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GOODNESS OF FIT TESTS FOR SPECTRAL
DISTRIBUTIONS!

By T. W. ANDERSON
Stanford University

The spectral distribution function of a stationary stochastic process
standardized by dividing by the variance of the process is a linear function
of the autocorrelations. The integral of the sample standardized spectral
density (periodogram) is a similar linear function of the autocorrelations.
As the sample size increases, the difference of these two functions multi-
plied by the square root of the sample size converges weakly to a Gaussian
stochastic process with a continuous time parameter. A monotonic trans-
formation of this parameter yields a Brownian bridge plus an independent
random term. The distributions of functionals of this process are the
limiting distributions of goodness of fit criteria that are used for testing
hypotheses about the process autocorrelations. An application is to tests of
independence (flat spectrum). The characteristic function of the Cramér-
von Mises statistic is obtained; inequalities for the Kolmogorov—Smirnov
criterion are given. Confidence regions for unspecified process distributions
are found.

1. Introduction. A model used frequently for time series analysis is a
stationary stochastic process. If the process is Gaussian, it is completely
determined by the mean of the process (a location parameter), the variance of
the process (a scale parameter) and the sequence of autocorrelations. The
analysis of time series differs from many other statistical analyses because of
the possible dependence among observations; that dependence may be charac-
terized by the autocorrelation sequence. For any time series analysis it is
essential to make inferences about the autocorrelations.

The Fourier transform of the autocorrelation sequence provides an alterna-
tive view of the pattern of dependence. For many purposes it may be more
enlightening. In this paper we consider the standardized spectral distribution
function as an appropriate description of the pattern of dependence, and we
study problems of inference concerning it. ‘“Standardized” means that the
spectral distribution is defined in terms of correlations, rather than covari-
ances. The same information is contained in the autocorrelation sequence, the
standardized spectral density and the standardized spectral distribution, but
the three forms differ in presentation.

The first inference problem treated here is the testing of a null hypothesis
that completely specifies the pattern’ of dependence; for example, the null
hypothesis might be that all of the autocorrelations are zero or, equivalently,
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that the spectral density is constant. To test this hypothesis we compare the
sample standardized spectral distribution with the process standardized spec-
tral distribution by means of a goodness of fit criterion, such as the Cramér-von
Mises criterion or the Kolmogorov—Smirnov criterion. Asymptotic and other
approximate distributions are obtained. The mathematics is similar to that of
goodness of fit tests of probability distributions, but differs in an essential way.
A goodness of fit test usually is consistent against all alternatives, in this case
against all correlation structures different from the null hypothesis.

The Kolmogorov-Smirnov criterion can be inverted to give a confidence
region for an unspecified standardized spectral distribution. Such a confidence
region can be used to infer the increase in the distribution over various
intervals of frequency.

Grenander and Rosenblatt (1952, 1957) studied the asymptotic distribution
of the difference between the conventional sample spectral distribution func-
tion and the conventional process spectral distribution function. They argued
that as a process it converges to Brownian motion with a transformed time
parameter under the condition that the eighth-order moments of the innova-
tions in the stationary linear process are finite. They proved that the
Kolmogorov—Smirnov criterion for the conventional spectral distribution con-
verges in distribution to the supremum of the limit process. This unstandard-
ized spectral distribution, however, is not suited to questions of dependence
(i.e., patterns of correlation), and the limiting distributions depend on fourth-
order cumulants.

Bartlett (1954, 1966) proposed the sample standardized spectral distribution
for testing hypotheses about correlations and asserted that the asymptotic
distribution would not depend on fourth-order cumulants, but he did not find
any of these distributions. Bartlett treated in more detail an analogue, namely,
the integral (or sum) of the sample spectral density (periodogram) divided by
the hypothetical process spectral density. This definition leads to the Brownian
bridge, and the maximum of the difference between this function of the
frequency and the frequency (over [0, 7]) has the asymptotic distribution of
the Kolmogorov—-Smirnov statistic for goodness of fit of probability distribu-
tions. Priestley [(1981), Section 6.2.6] summarized these developments. See
also Dzhaparidze and Osidze (1980).

Dahlhaus (1985a) showed that the difference between the sample and
process standardized spectral distributions multiplied by the square root of the
sample size converges weakly to a Gaussian process under several alternative
conditions, always assuming finite eighth-order moments. He obtained the
covariance function, but expressed it differently from the form used in this
paper. He showed that the supremum of the absolute value of the limiting
process does not have the Kolmogorov—Smirnov distribution in general and
expressed the probability in terms of a boundary crossing probability involving
the Brownian motion process. Dahlhaus (1988) gave a brief formal treatment
of the problem with estimated parameters.

The thrust of this paper is to develop the treatment of tests of goodness of
fit and confidence regions based on the knowledge of the limiting Gaussian
distribution to actual applications. This study includes methods of computing
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the goodness of fit statistics, finding their limiting distributions, providing
probability inequalities and developing asymptotic confidence regions. As noted
above, in general the process with transformed time parameter is different
from the Brownian bridge. The limiting distributions are valid under weak
conditions, not requiring eighth-order moments or stationarity.

2. The empirical process. Consider a stationary stochastic process {y,},

t=...,-10,1,..., with &£y, = 0, autocovariance function
(2.1) EYYein =0(h), h=...,-1,0,1,...,
and autocorrelation function
(2.2) p,=0(h)/o(0), h=..,-1,0,1,....
We define the standardized spectral density as
1 oo
(2.3) f(A)==— Y p,cosAh, -—-mw<A<m.
27,

Note that the coefficients of the trigonometic functions are the autocorrela-
tions, not the autocovariances. The Fourier transform of the standardized
spectral density is

(2.4) pe= [ F(Mcosrgdr, g=..,-1,0,1,....

Knowledge of the standardized spectral density is equivalent to knowledge of
the autocorrelations. The pattern of correlation can be described equivalently
in terms of the autocorrelations or the standardized spectral density.
Since f(A) = f(—A), we define the standardized spectral distribution as
(2.5) F(A) = 2[f(v) dv = P L
0 h=1 h

mw

Note that F(mr) = 1; the standardized spectral distribution has the properties
(nonnegative increments) of a probability distribution on [0, 7r]. In this paper
we shall be concerned with inference about the standardized spectral density
or distribution.
Inference is based on a sample y,, ..., y;. We define the sample autocovari-

ance sequence

1 T-4
(26) Ch=C_p=7% Eytyt+h’ h=0’1"" .

T 57
The sample autocovariance is a biased estimator of the process autocovariance
(h > 0), but it is asymptotically unbiased. We define the sample autocorrela-
tion sequence

(2.7 r,=r_,=—, h=0,1,...,
Co

the standardized sample spectral density (popularly mislabelled as the peri-
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odogram)

2 T-1
=5 Y, r,cosAh, —m<A<Lm,
T h=—(T-1

Zyt

t=1

(28) Ip(A) =

Co
and the standardized sample spectral distribution function

A 1 T-1 gin Ak
(2.9) Fr()) = 2[0 Ip(v)dv = ;(A + 2h§1rh ;

We shall study inference based on VT [FT(A) — F())), 0 < A < 7; the limiting
distribution will be obtained as T' — .

Because patterns of dependence can be described in terms of the autocorre-
lations, the standardized spectral density and distribution are relevant to
questions of dependence, rather than the usual functions defined in terms of
autocovariances; the scale parameter of the process is irrelevant. An additional
advantage of the standardization is that the asymptotic distributions are valid
under much more general conditions than without the standardization, but
general conditions will be stated later in another paper [Anderson (1993)].
Another advantage is that F(A) and F(\) have properties of theoretical and
empirical probability distribution functions, respectively.

The asymptotic theory is developed for linear processes

(2.10) Vo= Y vilbsy, t=...,—1,0,1,...,

where Zs 0¥e <®, &u,=0,&u?=0?and u,u, =0, t # s. In particular, if
the u,’s are independently identically distributed,

(2.11) Yyl <o
s=0
and
(2.12) Y Vsy?
s=0

then for any integer H
(2.13) VT (ri = P05 VT (14 = pr)] =4 N(O, W),
where the (g, &) element of W is

e

Wen = L (PragPron + Preghrin = 204PrPrg
(2.14) r e

—2pgP,Prin + 20,P1P2).

Note that O-(h) = Uzzs 0YsYs+hs h = 0 ]- . and Pr = z:s 0737s+h/zs 073’
h=0,1,....[If y, is defined by (2.10), {ph} f()t) and F(A) are defined even if
the process is not stationary.]
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The limiting distribution (2.13) was given by Bartlett (1946) under the
(implicit) assumption that &u?% < ». That the limiting distribution is valid
under the assumption of only &u? < » was shown by Anderson (1959) for
autoregressive processes and by Anderson and Walker (1964) for y, =

* _YsUss and T3___lsly? < «. Hannan and Heyde (1972) relaxed the
condition on {y,} to (2.12) when the sum was over 0,1, 2, ... and the condition
of iid u, to martingale differences. Anderson (1992) has further relaxed the
conditions on the martingale differences.

Consider
VT [ B7(0) — F(0)] = S"”hf(rh o)
(2.15)
® sin Ah
——hZ sn A \/_Ph
T p=T

We treat VT [I?’T()\) — F())] as a stochastic process on [0, 7]. As T — «, this
process converges weakly to a Gaussian process with covariance function

47{G[min(A,v)] — G(A) F(v) — F(A)G(v) + G(7)F(A)F(v))

) Glmin(A,1)]  G(A) G(»)
(2.16) ““’G(”{ G(m  G(m) G(w)
+[Gem - o] 5 - 70
G(m) G(m) ’
where
(2.17) G(A) = 2[0)\]”2(1/) dv.

The first term in (2.16) was given by Grenander and Rosenblatt (1957).
Durlauf (1991) derived the special case of (2.16) when f(A) = 1/(27). Dahlhaus
(1985b) gave the first form of the covariance function. See also Shaman (1971).

We can simplify the covariance function of the process by making the
monotonic transformation

G
CG(m)’

to 0 < u < 1. The inverse transformation [defined properly if f(A) > 0, 0 <
A <mlis

(2.19) A= G‘I[G(w)z;], 0<ucx<l.

The covariance function of the limiting distribution of

(220)  Yp(u) = VT (Fp(G Y [G(m)ul} - FG™[G(m)u]))
is

(2.21) 47G(w){min(u,v) —uv + q(u)q(v)}, O<u,v<l,

(2.18)

<AL,
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where
(2.22) q(u) =u - F{GYG(m)ul]}.

Note that ¢(0) = g(1) = 0. It is of interest that q(u) =0, 0 <u <1, is
equivalent to

(2.23) G(( )) F(A) _zf [f2(V) _f(,,)] dvr=0, 0<Ac<l1,

G(m)
which in turn is equivalent to f(¥) f(v) — G(w)]/G(7) = 0 a.e. In particular,
q(u) =0 for f(v) =1/(2m) or p; = py = +-+ = 0. Durlauf (1991) has studied

tests of lack of correlation.
Let B(u) be the Brownian bridge; that is, £B(u) = 0

(2.24) &B(u)B(v) = min(u,v) — uv
B(u) is Gaussian and sample paths are continuous with probability 1. Then

(2.25) Yr(u) =, B(u) +q(u)X,

1
2ymwG ()
where X has the standard normal distribution N(0, 1), and the covariance
matrix of B(u) + q(u)X is

(2.26) k(u,v) = min(u,v) —uwv + q(u)q(v).

This covariance function is larger than the covariance function of B(u),
min(u, v) — uv, in the Loewner sense; that is,

(2.27) folfolk(u,v)l(u)l(v) dudy > foljol[min(u,u) — w]l(u)l(v) dudv

for any I(-) for which the integrals are defined. Thus
(2.28) Pr{B(u) + Xq(u) € ¢} < Pr{B(u) € ¢}
for any convex symmetric € [Anderson (1955)].

3. Test of a specific hypothesis.

3.1. Test criteria. Consider testing the null hypothesis
(3.1) H: f(A) = fo(A),

where f,()) is completely specified. Among the criteria available to test this
hypothesis are the Cramér-von Mises criterion

1 T Tr A 2
(3.2) Wf;mu)dw 3Gy o Er(D) = F(W] 130 dr,

the Kolmogorov-Smirnov criterion

— Fy()]

1 T
3.3) ————= sup |Yy(u sup —F——
(8.9) TG(m) 0<u<1] r(w)] = 0<rzn 2/7G(T)
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and the Anderson-Darling statistic. If the null hypothesis is fo(A) = 1/(2m),
that is, complete lack of correlation, the asymptotic tests are exactly those of
goodness of fit of probability distributions. See, for example, Shorack and
Wellner (1986) for a review of such tests.

To carry out a test procedure, we would like to know the limiting distribu-
tion of the criterion under the null hypothesis. This is the distribution of the
functional when the limiting distribution of Y;(«) is Gaussian with covariance
function (2.21); under the null hypothesis q(u) is specified. The justification
for this assertion is the continuous mapping theorem [Theorem 5.1, Billingsley
(1968), for example].

3.2. The Cramér-von Mises criterion. We shall show how to obtain the
characteristic function of the Cramér—von Mises statistic. Any function k(z, v),
0 < u, v < 1, that is symmetric in z and v, continuous and square integrable
(in one and both variables) can be expressed as

= 1
(3.4) h(u,v) = Y () f(v),

J=1%

where A; is an eigenvalue and f,(u) the corresponding normalized eigenfunc-
tion of the integral equation

(35) F(u) = A["h(,0) F(v) do,
0

and

(3.6) [ ) f(w) du = 5,

where 8,, = 1and §,; = 0,i # j. If h(0,0) = h(1,1) = 0, then f,(0) = f,(1) = 0
If h(u,v) is the covariance function of a stochastic process Z(u), 0 < u < 1,
then A(u,v) is positive definite and A; > 0. The series (3.4) converges abso-
lutely and uniformly in the unit square. If Z(x) is Gaussian and £Z(u) = 0
then it has the representation

(3.7 Z(u) = X

1
L x ),
I e Xifiw)

where X, X,,... are independent N(0, 1) variables. With probability 1,

1
3.8 B? du = X X du = X2
( )[ (u) du [ 21\/— f(u)‘/— fi(w) du JZI
The characteristic function of (3.8) is

® 2 . . ~-1/2
(3.9) é’exp(it Y %—) =TI (1 - _2;‘2) .

J=1 7
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The function D(A) = T17_,(1 — A/A;) is known as the Fredholm determinant
of the integral equation (3.5).

The Brownian bridge with covariance function A(u,v) = min(u,v) — wv
has the representation (3.7) with A; = (w j)? and fi(w) = V2 sin jmru. The
characteristic function (3.9) is (sin o t /V2it)~'/2. Anderson and Darling
(1952) have given the distribution and a table of it.

We now turn to the case of gq(u) # 0. We define

i = [ a(u) fi(w) du

(3.10) 22 = [ GG ;
G(w)[o SIn[_rn'G(ﬂ_) [W—F(A)]f (A) dA.

Then q(u) = I3_ e, f{(w). The process B(u) + Xq(u) has the representation

o Xi
(3.11) B(u) + Xq(u) = Y, )t +an) fi(u),
im1\VA;
and the Cramér-von Mises criterion has the representation

S = fol[B(u) + Xq(w)]? du

'/:E .{;1 ( \;{)\J_ + an) fj(u)} du

2

X.

\/XJT +a;X ) Z YJ2,
J

where Y, = X,/ ‘/)T + a;X. The Y’s are normally distributed with £Y; =

EY? = 1 //\ + o and (f VY, = i # j. The statistic (3.12) can be approx1-
mated by a ﬁnite sum

(3.12)

Jj=1

a;a;,

N
(3.13) Sy= Y Y2
The difference between (3.12) and (3.13) has expectation

© © 1
(3.14) ey YJ~2= b ()t_ +aj2 ,

j=N+1 j=N+1

which can be made arbitrarily small by taking N sufficiently large. Hence, as
N — o, the distribution of S, converges to the distribution of S and the
characteristic function of Sy approaches the characteristic function of S.

Let Yy be the N-vector with Y, as the jth component. The covariance
matrix of Yy is £Yy Yy = Ay + ayd'y, where Ay is the diagonal matrix with
1/X; as the jth diagonal element and ay is the vector with «; as the jth
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component. Then the characteristic function of Sy is
N

ity . ;N —1/2 . -1/2

(3.15) fe tYNYN=|IN_ 2lt(AN+aNaN)| = J|=I1(1 - 2lt¢jN) )

where ¢;y is the jth characteristic root of Ay + ayad'y, that is, the jth
zero of

A v — Iyl = N
(3.16) = |AN - ¢IN|{1 + alN(AN - d’IN)_laN}

| II{ y }
—Ay-—oly{1+ ¥ —21 —
N N =Ry

for ¢ #1/A;, j = , N. We shall write
DX (v) =|IN —v(Ay t+ ayay)]

(3.17) ﬁ(l——){l-vzz o} _Vga?}.

i=1 J]_JV

Since I3_;A; ! < @ and I5_,a? = [lq%(u) du < =, D¥(v) converges to
J=17j J=1%j 0 N

2

om0 Ao

i=1 i

@
v Y a?
j=1

as N — o. The characteristic function of S is 1/ D*(2it) .

The process B(u) + Xq(u) has the covariance function k(u,v) given by
(2.26). Then %(u, v) has a representation (3.4) where now the A; and f;(u) are
the eigenvalues of the integral equation

(3.19) g(u) = vjolk(u,v)g(u) dv.

To avoid confusion we denote these eigenvalues and eigenfunctions by »; and
&;- The process has a representation (3.7) and S has a representation (3.8)
with characteristic function (3.9) with A; and f;(u) replaced by »; and g,(u).

The characteristic function, which must be identical to 1/y/D*(2it) , can be
expressed directly as an integral without calculating the coefficients «;, as we
shall show. If g(u) is twice differentiable, (3.19) can be dlﬁ'erentlated twice

with respect to u to yield
(3.20) g"(u) +vg(u) =vCq"(u),
where C = [lq(u)g(u) du. J. B. Keller has pointed out that the solution of
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(8.20) depending on v is, for v + 7%2% j=1,2,...

(3.21) g(u;v) = ln\/_ {sm[\/_(u - 1)][ sin(Vv ¢)q(¢) dt

+sin(\/;u)f1sin[\/;(t - 1)]q(t) dt} +vCq(u).

When we multiply (3.21) by q(u), integrate from 0 to 1 and divide by C, we
obtain

9 1,1 .y _ 1 2
(322) 0=1-v jojoc(u,t, )q(uw)q(t) dudt [oq (w)du,

where

- ‘/;slln\/— sin(vv u) sin[Vv (¢ - 1)]

- \/;s11n\/— sin[Vv (u — 1)[sin(Vvt), u=>t.

The eigenvalues of k(u,v) are the values of v (# 72%j?) that satisfy (3.22).
The function c(u,#;v) is the resolvent or resolving kernel of the kernel
min(u, ) — ut; that is, it satisfies

(3.23) c(u,t;v) =

(8.24) c(u,v;v) = min(u,v) — uv + v/lc(u,t;v)[min(t,v) - tv] dt.
0

See Goursat (1964), for example.
The resolvent has the representation

@

1
(3.25) o(s,t50) = T ———1(5) f(0),
j=1%j
and
(3.26) [ [le(s,t;v)a(s)a() dsdt - i Y
070 =
Thus
sin Vv

(3.27) D*(v) =

7 {1 — szol[olc’(u,t;v)q(u)q(t) dudt — V[olq2(u)du}.

This is the Fredholm determinant of the integral equation (3.19).

When the explicit form (3.27) of the Fredholm determinant is intractable or
cannot be inverted, it can be approximated by the characteristic function of S,
given by (3.15). The values ¢,y,...,¢ny are the zeros of (3.16). Bunch,
Nielsen and Sorenson (1978) have given an algorithm for finding these zeros.
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The cumulants of S are given by

. = (1)’
(3.28) ;=271 - 1)1 Y (—) .
i=1\ ¥
They can also be calculated from the kernel (2.26). Let k(s,t) = k(s,¢) and
ki, i(s,8) = [ok;(s,u)k(u,t) du. Then

(3.29) K; = 2971(j - 1)![01kj(s,s)ds.

See Anderson and Darling (1952). The expression (3.28) is obtained from the
expansion of the logarithm of the characteristic function of S in powers of it;
the coefficient of (it)’ /j! is the jth cumulant. Equivalently, it is the coefficient
of v/ /j! in the expansion of — } log D*(»), given by (3.18) or (3.27). The first
two cumulants are

> 1 © 1
- - il 2 _ 2
(3.30) K, = &S = g y gla, . [ (v) du,
kg = Var S
© 9 © a2 o 2
= Zg+4Z—J+2(Z%2)
j=1"j Jj=1"J Jj=1

(3.31)

% + 2];)1101[min(u,v) ~ w]q(u)q(v) dudv
+ Z(quz(u)du) .

3.3. Calculation of the Cramér-von Mises criterion. The Cramér-von
Mises criterion can be calculated or approximated by the integral (3.2). How-
ever, usually in a time series analysis the autocorrelations r; will be available
and it will be easier to calculate the criterion from them.

If we omit (2VT /7)L5_pp,, sin Ak /h, the Cramér—von Mises criterion (3.2)
can be written as T /[27 G?(1r)] times

2 T_1 h L
fo[ )y o A ﬂh)] [— ) pre”’] dA

T p=1 e —o

_ 1 ! (rg_pg)(rh_ph)
27 he1 gh

(3.32)

g

l ™ . . 7
X Y p,psf sin Ag sin Ak e~ d ).
e
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Straightforward integration shows that (3.32) is

= [T (=) (Prag —0r) |
3.33 S — £ &7 he RN
(3.33) G = El g
In the special case of fy(A)=1/(27) (e, p;, =p,= -+ =0), the

Cramér-von Mises criterion (except for the part of the sum not depending on
the sample) is

T T-1rp
2

3.34
(3.34) =N

In this case any finite set of VT r, has a limiting normal distribution in which
the variables are independent standard normal variables. On this basis the
limiting distribution of (3.34) is consistent with the limiting distribution of the
Cramér-von Mises statistic as indicated in subsection 3.2. [The 5% significance
point is 0.46136 and the 1% point is 0.74346; see Anderson and Darling
(1952).] It may be of interest to compare (3.34) with the Box—Pierce statistic

TLX ,r? for some fixed K < T.

4. The Kolmogorov-Smirnov criterion. To test H,: f(A) = fo(A) on a
large-sample basis, we want to find a constant ¢ such that

(4.1) sup |Yr(u)| < c} -»1l-a

1
Pr{ ———
{2 7mG(T) o<u<1

for a specified a, 0 < a < 1, as T — «. We want to evaluate
(4.2) Pr{ sup |B(u) + qo(u)X| < c}.
O<ux<l1

First we derive some inequalities that permit comparison of (4.2) with
simple distributions. Let d = sup, ., .,lgo(%)|. Then

(4.3) sup |B(u) +qo(u)X|< sup |B(u)|+ IXld.
O<ucx<l1 O<ucx<l
Thus
Pr( sup |B(u)|+IXId5c}sPr{ sup |B(u)+Xq0(u)|sc}
(44) O<ux<l ' O<u<l
sPr{ sup |B(u)|5c}.
O<u<l1

The right-hand inequality follows from (2.28). The last probability is the
Kolmogorov—Smirnov distribution tabulated by Smirnov (1948):

(4.5) Pr{ sup |B(u)| < c} =1+2 i (—1)/e"2%",
i—1

O<ux<l j
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Then the first probability in (4.4) is the convolution of (4.5) and the distribu-
tion of d|X|; this is (for w > 0)

Pr{ sup |B(u)| + dIX]| sw}

O<uc<l
20 d 1
- (d)
4.6 © . _2’2 2 1+4d22
(46) oy (gl 4d)]
j=1 ¢14-4dﬁ2

( w ) —-4djw
X|P| —F/—m—] — | —~~ |-
dy1 + 4d?%? V1 + 4d?%?
If d is small, (4.5) and (4.6) are approximations to (4.2). The difference
between the right-hand side and left-hand sides of (4.4) is an upper bound to
either error of approximation. Note that the series (4.6) converges rapidly. [A

table of values of (4.6) was given in Anderson (1991).]
If (4.2)is 1 — a and « is small, then « is approximately 2 times

(4.7) Pr{ sup [B(u) + Xqo(u)] = c}.
O<u<l

Suppose 0 < go(u) <d,0 <u < 1. Then for X > 0
(4.8) sup B(u) < sup [B(u) +Xgo(u)] < sup B(u) + Xd,

O<u=<l O<uc<l O<u<l
and for X < 0 the inequalities in (4.8) are reversed. Then

tPr( sup B(u)zc)+1Pr{ sup B(u) - IXid = c)

O<ux<l1 O<ucx<l

(49) < Pr{ sup [B(u) + Xgo(u)] = c}

O<ux<l

< %Pr{ sup B(u) + |1XId = c} + %Pr{ sup B(u) 20}.
O<ux<l O<u<l
Since Pr{supy ., s B(u) <y}=1- e 2" y > 0, we have for w > 0
Pr{ sup B(u) + dIX| sw}

O<ux<l1

2 —2w?
(4.10) =2®(E)—1— exp zw
: d vV4d? + 1 4d“ + 1
q>( w ) q>( —4 dw )
dvad? + 1 vad? +1

X
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Similarly,
Pr{ sup B(u) —dIX| < w}
O<u<l
w 2 —2w? w
(4.11) zq)(g) C Vad®+ 1 XP(4d2 +1 q)(dM)’ v
1- 2 exp( ~ 2w )fb( —ddw w = 0.
4d? + 1 4d*+1) | Vad?+1

The right-hand side or the left-hand side of (4.9) is an approximation to the
probability (4.7).
The extremes of g,(«) can be found by setting to 0 the derivative

n) ) fold)
(4.12) [G( ) FO(A)] 2fo(A)[ e 1]
that is, at f,(A) = 0 or
1 oo
(4.13) fo(A) = Go(m) = h_E_ P -

We now consider the supremum of |g(x)| over 0 < u < 1 and all f,(-); this
is the supremum of |[[G(A)/G(w)] — F(A)|. Since G(A)/G(w) and F(A) are
monotonically nondecreasing in [0, 7] with G(0)/G(w) = F(0) = 0 and
G(w)/G(w) = F(w) =1, SUPo <y <1, f. Jlg(w)l < 1. We shall now find an f(-)
such that the upper bound of 1is approached Consider

_Je, 0<A<vy,
(4.14) f(A)_{d, v<A<m,

for some ¢, d and », 0 <v <7 and 0 <c¢ < 1/(27). Then 2/ff(A)dA =1
implies d = (1 — 2ve)/[2(7 — v)]. Then as v — =,

G(v)
G(m)
Hence as ¢ — 1/(27), supy_, <1lg(u)| - 1.

Durbin (1985) has studied the first passage density of a continuous

Gaussian process to a general boundary. The probability (4.7) is then the
integral of this density from 0 to 1. An approximation to this probability is

11-¢+q'(¢)q(2) —c?
‘/ﬂfo k(¢,¢) (2k(t,t) ) dt

where k(¢,t) = t — ¢t + q2(¢). In practice (4.16) could be evaluated by numeri-
cal integration. Durbin also gives an exact expression as well as two other
approximations to the first passage density. As an example he applies his
formulas to Pr{B(u) > c} for several values of c. For ¢ yielding an exact

(4.15) — F(v) > —2mec.

(4.16)
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probability of 0.1 this approximation has an error of only 0.0021; for larger
values of ¢ (smaller values of a) the error is proportionally smaller.

5. Confidence region for the spectral distribution function. An
asymptotic confidence region with confidence coefficient 1 — a for an

unknown spectral distribution consists of all monotonic functions F(-)
[F(0) = 0, F(1) = 1] such that

(5.1) VT |Fp(A) = F())| <e Vae]o,7],

where c¢ is chosen so that (4.2) is 1 — a and q,(u) refers to the unknown
distribution. Since ¢ depends on g,(x), we need a consistent estimator of
qo(w).

From the fact that VT [F,(A) = F(A)] has a limiting normal distribution it
follows that Fy(1) —, F(1). Let f(1) be a uniformly consistent estimator of
f(A) in the sense that

(5.2) sup | fr(1) = f(A)| =, 0.

O<Ax<m

For such an estimator the class of admissible f(A) must be restricted. Define

(53) Gr(r) =2 fo*f%m dv,  gr(u) =u - B (G [Gp(m)ul}.

Then g,(u) is a consistent estimator of g («). If ¢, is the value of ¢ for which
(4.2) holds with gy(u) replaced by gr(u), then ¢y —, c.
The inequality (5.1) can be written

R c R c

54 Fr(A) — —= <F(A) <Fp(A) + —

(5.4) 7(A) N (A) < Fp(2) N

Another problem of interest is testing that the spectral densities of two

independent processes are the same; the null hypothesis is f,(A) = f,(2).

Suppose FT(A) and FT (A) are the corresponding two empirical standardized
spectral distributions. Under the null hypothesis

vael0,n7].

(5.5)

T, e — Fr ()]

converges weakly to the Gaussian process with covariance function (2.16),
where F(A) and G(A) refer to the common spectral distribution and the
integral of the common spectral dens1ty squared, respectively. The
Kolmogorov—Smirnov criterion supy _, -, |£7y. (A) — FT A)| can be used to test
this null hypothesis. If fT(A) and fT (A) are umformly ‘consistent estimators of
the common spectral dens1ty, then

- T, . T,
(5.6) mfn()‘) + TlTTszZ(A)

can be used to estimate G(A) and q(u).
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6. Examples.

6.1. Moving average of order 1. Let y, = u, + au,_,, where the u,’s are
uncorrelated with mean &’u, = 0 and variance €u? = o2 Then p, =p = a/
A+a?, —3<p<i fAO) =01+ 2pcos A)/@m), F(A) = (A + 2psin A) /7,
O0<A<m,

1
(6.1) G(N) = 5 [(1 +20%)A + 4psin A) + p2sin24],
o
and G(7) = (1 + 2p?)/(27). The difference
G()) 2psin A(1 - 2p® + pcos A)
(62) ’ém —F()t) = 7T(1+2p2) , O0<A=<m,

is nonnegative for 0 < p < § and nonpositive for — 1 < p < 0. The maximum
of lg(u)| occurs at f(A) = G(w), that is, at A, = cos™! p. Then
G(Ap) N 2cos Ay sin® 2
G(m) (Xo) = m(1+ 2cos? Ay)
The maximum of |g(x)| with respect to p = cos A, is at a zero of
d [G(Ay) 2 sin® A(1 — 6cos® Ay — 4cos? A,)
(64) ——| =5 —F(x)| = —= S .
Ao | G(m) ™ (1 + 2cos® 1)
The zeros of (6.4) are A, =0, = and cos?A, = (-3 — y13)/4 = 0.15138.

Substitution of 0.15138 shows that the extremum of (6.3) is 0.1483 (which is
considerably less than 1).

(6.3)

6.2. Autoregression of order 1. Consider the process Y =pYi_1 + u,,
where the u,’s are uncorrelated with mean &u, = 0 and variance &u? = ¢2.
Then the standardized spectral density is

1 - p2

(6.5) f(a) = 27(1 +p* - 2pcos )’

Furthermore, the standardized spectral distribution is

(6.6) F(A) = Etan"l[1 e tan—)t—] O<A<mw
T 1-p 2| - ’
(6.7 G(A) = Mfu) + —'ll’z—F(A) 0<A<m.
7(1 - p?) 2m(1 - p?) ’ -
The difference
(6.8) &) CFO) = —2sinaF (1)
‘ G(m) 1+p°

is positive for p > 0 and negative for p < 0. The maximum of (6.8), occurring
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at cos Ay = 2p/(1 + p?), is

G(Xo)
G(m)
The difference (6.9) approaches 1/7 = 0.3184 as A, — 0 (i.e., as p — 1) and
approaches —1/7 as A, — 7 (i.e.,, as p = —1). The supremum of |q(u)| is

0.3184, less than the maximum of 1 over processes but greater than the
maximum of 0.1486 over moving average processes of order 1.

1
(6.9) — F(Ay) = —cos A,.
T

6.3. Another example. Suppose f(A) = (a + 1)IAI*/(27**1), @ > 0. Then
FQ) =%zt 0 <A <,

(a t 1)2 A2a+1 O<A<m
2(2a + 1)q2e+? ’ - '

(6.10) G(A) =

The transformation u = A2¢*! /7221 yields
(611) q(u) =u - u(a+1)/(2a+1) — u(a+1)/(2a+1)(ua/(2a+1) _ 1)’

which is negative for 0 < u < 1. The maximum of |g(%)| in [0, 1] is at

ua/(2a+1) — atl
2a +1°
and the maximum is
6.1 a+1 (a+1)/a a+1 QCa+1)/a #t
(6.12) 2a +1 2a +1 _(t+1)t+1’

where ¢t =1+ 1/a (> 1). This is obviously a decreasing function of ¢. Its
supremum for ¢ > 1 is 0.25.
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