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GENERALIZED PEARSON-FISHER CHI-SQUARE
GOODNESS-OF-FIT TESTS, WITH APPLICATIONS TO
MODELS WITH LIFE HISTORY DATA!

By GANG L1 anp HaNI Doss

Florida State University

Suppose that X,,..., X, are iid.~ F, and we wish to test the null
hypothesis that F is a member of the parametric family &= {Fy(x); 6 € 0}
where ® c RY. The classical Pearson-Fisher chi-square test involves parti-
tioning the real axis into & cells I,...,I, and forming the chi-square
statistic X2 = X*_,(0; — nFy(I,))?/nF;(I,), where O; is the number of
observations falling into cell ¢ and g is the value of 6 minimizing
TF_(0; — nF(I,))?/nFy(I,). We obtain a generalization of this test to any
situation for which there is available a nonparametric estimator ¥ of F for
which n'/2(F — F) »; W, where W is a continuous zero mean Gaussian
process satisfying a mild regularity condition. We allow the cells to be data
dependent. Essentially, we estimate 6 by the value  that minimizes a
“distance” between the vectors (F(I,), ..., F(I,)) and (Fy(I,), ..., F(I,)),
where distance is measured through an arbitrary positive definite quadratic
form, and then form a chi-square type test statistic based on the difference
between (F(I,), ..., F(I,)) and (Fy(I,), ..., F5(I,)). We prove that this test
statistic has asymptotically a chi-square distribution with 2 — ¢ — 1 de-
grees of freedom, and point out some errors in the literature on chi-square
tests in survival analysis. Our procedure is very general and applies to a
number of well-known models in survival analysis, such as right censoring
and left truncation. We apply our method to deal with questions of model
selection in the problem of estimating the distribution of the length of the
incubation period of the AIDS virus using the CDC’s data on blood-trans-
fusion related AIDS. Our analysis suggests some models that seem to fit
better than those used in the literature.

1. Introduction and summary. Let X;,..., X, beii.d. from a distri-
bution function F. To test the null hypothesis that F is equal to a completely
specified distribution function F,, Pearson (1900) introduced the now classical
chi-square test, which involves partitioning the real line into % cells and
forming the chi-square statistic X% = X% (O, — np;)?/np;, where O; is the
number of observations falling into cell ¢ and np, is the expected value of O,
under the null hypothesis. Pearson showed that for large n, the distribution of
X? is approximately chi-square with 2 — 1 degrees of freedom. It is rare that
one wants to test the null hypothesis that F equals a completely specified F.
The more common situation is that we wish to test the null hypothesis H,
that F is a member of a certain parametric family F;, 8 € ©, where 0 is an
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open subset of R?. In this case, py,..., p,, £ > ¢, are functions of 6,, the true
value of 6, and are no longer known. Fisher (1922, 1924) showed that if 8, is
estimated by the value minimizing X*_,(O, — np,(6))?/np,(0), then X2 has,
for large n, approximately a chi-square distribution with 2 — ¢ — 1 degrees of
freedom. The estimate of 6, obtained in this fashion is called the minimum
chi-square estimator. It is important to note that Fisher’s result is valid only if
0, is estimated by the minimum chi-square estimator (or an estimator asymp-
totically equivalent to it). Chernoff and Lehmann (1954) observed that if 6, is
estimated by the more efficient maximum likelihood estimator based on the
whole sample, then the asymptotic distribution of X? is that of X*-7"1Z2 +
TEop _gAiZE, where the Zs are independent from the normal dlstrlbutlon
Wlth mean 0 and standard deviation 1,0 < A; <1, and the A;’s depend on the
unknown 6,. Thus, use of the more efficient maximum likelihood estimator
enables us to ‘“partially recoup” the g lost degrees of freedom. This is,
however, at the cost of complicating the analysis since the limit distribution is
neither tabulated nor independent of 6,,.

Since Fisher’s (1922, 1924) papers, there has been sustained interest in the
general problem of testing goodness of fit of a parametric family, and in
chi-square tests in particular, and in recent years much of this interest has
focused on models arising in survival analysis which are more complicated
than the one in which we observe X;,..., X, ii.d.~ F. The reason for this
interest is that in many situations, there are physical reasons that indicate
specific parametric families. Exponential distributions arise in a very large
number of contexts; extreme value distributions arise frequently in reliability
theory because they are the limiting distributions of the lifelength of series or
parallel systems with a large number of identically distributed components.
There are also cases where preliminary nonparametric studies suggest a
specific parametric model. If a goodness-of-fit test can lead the investigator to
accept a certain parametric model, then this can lead to statistical procedures
that are substantially more efficient than those based on nonparametric
models. Moreover, the analysis is then more parsimonious and so easier to
understand, and can enable some inferences, for example about tail behavior,
that are impossible under a nonparametric model. See Miller (1983).

In survival analysis, the data are often not completely observed. For exam-
ple, a very common situation is that of right censoring, where for some values
of I, X; is not observed, but it is known only that X, > ¢, where ¢, is
observed. In the expression for X2, we therefore do not have access to O,.
Suppose now that we have an estlmator F of F with the property that
whether or not the parametric model holds, we have

(1.1) n'/}(F - F) -

for some process W, where the convergence is in an appropriate Skorohod
space. Let I, ..., I, denote the % cells in the partition of R and define

(1.2) 4(0) = n'/2(F(L) = py(6),..., F(1,) — pi(6)).
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To assess the fit of the parametric family it is natural to take an estimator 6 of
0, and consider the measure of discrepancy t(0). If D(6) is a symmetric
matrix, then one can form the vector £(0) = D(6)¢(6) and estimate 6, by the
parameter value minimizing the quadratic form &(8)£(0) = £'(0)D%(6)¢(6).
Such an estimator is called a minimum chi-square estimator. The purpose of
this paper is to show that some of the original ideas in Fisher (1922, 1924) can
be pushed through to obtain classes of chi-square goodness-of-fit tests in a very
general framework. Assume the following:

ConpITION A. (1.1) holds and W is a continuous Gaussian process such
that

Cov(W(t,),...,W(¢,_,)) is nonsingular whenever

(1.3)

t <ty < o0 <t,_,.

ConprTioN B.  Cov(W(¢,),. .., W(¢,_,)) can be consistently estimated for all
t <ty < v <t,_q

ConprtioN C. 6 is the value of @ minimizing {'(6)D2(6)¢(8), where D(6) is
positive definite for all § and satisfies some mild regularity conditions (see
subsection 2.1).

We show that under these conditions &) — 4 #(0,%), where 3 is a
nonnegative definite matrix of rank & — q — 1, and which can be consistently
estimated by an estimator 3. Let 3* denote the Moore—Penrose inverse of 3.
We also show that £(8)3'€(0) -, Xi—g-1-

We observe that for the classical case considered by Pearson and Fisher, the
diagonal matrix D(9) = diag((p(0))~/%,...,(p,(6))~'/?) has the property that
D?%(9,) is a generalized inverse of the limiting covariance matrix of {(6,) (i.e.,
the covariance matrix for the multinomial distribution). In subsection 2.3, we
consider the natural special case where D(6,) is the square root of a general-
ized inverse of the limiting covariance matrix of £(6,).

Our results apply to a fixed partition of R, or to a partition where the cell
boundaries are chosen as a function of the data. This gives rise to chi-square
tests that are very easy to use.

It is difficult to find examples which violate condition (1.3) provided neither
F nor Var(V) have flat spots (i.e., under simple and natural nondegeneracy
conditions). In Section 2 we show that (1.3) is satisfied whenever W has the
form W=; (1 — F) -V where V is a Gaussian martingale, a form intimately
connected with Aalen’s multiplicative intensity model. See Andersen and
Borgan (1985) for a description and review. Here, we will say only that this is
an extremely important model which encompasses a very wide range of
situations arising in survival analysis, including quite general forms of censor-
ing (censoring by fixed constants, Type II censoring and the important special
case of random censoring), random truncation models and of course the i.i.d.
setup described earlier. These models are described and discussed in Section 3.
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There, we show that in the special case where we observe i.i.d. observations
from a distribution function F, our test statistic reduces to the original
Pearson-Fisher chi-square test statistic. For the case where the data undergo
Type II censoring, we obtain a test studied by Mihalko and Moore (1980).

Hjort (1990) has also developed tests of goodness of fit of a parametric
family in the framework of the Aalen model. His approach involves hazard
functions and their cumulatives, and for the case where we observe i.i.d.
observations X, ..., X,,, his tests do not reduce to the classical Pearson—Fisher
chi-square test. To descrlbe his approach, let A,(¢) = F;(¢)/Fy(¢t) be the hazard
rate and A,(t) = [jA,(s) ds be the cumulative hazard rate Let AP he the
standard Nelson-Aalen estimator of A, ; this is a nonparametric estimator
which is valid whether or not the parametrlc model holds. Also let APe(¢) =
[Er;(s)ds, where § is the maximum likelihood estimate of 6,. Hjort’s ap-
proach involves comparing Avenpar and AP More specifically he establishes,
using the well-developed theory of counting processes, that under the
null hypothesis, for a large class of weight functions K,, if H,((¢) =

(K, (s)d(Aromear — APr)(s) then H,(t) converges in distribution to some
process H(¢). Results of this sort are very often used to obtain chi-square tests
because of the difficulties in getting a handle on the distribution of the process
H(2). For the cells I,,..., I, in the partition of R, let AH,(I;) = [; dH,(s).
Then the vector w = (AH,(I,),...,AH,(I,)) satisfies w —, 410, R) where
R is a possibly singular matrix. Let R be a consistent estlmate of R and R~
be a generalized inverse of R. He proposes the test statistic w'R~w and shows
that this has a limiting chi-square distribution with degrees of freedom equal
to the rank of R. Unfortunately, the rank of R depends on the model under
consideration and on the parametric family in question, and so additional work
is required for each new application. We point out that each weight function
gives rise to a chi-square test, and if we specialize Hjort’s results to the
random censorship model, then for a particular choice of K, the test is the
same as one proposed independently by Akritas (1988). We discuss Hjort’s
paper further in Section 5, where we also point out some errors in the
literature. Our approach is different from Hjort’s. We take as our starting
point any model for which Conditions A and B hold, and we produce a test
statistic which we show is asymptotically chi-square with number of degrees of
freedom always equal to 2 — g — 1. This extends the applicability of the
Pearson-Fisher chi-square test while retaining its simplicity.

The rest of the paper is organized as follows. Section 2 gives the statements
of our main results. In Section 3 we show how our test reproduces some tests
already present in the literature, ahd we apply our procedure to obtain
chi-square tests for some well-known models, including models with right-
censored data and those with left-truncated data. In Section 4 we apply our
test to deal with some questions of model selection in the problem of estimat-
ing the distribution of the length of the incubation period of the AIDS virus
using data on blood-transfusion related AIDS. We use our procedure to
examine some parametric assumptions made in the literature. OQur analysis
suggests some parametric models that appear to fit better. Section 5 gives
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proofs of our main theoretical results, and discusses some problems that need
to be addressed when establishing that a quadratic form has an asymptotic
chi-square distribution. In the Appendix we show that minimum chi-square

estimators satisfy the regularity conditions needed for our main results to
hold.

2. The generalized Pearson-Fisher chi-square test. Assume that F
is a nonparametric estimator of F satisfying

(2.1) n/}F - F) -, W in D[e, M],

where W is a continuous Gaussian process with zero mean, D[e, M] is the
standard Skorohod space on [¢, M], and —» < ¢ < M < » (in survival analy-
sis, ¢ will usually be greater than or equal to 0). We shall develop a chi-square
statistic for testing the null hypothesis and our statistic will be based on ¥ and
any estimator of 6, asymptotically equivalent to a minimum chi-square esti-
mator. Note that 6, the true value of 0, is of course unknown; however, the
limiting distribution of our test statistics will not depend on the value of 6,,.

2.1. Notation and assumptions. For each n,let —© =a{¥ <a{™ < --- <

a{) = = be a partition of the real line such that each cell boundary a(") =a,(F)

1s a functional of ¥ and converges in probability to a constant a;, where
e<ay, a1 <M. Let

(2.2) pi(0) = Fy(a;) — Fy(a;_y)

forall i =1,...,% and 0 € ©. We assume that p,(6) > 0 for all 9. Define the
covariance matrix

(2.3) 3M(6,t) = Cov(W(¢y),...,W(¢,_,)) when F =F,,

and assume that

(2.4) 3 = 3M(g,, a) is nonsingular.

This condition is weaker than (1.3), but is in fact all that we will need. Define
(2.5) p{M(6) = Fy(a™) — Fy(a'?y)

and

(2.6) = F(a{) — F(a®)),

and let p(6), p™(6), and P denote the vectors corresponding to (2.2), (2.5) and
(2.6). [Note: We are assuming tacitly that F(—) = 0 and that F(w) = 1. If
this is not the case, then p, and p, must be defined as p, = ﬁ(a(")) and
pr=1—F(a® )] Denote a = (a,...,a,_,), a® = (a{™,...,a,) and let
N(a) be a neighborhood of a in R*~!. Assume that D(6, t) is a k X k symmet-
ric matrix whose elements are (known) functions of (6,t) on ® X N(a) and
satisfies the following regularity conditions.
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ConbiTioN R1.  D(-, - ) is continuous at (8, a).
ConpiTioN R2. D~ I(-, - ) exists and is bounded on ® X N(a).

ConpiTION R3. (3/360)X(D%*,t)) exists at every (6,t) € ® X N(a) and
(8/00)(D*(6, t)) is continuous at (,, a).

The choice of D(6,t) is discussed in subsection 2.3.
We use D(0) and D,(6) to denote the matrices D(6,a) and D(9,a™),
respectively. Define

(2.7) £,(0) =n'/2(p —p™(6)) and £,(6) = D,(6)L.(6).

We shall use &,(6) to construct a statistic to test the null hypothesis.

There are two important special cases in the above framework. When fixed
cells are used (i.e., the a{"”’s are independent of the data), then the p,’s are
random quantities while the p{"’s are deterministic. This is the standard
setup used in the classical Pearson test. It is usually more useful to take the
quantiles of F as cell boundaries. In this case, the p,’s are deterministic
quantltles while the p{™”’s depend on the sample. One can show that

F~Yu) »p F Y u) for each u € (F~(¢), F~Y(M)), if (2.1) holds. [Doss and
Gill (1992) glve a stronger result about weak convergence of the process

n'/2(F~Yu) — F~(u)).] One of the advantages of using random cells is that
one can then ensure that the p,’s are not too small.

The following assumptions are made throughout the paper.

AssumPTION Al. F,(x) is continuously differentiable in 6 and x.

AssumPTION A2. The matrix

dp(0) L dp(0)
36, 26,
weo) | . :
o . L
T lme o)
30, 36,

kXxgq
is of rank ¢ for all 6 € ©.

AssUMPTION A3. The estimate 6 satisfies
(2.8) n/2(6 — 8,) = (C'C)"'C',(8,) + 0,(1),
where C = D(6,)9p(8,)/90'.

REMARK 2.1. Suppose that 6 is a minimum chi-square estimator, that is

(2.9) 8 is the value of 6 minimizing £.(0)E,(0).

’

—
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In the case where we have completely observed data, fixed cells, and D(8) is
chosen to be the diagonal matrix D(6) = diag((p(6))~'/%,...,(p,(6)"1/3), it
is well known (and not difficult to see) that 6 satisfies (2. 8) see, for example,
subsection 30.3 of Cramér (1946). This is still true in the general situation. A
proof is given in Lemma A.1 in the Appendix. We prefer to take (2.8) rather
than (2.9) as our condition on 6 because of the slight increase in generality.

Note that

(210) ™(8) = p(8y) +0,(1) and TR

by Assumptions Al and A3. Also, the existence of the matrix inverse in (2.8) is
guaranteed by Assumption A2.

From now on, 1 denotes a column vector of 1’s where the dimension is
taken from context.

2.2. Main theorems and construction of the test statistic. Theorems 1, 2,
and 3 below give our main findings. Theorem 1 gives the limiting dlstrlbutlon
of £, (6). The proof is based on the original ideas of Fisher. Theorem 2 gives
the rank of the asymptotic covariance matrix and also gives the ranks of
certain natural estimates of it. Theorem 3 states that the quadratic form
which is the test statistic has an asymptotic chi-square distribution with
k — q — 1 degrees of freedom. This theorem follows directly from Theorem 1
and both parts of Theorem 2, and constitutes our main result.

THEOREM 1. Let &,(0) be defined by (2.7) where D(-, - ) satisfies R1-R3,
and assume A1-A3. If (2.1) holds, then under H,,

(2.11) £.(0) 4 #(0,3),

where 3, = PD(8))J 3VJ'D(0,)P, 3D is defined in (2.4), P =1 — C(C'C)"C’
and

1 0 0 0
-1 1 0 0
0 -1 1 0
(2.12) J = : N :
0 0 0 1
0 0 0 =1/ ixz-1

THEOREM 2. If (2.4) and the conditions of Theorem 1 hold, then

(@) rank(3) =k —q — 1

(b) Let 3™ be a consistent estimator of 3 and let 3 be obtained by
replacing p(8,), dp(8,)/d8', D(8,) and 3O with p(d), dp(8)/d¢’, D,(6)
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and 3O, respectively, in 3, = PD(6,)J SVJ’ D(6,)P. Then the consistent esti-
mator 3 satisfies

rank(3) »p k —q — 1.

Let $' and 3" denote the Moore-Penrose inverses of 3 and 3,, respectively.

We shall see in Section 5 that Theorem 2 implies that 3" —, 3, and this fact
underlies the simple asymptotic distribution of our test statistic.

THEOREM 3. Define @ = &,(0)3'¢,(8). Then, under H,,
Qg xty . asn—e.

This theorem enables us to test the null hypothesis and obtain p-values in
the usual way.

2.3. Choice of the quadratic form. The procedure described above pro-
duces a class of test statistics based on different choices of the matrix D(6,t)
used in (2.7). Following are some important examples that may be used in
practice.

ExampLE 1. Take D(6,t) = I, to be the identity matrix. Then, regularity
conditions R1-R3 are satisfied and the test statistic is formed with &,(6) =
n'/2(p — pA(6)).

ExampLE 2. Take

. - —1/2
(2.13) D(6) = diag((p:(6)) "%, ..., (px(8)) ).

[More precisely, D(6,t) = diag((F,(¢,))"*/2%,...,(1 — F(¢,_,)~'/?).] Then, reg-
ularity conditions R1-R3 are satisfied. The test statistic is thus formed with
£ () — np{ )(0) np, — np(0)

n = n 1/2 n /2 |
(np‘ (9)) (npi™(6))

which is the vector used in the classical i.i.d. Pearson-Fisher setting.

The main advantage of the above examples is their simplicity. We need only
minimize a simple quadratic form to obtain an estimate of 0. However, in
general there is nothing special about the matrix (2.13). The motivation for its
use is that it is the square root of a generalized inverse of the multinomial
covariance matrix. In more detail, we have in the classical i.i.d. case (with fixed
cells)

£.(60) =a #(0, M(6,)),
where M(6,) = diag(p,(6,), ..., p,(0,)) — p(6,)p’(6,). Recall that if A is an

arbitrary matrix, then a generalized inverse is any matrix A~ that satisfies
AATA =A. Tt is easy to see that for D(6) given by (2.13), D*(9,) is a
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generalized inverse of M(6,) (we omit the arguments 6, and a for conve-
nience):

1 1
MD2M = (dlag(pl, e ’pk) - ppl)dlag(p_a ey p_)(dlag(pla e ’pk) - ppl)
1 k

= (I — pY)(diag(p;,..., ;) — PP’)
= diag(p;,..., pr) — PP — PP’ + PP’

= diag(py,..., ;) — PP’
=M.

(Of course, this was not the motivation used by Pearson and Fisher.)

Let us now turn to the general case and to make our explanations simpler,
we temporarily continue to consider only the case of fixed cells. Let n‘" be the
vector of length %2 — 1 defined by

0P = n2(F(ay) - Fy(ay),..., F(a,_1) — Fy(a,_y)).

Note that ¢,(0,) = J0", and that rank(J) = & — 1 [the matrix formed by the
first £ — 1 rows of o is lower triangular, and so its determinant is easily seen
to be 1, which implies that rank(J) > k2 — 1; since ¢/ is a 2 X (k¢ — 1) matrix,
its rank is at most 2 — 1]. Thus, by (2.1) and (2.3), we have

(2.14)  £,(00) =4 #(0,M(8,)) where M(8) =J3D(9,a)d".

Thus, it seems natural to use for the matrix D(8) a square root of a general-
ized inverse of M(0). In fact, the quadratic form {'(8)M~(6)¢(6) is invariant
under the choice of M~(6), since {(#) is in the space spanned by the columns
of M(0). This is because M'(6)1 = JSV(0)J'1 = J Z1(9)0 = 0; furthermore,
{'(0)1 = 0. Since rank(M(8)) = k — 1 by (2.4), we see that {(0) is in the space
spanned by the columns of M(6). Thus, by Lemma 5.1 in Section 5, the
quadratic form {'(8)M ~(6)£(9) is uniquely defined.

In the case of random cells, (2.14) is still true; see (5.5) in the proof of
Theorem 1.

In the development of our theory, we need the matrix D(-, - ) to satisfy
Conditions R1-R3, essentially that D2(-, - ) be an invertible generalized in-
verse of M, which also has some continuity and differentiability properties in 0
and t. We produce such a D(-, - ) in the next example.

ExampLE 3. Let M(6,t) = JSN0,t)J’. Since rank(J) =%k — 1, the
(B — 1) X (k — 1) matrix J'J is invertible, and so we may write
M(6,t) = [J(JT) ] [(IT)" 22D (0, ) (JT) 7

2.15

(2.18) x[(Jd) 2| = GA(e, v @,

where G and A(0, t) denote the matrices appearing in the first and second sets
of brackets, respectively. Then H,,, =[G,1/Vk] is an orthogonal matrix
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since
gg-| ¢ Gk | _ (I,z_1 0) I
1G/WVE  T1/k o0 1 k
Moreover,
(2.16) M(0,t) = GA(6,t)G' = H(A(z; t) g)H’.
Since A(6, t) is invertible, we may define
-1/2
(2.17) D(6,t) = H(A 0,(0,t) ‘1’)1{

[Strictly speaking, we take A'/2%(6,t) to be a positive definite square root of
A(6,t) to ensure continuity.] Then, regularity conditions R1-R3 reduce to
(mild) regularity conditions on (6, t). We also see that D%(6, t) is a general-
ized inverse of M(#,t) since

2 — A 0 ’ 14_1 0 ’ (A 0) [ (A 0 r—
MD*“M H(O’ O)HH( o 1)HH o 0 H =H o 0 H =M

[here we have dropped the notation (6, t) for brevity]. Hence, we estimate 6, by
the parameter value that minimizes

£.(0)£,(0) = £,(8) D*(0 a™)L,(8) = L,(0) M~ (6,a™)L,(0),
and construct a test statistic as in Section 2.2.
We know by Theorem 3 that for this special choice of D the test statistic

has an asymptotic x7_ 4—1 distribution. The next result states that for this D,
the test statistic essentially reduces to a simpler quadratic form.

ProposITION 2.1. Let 6 be the parameter value that minimizes the (well-
defined) quadratic form {,(0)M~(6,a"™)¢,(6). Let D(0,t) be given by (2.17),
let @ be defined as in Theorem 3, and let

Q =, (6)M~(8,a™),().
Assume (2.1), Al and A2, and that SV(-, ) and dSV(-, - ) /30 are continu-

ous at (0,,a), and 3+, ) is bounded in ©® X N(a), where N(a) is a neigh-
borhood of a in R*~!. Then D(6,t) satisfies R1-R3, and Q satisfies

(2.18) Q=@ +0,(n"") under H,.
In particular, '
(2.19) Q>4 xi_,1 asn > .

REMARK 2.2. One might suspect that @ = @; this is not the case, however,
and the O,(n~") term in (2.18) is really needed.
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REMARK 2.3. We have not been able to prove (2.19) directly. The only way
that we know of for obtaining (2.19) is to apply (2.18) together with Theo-
rem 3.

ReMARK 2.4. The choice of D(-, -) is clearly an interesting and important
problem. One can conjecture that choosing D(-, - ) to be the square root of a
generalized inverse of M(-, - ) will lead to some optimality properties. We have
not investigated this question.

3. Applications to commonly arising models. We first give a result
that shows that the nonsingularity assumption (2.4) is satisfied for a class of
models arising in survival analysis.

_ PropositioN 3.1.  If the process W in (2.1) has the form W =; F - V where

F=1-F and V is a Gaussian martingale for which the variance function
v(t) = Var(V(2)) satisfies [v(a;) — v(a,;_)] > 0 for all i, then (2.4) is satisfied.

Proor. Note that the (i, j)th element of 2 is
‘Ti(jl) = F‘oo(ai)Foo(aj)v(min(ai’ aj))'

We will show that
k-1

(3.1) det(3®) = [T (Fy(a) (v(a;) = v(a; 1)) > 0.

i=1

To see (3.1), we consider the linear operator .#; acting on (¥ — 1) X (& — 1)
matrices which adds —F,(a,)/F,(a;_;) X row (i — 1) to row i. This operator
does not change the determinant of a matrix. Applying £, _1, Z5_o,-.-, %o
successively to S reduces 3 to an upper triangular matrix with diagonal
elements [ F, (a )P[v(a;) — v(a; )], i = 1,...,k — 1. This implies (3.1) imme-
diately. O

3.1. The Pearson—Fjsher test, with random cells. Let X,,..., X,
be iid.~ F and let F be the empirical distribution function. Then (2.1)
holds with W=, F -V where V is the Gaussian martingale with variance
function v(¢) = F(¢)/F(¢). As explained in subsection 2.3, M(6, a™) =
J3D(, a™)J’ = diag(p{™(8), . .., pi(9) — p™(O)p™)(8), for which
diag(1/p{"(8),...,1/p{"(6)) is a generalized inverse. Thus, the chi-square
statistic @ constructed in Proposition 2.1 coincides exactly with the classical
Pearson-Fisher statistic, except that the cells may be random.

For the development of Pearson-Fisher test with random cells, see e.g.
Cebysev (1971), Moore (1971), Moore and Spruill (1975) and Pollard (1979).

3.2. Chi-square tests for left-truncated data. Let (X,Y) be a pair of inde-
pendent nonnegative random variables with distribution functions F and G,
respectively. Random left-truncated data consists of n iid. draws,
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(XF, Y, ..., (X Y¥), from the conditional distribution of (X, Y), given that
Y < X. Here, X is called the random variable of interest and Y is called the
truncation variable, and the objective is to make inference on F. Left trunca-
tion arises when individuals come under observation only some known time
after the natural time origin of the phenomenon under study. That is, for any
given individual, had failure occurred before the truncation variable in ques-
tion, variables pertaining to that individual would not have been recorded.

This kind of data arises frequently in medical survival studies when one
wants to study the length of survival after the start of the disease: If X
denotes the time elapsed between the onset of the disease and death, and if the
followup period starts Y units of time after the onset of the disease, then
clearly X is left truncated by Y.

Certain studies on AIDS give rise to a slightly different form of the random
truncation model, and in Section 4 we illustrate the methods of this paper in
an analysis of a data set from the Centers for Disease Control (CDC) that is
used to study the latency of the AIDS virus.

Random truncation models arise also in fields other than survival analysis.
For a general overview of the model and references to the literature see
Woodroofe (1985).

The product limit estimate and its asymptotics. Nonparametric estimation
of F based on left-truncated data was first studied by Lynden-Bell (1971) who
proposed the product-limit estimate (PLE) F given by

N n I(X) <x)
(3.2) 1-F(x) 11:[1(1 J(XF) ),
where J(¢) = X7 I(Y* <t < X;*). Keiding and Gill (1990) have shown that
this estimator is the nonparametric maximum likelihood estimate of F for the
model in which F and G are completely unknown, provided that J(X;) > 1
forl=1,...,n — 1.

Weak convergence results for the PLE were later established by Woodroofe
(1985) and Keiding and Gill (1990). Here we follow the notation of Keiding and
Gill (1990). For convenience, we assume that F and G are continuous, and
that ess sup(F') = o, essinf(G) = 0 and @ = P(Y < X) > 0.

Weak convergence of the process n'/2(F — F) involves delicate problems
near 0, and to obtain weak convergence in D[0,®] one must impose the
condition

=dF()
(3.3) f oI

[see Section 5 of Woodroofe (1985) and subsection 5.2 of Keiding and Gill
(1990)]. This is a rather restrictive condition and for thatAreason Keiding and
Gill (1990) consider, for fixed & > 0, the process n'/2(F¢ — F¢) where 1 —
Fe®) =1 - F@#)/(1 — F(e)) and 1 — F*(t) = (1 — F(t))/(1 — F(¢)) for t > ¢
li.e., F<(¢) = Pi(X < t|IX > ¢) in an obvious notation, and similarly for F*(¢)].
They prove weak convergence of this process in D¢, «].
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THEOREM 3.1 [Keiding and Gill (1990)]. Let ¢ > 0, and assume that for all
t>e, P(Y<t<X|Y<X)>0. Then

(3.4) n'/2(Fe - F*) », F*-V inD[e, ],

where V(+) is a continuous Gaussian martingale with zero mean and variance
function

dF(u)
G(u)[1 - F(u)]*’

o(t) =af’
A consistent estimator of v(t) fort > ¢ is
6(t) = [nd(s) > dN(s),
where N(¢) = L}_ I(X} < ¢).

The chi-square test statistics. As in Section 2, we first form a data depen-
dent partition. Then we choose a symmetric matrix D(0, t) satisfying R1-R3
and construct ¢,(6) and £,(0) from F; and F°. We estimate the true parame-
ter 6, by the value of 6 of # which minimizes £,(0)€,(0) and estimate v by the
0 defined in Theorem 3.1. Then the test statistic @ = £ (0)3% (6) obtained
from F*¢, 6, Fy and 0(¢) has limiting null distribution x;_,_;.

ReMARK 3.1. In subsection 2.3 we mentioned that it may be natural to use
for the matrix D(-, - ) the square root of a generalized inverse of M(-,-) =
JID(., - )J’, for example the D(:,-) given by (2.17). This brings up a
computational problem: To minimize ,(8Y D2, a'™)¢,(0) we need to find a
formula for D%(9, a"). This forces us to do a symbolic inversion of a matrix,
which requires a symbolic manipulations program. An alternative is to replace
the matrix D(0, a’™) given by (2.17) with a consistent estimate D of D(8,, a).
We then need only to do the matrix inversion numerically, that is, do it just
once. Remark A.1 in the Appendix establishes the validity of this procedure.

ReEMARK 3.2. To carry out the test one must decide on a value for e.
Intuitively, the smaller the value of &, the smaller the information loss in the
left tail (0, e]. On the other hand, if condition (3.3) is not satisfied, a smaller &
requires a larger n for the asymptotics to set in. In practice, one selects ¢ such
that only a small proportion of the X;*’s fall in the tail (0, €], and this choice is
made subjectively. .

3.3. Chi-square tests for right-censored data. We first review the random
censorship model of survival analysis. The pairs of positive random variables
(X,,Y),l=1,...,n, are independent and identically distributed, with distri-
bution functions F(¢) = P(X, < ¢t) and G(¢) = P(Y; < ¢t) and the Y’s are inde-
pendent of the X’s. We observe only (Z,,8,), [ =1,...,n, where Z, =
min(X,,Y;) and §, = I(X, < Y)). The X’s represent survival times, the Y’s
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represent censoring times, and the problem is to estimate F. The most
commonly used estimate of F is the Kaplan—-Meier estimator defined by

. n—1 \%
3.5 F(t)y=1- —_—
(35) ®=1- I (7 )
where Z ) < Z, < -+ < Z,, denote the ordered values of Z,, Z,, ..., Z, and

8, is the & corresponding to Z,. Weak convergence of n'/ AF — F) is well
known. The following proposition is a special case of Theorem 4.2.2 of Gill
(1980).

THEOREM 3.2. Assume that F is continuous and let T be such that F(r) < 1
and G(7) < 1. Then,

n'/*(F —F) -, F-V inD[0,1],

where V is a zero-mean Gaussian martingale with variance function

. dF(s)
v(t) = [0 F(s ) F(s)G(s —)’

for which a consistent estimator is

o dF(s)
= e D FBe )

Here, G is the Kaplan—Meier estimate of G, that is, the right-hand side of
(3.5), except that 8, is replaced by 1 — §,y; also, for a function g, g(s —) =
lim, ., g(u).

We construct our test statistic as prescribed in Section 2.

Chi-square goodness-of-fit tests for the random censorship model were
investigated by Habib and Thomas (1986), who estimated 6, by the maximum
likelihood estimate. In a paper that provided the impetus for the present work,
Hollander and Pefia (1992) developed a chi-square goodness-of-fit test for the
case of a simple null hypothesis. If we use fixed cells and take D to be the
diagonal matrix (2.13), then our procedure is identical to theirs. Actually, it is
not very difficult to see that the test statistic is invariant under the choice of
the matrix D, so that nothing can be gained by using the matrix (2.17). This is
true only in the case of a simple null hypothesis, for which the parameter 6,
does not need to be estimated.

Actually Theorem 4.2.2 of Gill (1980) gives a weak convergence result for
n'/2(F — F) for a wide class of censoring mechanisms which includes the
random censoring mechanism discussed above but also fixed censoring and
Type II censoring. Therefore, our procedure is applicable to data subject to
these censoring mechanisms as well. For Type II censoring, we refer to the
paper by Mihalko and Moore (1980). We mention briefly that they studied a
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number of chi-square tests and that our procedure reproduces one of their
tests.

The special structure W=, F -V (cf. Proposition 3.1) is by no means
necessary for (2.4) to be satisfied. For example, in fitting a Cox model to
survival data, one is sometimes interested in investigating a parametric model
for the baseline survival function. If S is the ‘‘Nelson-Aalen estimator” of the
baseline survival function S,, then n'/%(S —S,) converges to a limiting
Gaussian process W which does not have the form W=, S, -V for some
martingale V [see Theorem 3.4 of Andersen and Gill (1982)]. It is easy to show,
however, that (2.4) is satisfied. Goodness-of-fit tests for the parametric Cox
model have also been studied by Hjort [(1990), Section 6].

4. Analysis of transfusion-related AIDS infection data. An impor-
tant problem in studies of acquired immune deficiency syndrome (AIDS) is to
determine the distribution of the length of the ““‘incubation period” [i.e., the
time from the human immunodeficiency virus (HIV) infection to the diagnosis
of AIDS]. This problem is difficult because one generally does not have
accurate information on the date of HIV infection. Nevertheless the date of
infection can be ascertained for patients who are thought to be infected with
HIV by blood or blood product transfusion. Tables 2—-4 on pages 745-746 of
Wang (1989) give transfusion-related AIDS data reported by the Centers for
Disease Control (CDC) in Atlanta, Georgia. These data consist of 295 cases
diagnosed with AIDS prior to July 1, 1986, and for which infection could be
attributed to a single transfusion or short series of transfusions. The tables
report the incubation time X (in months), the time Y (in months) from the
HIV infection to the end of the study (July 1, 1986), and the individual’s age at
the time of transfusion. Because disease resistance depends on age, the data
are divided into three groups: 34 “children’” aged 1-4, 120 “adults” aged 5-59
and 141 “elderly patients” aged 60 and older. Obviously the data for the
incubation time X are right truncated by Y since patients who had HIV
infection prior to July 1, 1986 but developed AIDS after July 1, 1986 were not
included in the data. That is, we observe (Y, X) only if X < Y.

Let F and G be the distributions of X and Y, respectively. Then, F may be
estimated by (3.2). Recall that in the random censorship model of survival
analysis one can show that the Kaplan-Meier estimator (3.5) is the nonpara-
metric maximum likelihood estimator of F whether or not we have any
knowledge of G. The situation is different for the random truncation model:
The product-limit estimator (3.2) is the nonparametric maximum likelihood
estimator of F only in the model where G is completely unspecified. If G is
completely or partially specified, (3.2) is no longer the maximum likelihood
estimate, and Wang (1989) has shown the knowledge that G belongs to a
parametric family can be exploited to obtain a more efficient estimate of F.
Thus it is important to be able to determine if a given parametric model holds.
The CDC’s AIDS data have been studied through various parametric models
by several authors; see Kalbfleisch and Lawless (1989) and the references
therein. However, there has not yet been a formal test of fit to determine
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TaBLE 1
Test statistics @ and p-values for the AIDS data. Null hypothesis is that G is a Weibull
distribution with an arbitrary scale parameter and fixed shape parameter v

v 0.50 0.75 1.00 125 1.50 1.75 2.00 2.50 2.75 2.85

Children Q 10.16 6.85 4.34 250 122 042 0.041 0.42 1.13 1.52
p-value <0.01 0.01 0.04 011 027 0.52 0.84 0.52 0.28 0.22
Adults Q 2.07 097 0.27 0.003 0.18 081 192 5.69 8.42 9.69
p-value 0.15 033 060 095 0.68 0.37 017 002 <001 <0.01
Elderly Q 433 323 230 152 091 045 0.16 0.03 0.19 0.29

patients p-value 0.04 0.07 0.13 0.22 0.34 050 069 0.87 0.67 0.59

whether the parametric assumptions are appropriate. The chi-square test
developed in this paper provides a straightforward way of checking the para-
metric assumptions on both F and G.

Here we shall be concerned only with the parametric assumptions on G.
Note that one can regard Y as being left truncated by X. Therefore the
chi-square test developed in subsection 3.2 can be applied directly. Table 1
shows the analysis we have done on the AIDS data. For each age group we
tested the null hypothesis that G is a Weibull distribution with fixed shape
parameter v and unknown scale parameter 6, that is, G(¢) = 1 — exp(—0¢")
for some 6. The values of v were taken to be the 10 values indicated in Table
1, and three cells were used for each of the tests. We used the test statistic
described in subsection 3.2, and we took the value of ¢ to be the 0.07, 0.06 and
0.03 quantile of the product-limit estimator for the children, adults and elderly
patients, respectively (larger values of ¢ are required by the asymptotic theory
if the sample size is smaller). The cell boundaries for the children and adults
groups were taken to be ¢, 30, 60 and «, and for the elderly patients these were
taken to be ¢, 30, 40 and «. The values of the chi-square test statistic @ and
corresponding p-values are reported for each combination of the null hypothe-
sis and the age group.

In her analysis of this data set, Wang (1989) made the assumption that G is
exponential (this is Weibull with » = 1), citing an informal analysis to support
this. For the children group, Table 1 shows that our test provides evidence
against this assumption (p-value = 0.04) and instead suggests the Weibull
family with shape parameter v = 2 as a reasonable model. For the adults
group the table shows that the exponential distribution is adequate, while for
the elderly patients the table indicates that the exponential assumption is
suspect and that the Weibull family with shape parameter v = 2.5 provides a
better fit.

5. Proofs of main results.

Proor oF THEOREM 1. We first show that under H,
(5.1) £,(80) —a #4(0, D(8,) JZVI'D(6,)) as n — =,
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where J and 2 are given by (2.12) and (2.3) and (2.4), respectively. Define

(5.2) W, () = n/2(F(-) - F,(")).

Then

(5.3) $.(00) = nl/2(f) - p<”)(00)) =dJdn,,

where m, = (W (a{),...,W(a{))Y. Write m, =0 + 2P, where ¢ =
Wyap,...,Wia,_)Y and w2 = (W (a{”) — Wia), ..., W(a{?) —

W (a,_ 1))’ We shall show that 2D -, A_10,5D) and 2P -, 0.

From (2.1), W, -, W, where W is a contlnuous Gaussian process with zero
mean. The weak convergence result for n¢" follows immediately since the
finite dimensional distributions of W,(-) converge to a multinormal distribu-
tion. To prove that n® —, 0, we use a standard Skorohod construction [see
Item 3.1.1 in Skorohod (1956)] to obtain random elements W and W on a new
probability space, such that W, =, W,W=,Wand W, > W a.s. in Dle, M].
Since W has continuous sample paths, this implies

(5.4) sup |Wn(t) - W(t)| -0 as.
e<t<M
Fori=1,...,k — 1, define &/ = a,(F + n~'/2W,). Because 4{*’ =, a® and

a™ -, a;, we have ¢/ —, a,. So for large n,
|[W,(a°) = Wo(an)| <| W, (&) - W(at)]
HW(@) = Wia| +1W(a)) - W,
<2 sup [W,(6) - W(n)| +[W(a?) - W(a)| = 0
e<ts

by (5.4) and the fact that W has continuous paths. Since W,(6{) — W (a;) =,
W, (a?) — W (a,), we conclude that W2 —, 0. Thus v, -, #,_,0, ZP), and
(5. 3) and (2.7) give

n(0) 2a #3(0,J3PJ")  and
£,(00) —4 '/,/k(o’ D(OO)JE<1)J’D(00)).
Now we are ready to obtain the weak convergence result for §n(§). Note that
£,(0) = D,(0)n'/*(p — p™(0))
= D,(8)n"*(p — p™(6,)) — D,(8)n/*(p(8)) — P™(6,))
= (Dn(BO) + Op(l))gn(go)
ap( 0)

—(D(6y) + 0,(1))n 1/2( Y (1))(6 —6,)
= D,(85),(00) — Cn'/*(6 = 6,) + 0,(1)

= £,(00) — C((C'C) 'C'&,(8,) + 0,(1)) + 0,(1)
= Pgn(BO) + Op(]‘)’

(5.5)
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where in the fourth equality we have used the fact that {,(6,) = D~'(6,)&,(6,)
and n'/%(§ — 6,) are bounded in probability, by (2.8). Therefore

£.(0) 4 #(0,3)
where 3 = PD(6)J 3MJ'D(6,)P. O

PrOOF oF THEOREM 2. We first prove part (a) of the theorem. Because XV

is assumed to be positive definite, there exists a nonsingular matrix T such
that S® = TT", so that

3, = (PDJT)(PDJT) .
Thus
rank(3) = rank( PDJT) = rank( PDJ),
and we wish to show that
rank(PDJ) =k — q — 1.
If A is a matrix, we will let .#(A) denote the space spanned by the column

vectors of A and let .#*(A) be the space of all vectors orthogonal to .Z(A).
Let d = D™ '1. Then

in\ p\ HEp)Y
c'd= (—p)DD-ll = (1’—p) = ( ( p’)) =0.
FY a0’ a0’

So d is orthogonal to .#(C), and the space .#([C, d]) spanned by the columns
of C together with d has dimension ¢ + 1. We will show that .Z(PDJ) =
#*+(C,d]). From this we conclude that

rank( PDJ) = k — dimension of .#Z([C,d]) =k —q — 1.

This is done in two steps: First we show that .#(PDJ) is a subspace of
#+([C,d)]), then we prove that .#(PDdJ) is identical to .#*(C, d).

Using the fact that P =1, — C(C'C)~!C’ is a projection onto .#*(C), we
have

(PDJ)C =J'DPC = J'D0 =0
and
(PDJ)Yd =J'DPd =J'Dd =J'DD"'1 =J'1 = 0.
So .#(PDJ) is orthogonal to .#(C,d]). Therefore .#(PD.J) is a subspace of
A1(C,d).
On the other hand, for every x € .#*(C,d])
(PDJ)x = J'DPx = J'Dx # 0.

Here the nonequality in the last step comes from the fact that J’D has exactly
one zero eigenvalue and d is the corresponding eigenvector, which is orthogo-
nal to x. Therefore .Z(PDJ) = .#*(C,d)). [Otherwise, if .#(PDJ) is a strictly
smaller subspace of .#*([C, d]), then there is an orthogonal basis e,,...,e,_,_;
of .#*(C,d]) such that .Z(PDJ) = .#(e,,...,e,]) for some r <k —q — 1.
But this implies (PDJ)e,_,_, = 0 which is a contradiction.]
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To prove part (b), note that if A is a square matrix whose determinant is
not 0, and if A, is a sequence of matrices such that A, — A, then det(A,) —
det(A), so that rank(A ) = rank(A). We observe that C —p C (see 2.10), and
that C has full rank ¢ for all 6, so that rank(C) — pq. The same argument
gives rank(D, () »p k and rank(E(l)) —p k — 1. Note that if rank(C) = g,
rank(D,(8)) = k£ and rank(E(l)) =k -1, then rank(3) = & — g — 1. The proof
is identical to the proof of part (a). Therefore, P(rank(ﬁ) k—q—1)—>1,as
desired. O

Proor oF THEOREM 3. It is a fact that if A,, n =1,2,... and A are
matrices such that
(5.6) A, A
and
(5.7) rank(A,) = rank(A) for all large n,
then the Moore-Penrose inverses satisfy
(5.8) Al - A

[see, e.g., Theorem 10.4.1 of Campbell and Meyer (1979)]. Thus, by parts (a)
and (b) of Theorem 2 we see that

(5.9) $t o, st
Theorem 1 and part (a) of Theorem 2 imply that
(5.10) £,(0)26,(0) >4 X1

and now Theorem 3 follows from (5.9) and (5.10). O

ReMARK 5.1. Condition (5.6) by itself is not enough to guarantee (5.8), and
it is necessary to also have (5.7) (unless, of course, A is nonsingular). There
are errors on this point in some papers, for example, Hjort [(1990), pages
1233-1234] and McKeague and Utikal [(1991), last paragraph of Section 3 and
Section 5]; also, Akritas [(1988), last paragraph of subsection 4.1] makes a
statement that ignores this point and so is misleading. These authors base
chi-square tests on asymptotic normality results of the form

(5.11) w, >, #(0, R),

where R is a possibly singular matrix. They provide a consistent estimator R,
of R, that is, one that satisfies

(5.12) R, —p R,

take a generalized inverse R, of R, and claim that the test statistic w, R, w,
satisfies

(513) W;R;Wn 4 Xfank(R)'

However, (5.11) and (5.12) by themselves do not imply (5.13) and so additional
work is needed.
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Consider the following simple counterexample. Take the two-dimensional
vectors w, to be normally distributed with mean 0 and covariance matrix

Let
(1 0
=5 o
for which R" = R. Then (5.11) and (5. 12) hold [but note that for all n,
rank(R,) + rank(R)]. Since w, R, w, ~ x5 for each n and rank(R) = 1, we
see that (5.13) does not hold.

In our setup, it is only because we chose 3 to have the same structure as 3,
that we were able to establish that rank(3) —, rank(2).

Before proving Proposition 2.1, we recall the following well-known fact.

LEMMA 5.1. Let A be a symmetric matrix and let .#(A) denote the space
spanned by the column vectors of A. Then for any pair of x,y € .#(A), the
quadratic form X'ATYy is invariant under the choice of generalized inverse A~.

Proor. Ifx,y €.#(A), then x = Ac and y = Ad for some vectors ¢ and d.
Thus

x'A"y = ¢AA"Ad = c’Ad,
which does not depend on A~. O

Proor oF ProrosiTION 2.1. We follow the notation used in Example 3 of
subsection 2.3. We first note that for the matrix D(8, t) given by (2.17), R1-R3
follow immediately from the assumptions on 3®(-, - ). Moreover, minimizing
¢, (0YM~(6,a")L,(0) is the same as minimizing § (6Y¢,(0) where &,(0) =
D(8,a™)¢,(9). So, by Lemma A.1 of the Appendix, the resulting estimator 6
satisfies A3. Recall that @ = ¢ (o)E*g (6) and Q = L' (H)M (8, a"™)L,(6).
Theorem 3 applies and we have @ —; x;_,_;- Let Q, {w e O rank(é ) =gq;
rank(D,(0)) = k; rank(3®) =k — 1}. We saw in the proof of part (b) of
Theorem 2 that P(,) — 1. We shall show that on Q,,,

ap™(0) \(ap™(9) - ap™(9)
T 20 29’

Q=Q—ﬁu®M*
(5.14)
p™(0) .
)]

where M denotes M(6, a®). Note that since on (), we have M'1 = 0 and
rank(M) = k — 1, the equations 19p(§)/36' = 0(1)/00 =0 and 1¢,(0) =0
imply that ¢,(f) and the column vectors of dp?(8) /36’ are in the range space
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#(M) of M. Therefore, by Lemma 5.1 the three quadratic forms in parenthe-
ses in (5.14) are invariant under the choice of generalized inverse of M. Now
in the proof of Lemma A.1 we show that

ap‘”)'(é) .

. ap™(d)
() -

a0
ap™'(6)

a0
under H, [see (A.7)]. Therefore, (5.14) implies

il

D2%(,a™)¢,(6)

D(8,a™)¢g,(6) = 0,(n"1/?)

Q=Q+0,(n"") >, x}_,, under H,.
The rest of the proof is devoted to the verification of (5.14). By (2.16) and
2.17),

D(-,M()DC,) -1 )

= HH' - H((’(k—l)X‘k—l) O)H’ =I, - 11/k
o 1
and

A-1/2(.’.) 0

D(-,-)1=H( v :

(5.15) )Hll

— (GA™V3(-, )G +11/k)1 =0 +1 =1,
where we recall that G = J(J'J) ™. Thus,

ap’(6,) ap'(6,)
Y D(6,)1 = Y

C'1 1=0.
Therefore,
3, = PD(8,)J 3VJ'D(6,) P
= P[D(6,) M (8,,a)D(64)] P
(516) -1 -1
= (I, - c(C'C)~'C") (1, — 11 /k) (I, - C(C'C)7'C)
=I,-11/k — C(C'C)"'C’,

which is idempotent (i.e., 3% = 3). Similarly, $ = I, - 11 /k - C[C'O)C is
idempotent on . Recall that an idempotent matrix is its own Moore-Penrose
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inverse. Thus, on €, we have 3" = $ and
Q = £,(6)7%,(6)
= 0,(§)D,(§) (L, - 11/k - C(C'C) ' €)D,(H)L,(9)
= L) D(8)"1,(8) — (Lu(9)D,(D)1)’ 1
~ 4,(0) D,()C(C'C) E'D, (Bt (d)

""(0) ap™ (6) D20 ap™(8) |
55 Da(0 )_

=Q - {,(8)D2(6)

nYy
x 2(0) ()D%mgw>

where in the last equahty we have used (5.15) and the fact that £(6)1 = 0.
This proves (5.14). O

APPENDIX

A.1. The asymptotic distribution of the minimum chi-square esti-
mator. Here we prove that the minimum chi-square estimator defined by
(2.9) satisfies (2.8). We assume that the parametric model holds and that
0 = 00.

LEmma Al. Let {0 Y._, be an infinite sequence of statistics such that
6 = 0 satisfies (2.9) for every n. Assume that (2.1) and Assumptions Al and
A2 hold and that D(-, - ) satisfies R1-R3. Then (a) § —p 6, and (b) Assump-
tion A3 is satisfied.

Note that in the statement of Lemma A.1 we assume that for each n, there
exists a number 6, that minimizes £,(6)€,(6), that is, that satisfies (2.9)
(actually, we need only assume that with probability tending to one as n — «
such a 6, exists). No assumption of uniqueness is made.

ProoF. The proof of part (a) is based on an application of the implicit
function theorem. In the first part of the proof of Theorem 1 we showed
(without using Assumption A3) ‘that {,(8,) = n'/2(p — p™(8,) —,
N30, JZDJ') and §,(00) =4 A3(0, D(0))J SDJI'D(8,)) as n > » [see (5.5)].
This implies

P —p(8) = (B —P™(60)) + (P™(8,) — P(8,)) =p 0
We also have

p — p™(8) =n"V%,(8) -5 0,
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since

(A1) 18O < ID7HO)IEL(H) < 1D (B)I1Ig,.(6,)]l = O,(1),

where the last step follows since D, 1(6) is bounded in probability (by regular-
ity condition R2 and the fact that a™ —, a) and £,(6,) converges in distribu-
tion. Here || - || denotes Euclidean distance in R*. Therefore

(A.2) P™(8) —p P(6,).

Without loss of generality, assume that the first ¢ row vectors of dp(6),/36’
are linearly independent. Let f = (f,,..., f,) be the vector-valued function
defined on the open set S = 0 X (¢, M)? X (0,1)? c R9*29 by

f1(0;x,y) =y, — Fy(x,),
f2(0;%,y) =y, — (Fy(x3) — Fo(xl))’

fq(e;x’Y) =Yg — (F;)(xq) _Fo(xq—l))’

where x = (x;,...,x,)andy = (y;,...,y,). Denote x, = (a,,...,a,) and y, =
(P8, ..., p,(6,)). Then
(A.3) £(0y;x4,y,) = 0.

Moreover, by Assumptions Al and A2, f is continuously differentiable on S
and its Jacobian determinant with respect to 6 at (8,,x,,y,) is not equal to
zero. Thus, by the implicit function theorem [see, e.g., Theorem 13.7 of
Apostol (1974)], there exist a neighborhood T, of (x,,y,) in R?? and one,
and only one, continuously differentiable function g: T, » R? such that
g(x,,y,) = 0,, and

(A.4) f(g(x,y),x,y) =0 forall (x,y) € T,.
Note that for x,, = (a{",...,a{”) and y, = (p$™@),.. ., pr”)(é)), we have
f(@;xn,yn) =0 forall n.
This, together with (A.4), implies that
(A5) P(d # g(x,.5,)) < P((x,,,) & T,).
Therefore, for every £ > 0,
P(16 = 65l 2 &) < P(1f — 0ol = £,0 = g(x,,,¥%,)) + P(8 # g(x,,,¥,))

< P(lg(x,,¥,) — &(X0,¥0)l = &) + P((x,,y,) & Ty),

and this converges to 0 since (x,,y,) =p (X,,¥,), T, is a neighborhood of
(x4,¥0), and g(-, - ) is continuous on T,. Here the last inequality follows from
(A.5). This proves Part (a) of the lemma.
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To prove Part (b) of the lemma we write
£,(0) = D,(6)n'2(p — p™(6))
= D,(8)n'*(p — P™(8,)) — D,(6)n2(p™(8) — p™(6,))
= (Dn(eo) + Op(l))cn(eo)
ap(0, .
—(D(8,) + op(l))(—%%;—-)— + op(l))n1/2(0 — 6,)
= gn(GO) + Op(]')cn(ao) - (C + Op(]'))nl/z(é - 00)
= £,(0,) — (C +0,(1))n'/2(6 — 8,) + 0,(1),

where to obtain the last step we have used the fact that ¢,(6,) is bounded in
probability since it converges in distribution [by (5.5)].
Now since A§’n(0)§n(0) is continuously differentiable in 6 and it has a local

(A.6)

minimum at 6, we have for j =1,...,¢q
a(g,(6)E,(0 ap™ (6 D? .
AEDED) g1 22O b iy, ) + 508 LDy —

(recall that § is in ©, which is open by assumption). This implies that for
j = 1’ AR q’

™) a1 (2( )

(A7) —— =D (B)&.(0) = 50 V2, (6) = —L,(8) = O,(n7172),

where the last step follows from (A.1), the consistency of 6, and regularity
condition R3. Because (A.7) can be rewritten as

P( 0)

D(8) +0,(1) |&,(8) = O(n™'?),

we have
(A.8) C'£,(6) = 0,(1),(8) + 0,(n71/%) = 0,(1).

Here again we have used the fact that [l£,(0)l < [£,(6,)l is bounded in
probability. Now, multiplying both sides of (A.6) by C’ and using (A.8), we
obtain

(C'C + 0,(1))n2/2(6 — by) = C'E,(8,) + 0,(1),
from which we conclude that
n'2(6 = 8,) = (C'C + 0,(1)) 'C'E,(8,) + 0,(1)
= (C'C) T'C'E,(8,) + 0,(1),

as desired. O
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REMARK A.1. Suppose that Disa _consistent estimate of D(6,,a). If we
replace D,(6) by D in (2.7) and let 6 be the value of 8 which minimizes
' (0)D2§ (), then the conclusions of Lemma A.1 still hold. The proof of this is
identical to the proof of Lemma A.1, except that (A.1), (A.7) and (A.8) are more
straightforward. This fact is used in Remark 3.1.
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