) do not always exist. Moreover, they are very sensitive
to the tail behaviour of the distributions of X and (Y]x). Thus, in our
definition of the correlation curve p(x), we replace u(x) and o(x) by measures
m(x) and 7(x) of location and scale in the distribution L(Y]X = x) of Y given
X = x. We assume only that m(x) and 7(x) are location and scale parameters
in the sense that they satisfy the usual equivariance and invariance properties.
Similarly, we replace o, by a scale parameter 7, for the distribution of X. Our
basic assumption is that m'(x) = (d/dx)m(x), 7, and 7 (x) exist. Thus X has
a continuous distribution while the distribution of Y may be discrete or
continuous. Each time we specify m(x), 7, and 7(x) we get a correlation curve
whose formula is

mm (x)

frym ()} +72(x)]

(4.1) p(x) = pxy(x) = [

It will sometimes be convenient to write (4.1) in the equivalent form

-1/2
b

(4.2) p(x) = £ {1+ [ (x)/7(x)] %)

where the sign + is the same as the sign of m/(x).

Rényi (1959) and Bell (1962) have discussed axioms that global correlation
measures should satisfy. Local correlation measures should also satisfy such
axioms. Under appropriate conditions, the correlation curves satisfy the follow-
ing eight basic properties (axioms) of correlation. [In these axioms, the expres-
sion “for all x”” means for all x in the support S = {x: 0 < Fy(x) < 1} of the
distribution Fy(x) of X.]

AxioMm 1. Standardization to the unit interval. From (4.1), we observe
—1<p(x) =<1 forall x.
AxioM 2. Invariance and equivariance. Each correlation curve p(x) has

invariance and equivariance properties that are direct analogs of those of the
correlation coefficient p, that is, the following proposition holds.

ProposITION 1. If X* =a + bX and Y* = ¢ + dY with bd # 0, then, for
all x* in the support of the distribution of X*, pxsy«(x*) = sign(bd)pxy(x),
where x = (x* — a)/b.

Proor. In the proof we use an asterisk to indicate parameters computed
for X* and Y*. Using the invariance and equivariance of the location and
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scale parameters we find
¥ = |blrq, *(x*) = |dIr(x)
and

*

—om(552)) = dtm o),

dx*
thus the result follows. O

(%) =d{

AxioMm 3. p(x) =p for all x in the bivariate normal case. This axiom is
important since we want to connect our local correlation concept to a notion
that people are familiar with. It gives the sense that p(x) measures local
strength of association in familiar correlation units. It turns out that in order
to achieve p(x) = p in the bivariate normal N(u,, u,, 02, 02, p) case, we need
to add the condition that 7, and 7(x) are scale parameters of the ‘‘same type.”
We give an example where p(x) # p, and then explain the term ‘“same type.”

ExampLE. Let 7, be the interquartile range IQR(X) = Fy0.75) —
Fz%(0.25) and let 7%(x) = var(Ylx). In the normal case all measures m(x) of
location for (Y]x) equal E(Y]x) and thus

71020 /0y _ pPT1/01
[(7'10'2!7/0'1)2 + 0'22(1 - P2)]1/2 [1’2(7'1/‘7'1)2 +1- le

Now p(x) # p since 7,/0; = 1.348 # 1.

What goes wrong in this example is that IQR and var are different ‘““types”
of scale parameters. We say that two scale parameters are of the same type if
they are equal when applied to the same distribution.

(4.3) p(x) =

12

ProposITION 2. If 7, and 7(x) are the same type of scale parameters, and
if (X,Y) is bivariate normal with Galton-Pearson correlation coefficient p,
then p(x) = p for all x.

Proor. Since (Ylx) is normal with variance o2(1 — p?), we can write 7(x)
as 7(x) = 7,)/1 — p? where 7, is the scale parameter 7(x) applied to L(Y).
Since X and Y both have normal distributions, invariance and equivariance
yields (oy/0¢) = (15/7,). The result now follows from (4.3). O

It follows that if 72 = var(X) = ¢2 and 7%(x) = var(Ylx), then p(x) = p.
Similarly, p(x) = p when 7, = IQR(X) and 7(x) = IQR(Y]x).

p(x) as defined by (4.1) is called a correlation curve only when 7, and 7(x)
are the same type of scale parameters.

AxioM 4. p(x) = 0 for all x when X and Y are independent. Since in this
case m'(x) = 0, the only condition needed for this result to hold is that
7(x) > 0 for all x.
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AxioM 5. p(x) = +1 for all x when Y is a function of X. Suppose Y = g(X),
then, since m(x) is a location parameter, m(x) = g(x), and since 7(x) is a
scale parameter for Yl|x, then +(x) = 0. It follows that p(x) =
7.8 (x)/{[7,8'(x)]> = +1 provided that v, and g'(x) exists and are nonzero.
Moreover, p(x) = 1 when g'(x) > 0 and p(x) = —1 when g'(x) < 0. The case
g'(x) = 0 is handled by defining 0/0 = 1.

AXIOM 6. p(x) = +1 for almost all x implies that Y is a function of x. Note
that p(x) = + 1 implies that 7(x) = 0. Thus the result holds provided r(x) = 0
for almost all x implies that Y = g(x) for almost all x for some function g.
When 7(x) = var(Y|x), this condition holds. However when 7(x) = IQR(Y]x),
it does not hold.

Axiom 7. p(x) > 0 when X and Y are regression dependent. The pair
(X,Y) is positively regression dependent if Pr(Y < y|X = x) is nonincreasing
in x [Lehmann (1966)]. Let Y(x) denote a random variable with distribution
Pr(Y < yIX = x). Then regression dependence means that for x; < x,, Y(x,) is
stochastically smaller than Y(x,). It follows that if the location parameter
m(x) for Y(x) has a derivative m'(x), then m/(x) > 0 and p(x) > 0.

AxioM 8. p(x) increases with increasing regression dependence. Let (X,Y;)
and (X,Y,) be two pairs of random variables, let Y,(x) and Y,(x) denote
random variables with distributions L(Y;|x) and I(Y,|x), and let (m (x), 7,(x))
and (m(x), 75(x)) denote location and scale parameters of the same type for
Y(x) and Y,(x), respectively. The pair (X, Y;) is said to be more regression
dependent than the pair (X,Y,) if Y,(x)/7(x) is stochastically more increas-
ing than Y,(x)/7,(x) in the sense that for each & in some neighborhood
(0,¢) of zero, {Yi(x +8) — Y(x —8)}/7(x) is stochastically larger than
{Yy(x + 6) — Yy(x — 8)}/75(x). It follows that if m,(x) and m,(x) are location
parameters such that the location of a difference is the difference of the
locations and if m/|(x) and m/y(x) exist, then {m'}(x)/7,(x)} = {m'y(x)/75(x)}.
Thus, if we let p,(x) and p,(x) denote the correlation curves corresponding to
(X,Y)) and (X, Y,), then it follows from (4.2) that p,(x) > p,(x) for all x.

AxioM 9. Interchangeability of X and Y. Note that pxy(-) # pyx(+) except
in very special cases. However, we get a local measure of correlation where X
and Y are interchangeable by setting

nxy(x,¥) = [Sign{pXY(x)}] {PXY(BC)PYX(y)}l/z’

if sign{pxy(x)} equals sign{pyx(y)}
=0, otherwise.

REMARK 4.1. A definition of “more regression dependent’ based on com-
paring the Kolmogorov distance between Y (x;) and Y,(x,) to the Kolmogorov
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distance between Y,(x,) and Y,(x,) was considered by Bell and Doksum
(1967).

REMARK 4.2. Suppose we consider using a local measure of the scale of X
rather than 7, in our formula (4.1) for p(x). Thus we could consider using
1/f(x), where f is the density of X, as a local measure of scale. In this case
(4.3) shows that if we want to satisfy axiom 3, we need to standardize 1/f(x)
by dividing it by 1/¢(x — u,)/0,), where ¢ is the N (0, 1) density. This leads
to replacing 7, in (4.1) by 7.(x) = ¢((x — p,)/0,)/f(x). The resulting more
complicated correlation curve is not very different from p(x) when f(x) is
nearly bell-shaped.

5. A data example. We will illustrate the correlation curve (2.2) using
readings of plasma lipid concentrations taken on 371 patients in a heart study;
see Scott, Gotto, Cole and Gorry (1978). For each patient we have the levels of
cholesterol x and triglyceride y. This data set has also been analysed by
Silverman [(1986), pages 81-83].

Local weighted linear regression will be used to estimate the functions
u(x) = E(Ylx), B(x) = du(x)/dx and o (x) = {E[Y — u(x))?|x}*/2. The meth-
ods for u(x) and B(x) used here are from Fan (1993). They are similar to
methods considered by Stone (1977), Cleveland (1979) and Cleveland and
Devlin (1988). The methods are as follows: Let K(u) = 0.75(1 — «®)I(Ju| < 1)
denote the Epanechnikov kernel. Consider 100 grid points along the x axis.
Let x, denote any one of the grid points and let y = a(x,) + b(x,)x be the
weighted least squares line computed from the data (x,, Y,), . (xn, Y,) with
weights wy, ..., w,, where w; = K((x; — x,)/h), h = s, and s1 is the sample
standard deviation of xy,...,x,. The estimates A(x,) and B(x,) of u(x,) and
B(x,) are now a(x,) + b(xo)x0 and b(x,), respectively. Similarly, to estimate
o3(xy) = E(Y — u(xo)Plxy), let y = c(x,) + d(xy)x be the weighted least
squares line computed from the data (xl, £2),...,(x,, &%) with welghts
wy, ..., w, as before, where &, =Y, — a(X,)] is the zth residual, i = 1,.

The estlmate ¢%(x,) of o (xo) is now c(x,) + d(x)x, and the estimate of the
local correlation p(x,) at x, is p(x,) = 5,8(x,)/{s28%(x,) + 62(x,}/2 Fi-
nally, the above procedures are repeated for the 100 grid points and the curves
/.L(x) é(x), B(x) and p(x) are completed by using standard software to

“connect the dots”. The curves are plotted only for the central 90% of the x
values due to the large uncertainly, as expressed by the mean squared error, in
the tails.

Figure 3 gives the cholesterol and triglyceride data together with the mean
curve i(x,). Figure 4 gives the estimated standard deviation curve ¢(x). Both
Ai(x) and &(x) are increasing as x increases from small to moderate levels and
both level off as x approaches higher cholesterol levels thereby illustrating
both nonlinearity and heteroscedasticity.

Figure 5 gives the slope curve fB(x) and shows how the estimated local
regression coefficient drops from about one for the low cholesterol group to
about zero for x = 245 and increases to about 0.8 for x = 285. Figure 6
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F1G. 3. Scatter plot of plasma lipid concentrations with estimated local mean regression.
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Fic. 5. Estimated local regression slope with 90% pointwise confidence band.
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Fic. 6. Estimated local correlation with 90% pointwise confidence band.

combines B(x) and &(x) into a measure of the local strength of the relation-
ship between X and Y in terms of correlation units on the interval [—1, 1].
The estimated local correlation starts out about 0.5 for the low cholesterol
group, drops off to a value close to zero around the cholesterol level 245 and
reaches the value about 0.35 for the moderately high cholesterol level 285. The
dotted line gives an approximate 90% pointwise confidence band for p(x)
obtained by using the 6 method and weighted least squares standard error
software appropriate for the fixed design points case where x;, x,,...,x, are
regarded as nonrandom. Finally, Figure 7 gives approximate 90% Bonferroni
simultaneous confidence intervals at the 10th,20th,..., 90th percentiles
£1,£5...,89 Of X1, %,,...,x,. Since only the first four of these intervals are

1.0 1

05 1

0.0 1 v l l

—eee e

160 180 200 220 240 260 280
cholestrol

Fic. 7. Estimated local correlation with 90% simultaneous confidence intervals.
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above the horizontal p(x) = 0 axis, we conclude that the local correlation
between cholesterol and triglyceride is significantly positive at the lower
cholesterol level £,,,= 165, %45 = 178, xo3 = 189 and #,, = 189 while
there is no significant association at the higher cholesterol levels.

We consulted a medical expert (Jon Bremer) on cholesterol and fatty
substances who said that measurements on cholesterol and triglyceride are
known to be positively correlated but that it is thought that this positive
correlation does not include individuals with high values of cholesterol. Our
results give a statistical confirmation of this statement: At cholesterol levels
x = 165, 178, 189 and 198, the estimated correlations are 0.530, 0.453, 0.456
and 0.392, respectively. They are significantly different from zero at level
a = 0.10. At cholesterol levels x = 209, 221, 233, 245 and 265 the estimated
correlations are 0.239, 0.127, 0.052, 0.011 and 0.171, respectively. They are
not significant at level of significance a = 0.10. High values of triglyceride is
not considered to be a risk factor for heart disease to the same extent as high
values of cholesterol are.

The significance claims made in this section are based on approximations
whose closeness to the actual probabilities will be the subject of a future study.
In particular, it is conjectured that closer approximations can be obtained by
using variance stabilizing transformations of p(x).
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