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ASYMPTOTIC PROPERTIES OF SELF-CONSISTENT
ESTIMATORS BASED ON DOUBLY CENSORED DATA

By M. G. Gu! anD C.-H. ZHANG?
McGill University and Rutgers University

This paper concerns self-consistent estimators for survival functions
based on doubly censored data. We establish strong uniform consistency,
asymptotic normality and asymptotic efficiency of the estimators under
mild conditions on the distributions of the censoring variables.

1. Introduction. In biometry and reliability studies, the distribution
function of the underlying lifetime is often of special interest. It is common in
these problems that the observations are incomplete, therefore the empirical
distribution function is not appropriate in estimating the distribution function
of the lifetime. In the right-censoring case the product limit estimate of Kaplan
and Meier (1958) has been generally accepted as a substitute for the empirical
distribution function, since it is the nonparametric maximum likelihood esti-
mator (NPMLE) [Cox and Oakes (1984), page 48] and possesses the properties
of self-consistency [Efron (1967)] asymptotic normality [Breslow and Crowley
(1974)], and asymptotic efficiency [Wellner (1982)]. In cases other than right
censoring, it is natural to search for estimates which possess similar proper-
ties. For detailed discussions, see Tsai and Crowley (1985) and Gill (1989).

In the case where observations have the possibility of being censored either
from right or left, Turnbull (1974) proposed a self-consistent algorithm to find
the NPMLE for the underlying distribution. Chang and Yang (1987) proved
the asymptotic consistency of self-consistent estimates under mild conditions
on the censoring for continuous distributions with support (0, ), and Chang
(1990) obtained the asymptotic normality on compact intervals under a quite
strong additional condition on the censoring. Some related models were stud-
ied by Ayer, Brunk, Ewing, Reid and Silverman (1955), Groeneboom (1987)
and Samuelsen (1989). In this paper, we shall generalize the consistency result
to noncontinuous distributions with an arbitrary support, establish the asymp-
totic normality on the entire range of the lifetime under weaker conditions on
censoring and show that Turnbull’s estimator is asymptotically efficient.

2. Main results. Let X,, i > 1, be independent identically distributed
(i.i.d.) random variables with a common survival function Sy. Independent of
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612 M. G. GU AND C.-H. ZHANG

the X;’s let Y, > Z;, i > 1, be i.i.d. pairs of censoring times with possibly
defective marginal survival functions S, and Sy. For i > 1 set

V, = max(min( X;,Y;), Z,),
1, ifZ, <X, <Y,
8, =12, ifV,=Y, <X (right censoring),
3, if V,=2Z > X, (left censoring).

(2.1)

We study asymptotic properties of self-consistent estimators for Sy based on
(‘/i’ 6,~), 1 .S i <n.
Let @Y, 1 <j < 8, @, and QY be the empirical version of

QU(t) =Pr{V>t6=j}, 1<j<3,

Q= (Q(l), Q(2)’ Q(3)), Q(O) = 23: Q(J').

j=1

(2.2)

Set K =Sy — S;. It follows from (2.1) that Pr{é6 = 1|X = ¢} = K( — ) and
dQM(t) = K(t —)dSx(¢), dQ® =SydSy,

dQ® = (1 - Sy) dS,.
By Tsai and Crowley [(1985), page 1328], the estimate S,, is self-consistent if

S0 1-5,(t)
5, O TS

where [,_, =0 ([,.,=0) if S,(¢) =0 [S,(#) = 1]. The NPMLE of Sy is
self-consistent [Turnbull (1974)], but a self-consistent estimate is not necessar-
ily an NPMLE. For example, with four observations (1, 1), (2,2), (3,3) and
(4,3) from (V,8), S, defined by dS,(1) = —2/3 and dS,(4) = —1/3, is
self-consistent but not an NPMLE, which essentially puts mass 1/2 at 1 and
3. Among other things, an NPMLE must satisfy

dQ(u)
L

(2.3)

(24) 8,(t) =QV(t) - e (u),

QP(—») - @P(a, —) =

(2.5) u<a, Sp(u) ’
' ) dQP(u)
Q513)(bn) - —'/l;n<u 1— Sn(u) ’

where a, = min{V: §, = 1 or 3} and b, = max{V;: §, =1 or 2}. This con-
straint is useful later.

Let ||2]l = sup,|h(#)| be the supremum norm throughout the paper. Chang
and Yang (1987) proved [|S,, — Sxll = 0 a.s. for S, satisfying (2.4) under the
assumptions that
(2.6) K(t-)=Pr{6=1X=t¢t}>0

for all ¢ > 0, that Sy, Sy and S, are all continuous, and that the support of
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X is (0, ). Our first result gives the strong uniform consistency under a single
condition on the censoring.

THEOREM 1. Suppose (2.6) holds on {t: Sx(¢) < 1 and Sx(¢t — ) > 0}. Then,
IS, — Sxll = 0 a.s.

Since @, — Q uniformly and S, satisfies (2.4), S, (¢) — S(¢) for each ¢ as
n, — « implies

1—-8S(¢
(21) 50 =@ - [ S2d@®w) + [ o dgPw).

Theorem 1 is proved in Section 3 via the uniqueness of the solution of (2.7).
The method of Chang and Yang [(1987), (2.5) and Lemma 4.1] cannot be used,
because their fundamental integral equation system is not continuous under
pointwise convergence.

A sequence of estimators {S,} is asymptotically normal if vn (S, — Sy)
converges in distribution to a Gaussian process in a suitable metric space of
functions. In this paper, a Banach space is always equipped with its ball
o-algebra, and random elements and convergence in distribution are defined as
in Pollard [(1984), page 65]. For any survival function S define linear opera-
tors Ag, Rg, K and Bg by

(Ash)(®) = [ _ S()h(u)dsy(u)
(2.8) s0)
+ft<u—1T(u)h(u) dS,(u),
(2.9) Rs=K-Ag, (Kh)(t)=K(t)h(t), K(t) =Sy(t) = 8z(2),
3
(Bs(h®, h®, k®))(t) = r ¥ hO(¢) - j; S( )dh(z)( u)
(2.10) st
1 —
+ T8 dr®(u),

where integrating by parts should be used in (2.10) whenever necessary.
Domains of these operators include all bounded measurable functions, and
we shall extend those of Ag and Rg under the conditions of Theorem 2. By
(2.3) and (2.8), Ag(S, — Sy) =BsQ - QY +S(Sy— D+ 1 -8,)8S,.
Since S, = Bg@, by (2.4) and Q¥ = KSy + S, by (2.1),

(211) RS,,gn = BS,,Wn’ §n = ‘/;(Sn - SX)’ Wn = ‘/;(Qn - Q)

Let (D,|l - ) be the Banach space of all real-valued functions defined on
(=, ®) which are right-continuous and have left limits at x < « and right
limit at —o, and (D[a,b],||- ) the restrictions of h € D on [a, b], where
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a = sup{t: Sx(¢) = 1} and b = inf{¢: Sx(¢) = 0}. Define Banach spaces
(Dola, bl 1) = {h € D[a,b]: Sx(x) =1 = h(x) =0,
Sx(x—)=0=h(x—-) =0},
(Dgla,b)ll- k) = {h: Kh € D[a,bl}, lhllk=IEKhl,
(D3.l-ls) ={h €D ® D ® D: Bg_h € Dy[a,b]},

3
I(AD, B®, B3 = Y 1D
j=1

Since @, is the empirical version of @ and by (2.10) Bg (@, — @) € D[a, b],
it follows from (2.2) that
(2.12) W, -, W= (WO, WO W®) in D3
with EWW() = 0 and EWPDOWR(s) = QU max(¢, sNI{j = k} —
Q(J)(t)Q(k)(S)’

THEOREM 2. For each n let S, be a solution of (2.4) such that either (2.5)
holds or S, — Sx € Dyla, bl. Suppose (2.6) holds on the set {t: Sx(¢) <1,
Sx(t —) > 0} and

—dSy(u —dS,(u
/ w0 A0
(213) r<Sx(u)<1 Sy(u) - SZ(u) 0<Sx(u)<1-SY(u) - SZ(u)
VO<7<1.

Then R Sl, the inverse of Rg in (2.9), exists as a bounded operator from
Dyla, b] to Dgla, bl, and

(2.14) Vn (S, — Sx) =€, 29 §=R5!Bs W inDgla,b],

where W is the Gaussian process in (2.12) and Pr{Bg W =Rg ¢ €
Dyla,b]} = 1.

CoroLLARY 1. Let S, be a solution of (2.4). If inf,_g <1 Kt —)>0,
then ¢, =4 Rg'Bg Win D.

Theorem 2 is proved in Section 4. Conditions (2.4) and (2.5) hold for all
NPMLE’s. The condition S, — Sy € Dla, b] says that the support of S, is
contained in that of Sy, which holds if S,(0) = 1 and the support of Sy is
(0, ). Here the invertibility of Rg means RgRg'h = h on Da, b]. By (2.9),
R is defined on the entire space Dy[a, b] if and only if (2.13) holds. By (2.6)
and (2.13),

(2.15) inf(K(¢):7<8Sx(¢) <1-7}>0, VO<7r<1/2
and |lhllx = 0 = ||k|| = 0. Therefore, (2.14) is equivalent to K¢, —,
KR5!Bg W in Dla, bl

Chang (1990) proved the asymptotic normality of ¢£,(¢) as processes on [0, T']

under the conditions of Chang and Yang (1987) for the asymptotic consistency
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and the additional conditions that
(2.16) Pr{Z=0} >0, Pr{0<Z<6}=0 and Pr{Z>T}=

for some 0 <6 < T < «. Compared with his results, Theorem 2 gives the
convergence on the entire support of X under weaker and more appealing
conditions. The asymptotic normality of the product limit estimate on (0, )
was proved by Gill (1983). Under the conditions of Chang (1990), K(¢) is
continuous and (2.6) and (2.16) hold, so that inf, _, . K(¢) > 0 and S,(T) =0
for some 0 < Sx(T) < 1, which imply (2.13). Chang [(1990), page 393] re-
marked that the purpose of his condition (2.16) was to avoid singularity of
certain integral equations and it was not clear whether his results were valid
without (2.16). In the following example we discuss a truncation-censoring
model in which (2.13) is always satisfied when Sy is identifiable. Truncation
models have been considered by Linden-Bell (1971), Woodroofe (1985) and
Lagakos, Barraj and De Gruttola (1988) among others.

ExampLE 1. Let X° Y° and Z° be independent random variables. Sup-
pose that the data is completely truncated (no observation) when Y° < Z°, and
the random variable of interest X° is doubly censored by (Y° Z°) when
Y? > Z°. Then, the observations (V;,,8,), 1 < i < n, are given by (2.1) with

Pr{X,edx,Y,€dy, Z,€dz} = Pr{X° e dx}Pr(Y°edy, Z° €dz|Y° > Z°}.

Let S9 and S2 be the survival functions of Y° and Z°, respectively. Then,
dSy(u) = a(1 — Sg(u)) dS¥(w), dS,(u) = aS(u) dsg(u) and Sy(u) —
Sy(u) = a(l — Sg(u))S (u) where a = 1/Pr{Y° > Z°%. Clearly, the sur-
vival function Sy is identifiable if and only if S3=0=Sy=0 and
S2=1=Sy=1, and in this case conditions (2.6) and (2.13) are both
satisfied and the asymptotic normality (2.14) holds for the NPMLE. But if
Pr{0 < Z° < 8} > 0 for all & > 0 or Pr{Z° = 0} = 0, then (2.16) does not hold
and the result of Chang (1990) does not apply.

We shall also establish the asymptotic efficiency of self-consistent estimators
here by proving a Hijek convolution theorem, which extends the results of
Beran (1977) and Wellner (1982) to doubly censored data. Given a Banach
space, a sequence of estimators {S, }, S, based on (V,,8,), 1 < i < n, is regular
if there exists a random element ¢ such that _/(nl/ 2(S = Sx,,); Q) con-
verges in distribution to -£(£; Q) for all sequences of surv1val functions Q)
of (V, &) such that the joint distributions of (V,, 8,),...,(V,, §,) under Q,, and
those under @ are contiguous [Beran (1977)], where ./( ; @) is the distribu-
tion under the probability measure corresponding to € and S x,n ~ Z(X; Q)

THEOREM 3. Suppose the conditions of Theorem 2 hold. If {S,} is regular
in Dgla, bl, then

('S, - 5x); Q) =5 £(£Q) =L (£ + £;Q) inDyla,b],

where ¢ is as in Theorem 2 and { is some process independent of &.
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The proof of Theorem 3 is analogous to those in Beran (1977). We shall give
a sketch in Section 5.

3. Proof of Theorem 1. Lemma 1 below, proved in the Appendix, will be
used to show that Sy is completely determined by @ via (2.7), so that we can
regard it as an identifiability result. It has two parts: Part (i) deals with
functions S and A which are not necessarily right-continuous, while part (ii),
used in Section 4, concerns functions 4 whose support is larger than that of S.
A set J of real numbers does not have a limit point from left if every
nonempty subset of J contains its maximum.

LEMMA 1. Let S be a [0,1]-valued nonincreasing function and h be a
function such that

h(t)K () = [ E(—tlh(u) dSy(u)
ustS(u) Y

1-S(¢
L 1-5@)
t<ul—S(u)

(i) Suppose (2.6) holds on the set {t: 0 < S(t) < 1}. Then, h(t) = 0 for all
t, provided that
(3.2) h(t+) #h(t) =S(t+) <S(t) on{t:0<S(¢) <1},

(3.3) h(t) =0 on {t: S(t) =0o0rS(¢) =1}.

(i) Let Jx = {t: 0 < Sx(¢) < 1}. Suppose (2.6) holds on Jyx and the set
Jx N{t: Sy(#) < S,(t — )} does not have a limit point from left. If S is
right-continuous with {t: 0 < S(¢) < 1} C Jy, h is right-continuous for t € Jx
and h(¢) = 0 for t & Jy, then h(t) = 0 for all ¢.

(3.1)
h(uw)dSy(v), V¢

Proor or THEOREM 1.

SteP 1 [Uniqueness of the solution of (2.7)]. We shall first prove S = Sy
under

(3.4) Se(t) =0=S(¢t)=0 and Sy(¢)=1=8(¢t) = 1.

Set h = S — Sy. We only need to verify the conditions of Lemma 1(i). It can be
shown in the same manner as in the derivation of (2.11) that (2.7) implies
(3.1). By (38.4) and the condition of Theorem 1, (2.6) holds on the set {¢:
0 < S(¢) < 1}. Since Sx(¢) is right-continuous, (3.2) is obvious. By
(2.6) dQM(t) = K(¢t — )dSx(t) and K(¢ —) > 0, so that by (2.7) S(¢) =0 =
QM) = 0= 84 =0 and S) =1= QM) = QV(-x) = S;(t) =1,
which implies (3.3). Therefore, S = Sy.
Step 1 is completed if we can drop (3.4). To this end we need

dQ®(u) ) dQ®(u) )
(35) beul—S(u)=fb dQ®(w), fm S(u) =fu<adQ()(u)‘

<u
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Define Kg(t) =1+ [, _,S™Nw) d@®w) + [,.,(1 — S)1dQ®(w). It
follows from (2.7) that Kq(¢t —)dS(¢) = dQ™(¢) and S(#)Kg(¢) = QO(¢) +
fi <l = S 1dQ®(u). Since Q@@(b—)=@QV(b) =0, Kg(b—)S() =
Qb —) + [, (1 —Sw) 1dR®(u) < 0. Since dR™M(t) <0 at b or near
b—, Kg(b—) = 0. and we have the first equation of (3.5). The second one
can be obtained in the same manner.

Let Sy(#) = S0 < Sx(#) < 1} + I{Sx(¢) = 1}. Since (2.7) holds for S, by
(3.5) it also holds for S,. Since S, satisfies (3.4), we have S, = Sy, which
implies S(¢) = Sx(¢#) for 0 < Sy(t) <1. If dSx(b) =0, then S(b-)=
Sx(b — ) = 0. Otherwise, (2.7) and (3.5) imply K4(b — )S(b) = 0, and d@Q"(b)
< 0 ensures Kg(b —) > 0. In any case we have the first part of (3.4), and the
proof for the second part is omitted.

STEP 2 (Uniform consistency). By (2.4) all limit points of S, must satisfy
(2.7), so that by Step 1 and the Helly-Bray selection theorem we have
S,(t) = Sx(#) as. V ¢. If dSx(¢) < 0, then by (2.4) and (2.6),

9, dQP(u) |, dQP(w) _ dQ¥
<t>—_1+fm_£ S.(0) heT- 8,0y asy

as n - and then ¢ - 0 +, which implies IdSn(t:)l > i o()|dSx (),
since dQ{"/dQ™(¢) — 1. Hence, ||S,, — Sxll = 0 a.s. O

4. Proof of Theorem 2 Let Sy m,SYm,SZ ms m =1, and S be sur-
vival functions such that ’
S - Sy € Dyla, b], S(t) =1= Sx .(t) =
S(t—)=0=8x,(t-) =0,
”SX,m -S|l - 0, ”Syﬂn - Sy” -0, ”SZ,m - Sz” -0,
Km = SY,m _}SZ,m’ > O.‘

(4.1)

(4.2)

Lemma 2. Let h,, 8, m > 1, and g be functions in Dg[a,b] such that
lg,, —gll - 0 and R,h,, =g,, where R,, =K, —A,, and A,,, R,,, and
K, are defined as in (2.8)-(2.10) with (Sx, Sy, S;) replaced by

(S X.m> Sy . m>» Sz ). Suppose that the conditions of Theorem 2 hold and
—dSy () —dSz, (1)

4.3 lim su —  + ,

( ) 70+ mp ['/;.—T<Sx(u)<1 Km(u) 4/(;<Sx(u)<7 K’n(u)

Let Ry be given by (2.9). Then there exists h € Dgla, b] such that
K, h,, —Khl—0and Rgh = g.

Lemma 2 is proved in the Appendix. Theorem 2 is proved via strong
continuity of linear operators indexed by survival functions in the metric space
O ={S: S—-Sxe€Dgla,db]} with the distance ||S — S’|l. In the sequel, a
function is said to be simple if it is a step function with finite number of jumps.
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Proor oF THEOREM 2. We consider the case S, € ® in Steps 1-4 and (2.5)
in Step 5.

Step 1 (Existence of Rg' as a linear operator from Dyla, b] to Dgla, b],
V S€0). Let Sx,, SY m» and Sy be finite discrete survival functions
satisfying the conditions of Lemma 2 and K (& —)>0for0 < Sy(t) < 1. The
existence of such survival functions is guaranteed by (2.13) and (2.6). For any
g € Dyla, b] let g,, be simple functions in Dg[a, b] with |lg,, — gll = 0. Also,
let T,, be the finite set of discontinuities of Sy ,,, Sy ., Sz ,, or g,,, and D,
the space of simple functions in Dgla, b] with jumps only at T,,. Since
R, D, cD, and D,, is a finite-dimensional space, it follows from Lemma 1(ii)
that R, is a one-to-one mapping from D,, onto D,,, so that R, h,, = g, has
a solution A,, € D,,. Since |lg,, — gll = 0, by Lemma 2 Rgh = g has a unique
solution h € Dgla, b]. Define h = R3'g.

STEP 2 (Strong continuity of {Rg': S € ®}). Let g/ € Djla,bland S,, in
® be such that |g,, —gll— 0 and [IS,, — Sl — 0. It suffices to show
IIKRg &n — KRg gll - 0, since S,, =S gives the boundedness of Rg' and
&, = & gives the strong contmulty As in Step 1 we may obtain S X, m: Sy m>
Sz m> B> &, and €,, — 0 such that R, b, =g,, K, h, — KRg® g ll<e,,
||SX m— Snll <&, and g, — gnll < &,. Since g — gII <e, +llg, —gl-

0 and IISX " SII <e, +18S,, —Sll— 0, it follows from Lemma 2 that
K, h,, — KRS gl - 0, whlch implies

IIKRgig;n - KR3'gll<e,, +IK,,h,, — KR gl - 0.

StEP 3 (Strong continuity of {Bg, S € ®}). Let h be a simple function
in D}. Since S — Sy < Dyla,b], by (2.10) Bgh — Bg h in Dgla,b] as
IS — Sxll = 0. Since || Bgll < 2 and the collection of simple functions is dense
in D}, we have the strong continuity.

SteP 4 (Conclusion). By Steps 2 and 3, {Hg = R5'Bg, S € 0} is strongly
continuous, so that by Theorem 1 and the Banach-Steinhaus theorem
sup{|Hg b — HshIIK h €C(¢)}) > 0as n > » and then ¢ - 0 + a.s. for all
compact "set C C D3, where C(¢) = {h € D}: ||h — I'|l3 < & for some h’' € C}.
Since W, -, W in DO, {W,} is uniformly tlght [Pollard (1984), page 81], so
that ||£, HS W,llx = (Hg — Hg )W, llx = 0p(1), which implies (2.14) by
(2.11) and the continuous mapping theorem [Pollard (1984), page 70].

STEP 5 (Assume (2.5) holds for S,). Let a, €la,a,) and b, € (b,, b],
where (c, ¢] and [c, ¢) are defined to be {c}. Set S,(¢) = S, (HDd, <t <b} +
[t < a',}. Then, (2.4) holds for S and S/ — Sy € O, so that Vn (S, — Sy)
converges in distribution in Dgla, b]. The conclusion follows if we
choose o/, and &), such that 2K(a')I¢,(a’)| = sup, ., o K(®)I¢,(¢)] and
2K(b), — ) &b, — )| > SUPy <;<p K(t)|§ ®l. o
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ProoF OF COROLLARY 1. Let a/, = min{t: dQ{"(¥) < 0} and ¥, =
max{t: d@Q("(¢) < 0}. Similar to Step 1 of the proof of Theorem 1 we can show
that S, — Sx € Dyla, b] if QP(b,, —) = 0 and @®(c/, — ) = QP(— ). Under
our assumption, it can be proved that @ ®(b, — ) = o(1/n) and @®(—x) —
Q®(d/, — ) = o(1/n). Since the size of jump is at least 1/n, Pr{S, — Sy €
Dyla,b} - 1. O

5. Proof of Theorem 3. Let u be a bounded linear functional on
Dyla, bl. By the argument of Beran (1977), it suffices to prove the existence of
random variables n = 7,(V, §) € L*(Q) and normal random variables {Z(a),
a € LAQ), Ea = 0} with EZ(a) = 0 and EZ(a)Z(a') = Eaa' such that

Eexp|in(£)| = Eexp|in(€) — iEan + Z(a) — Ea®/2],
Elu(¢)I* = Var(n).

The covariance structure of Z(a) ensures that Z(a) is linear in « and
Z(n,) = p'(&) Vu', for a version of ¢£. The convolution is obtained by setting
Z(a) = ip'(¢) with @ =in,. To prove (5.1), let a =a(V,5) be a bounded
function of (V, 8) with Ea = 0 such that a(¢, j) = 0 for Sx(¢) < & or Sx(¢) >
1 — . Define dQ()®) = [1 + alt, j)/ Vn1dQWX¢t) for large n and 1) ;(¢) =
KV >t 6=j). Then, @ = Ely,, ly, — Q € D}, Vn(Q,, - Q) =
Ea(V,5)1y, 5 — @), and, as in the proof of Theorem 2, u(Vn (S, — Sx)) -
w(Hg Ea(V,8) 1y, 5 — Q) = Ean, where n = u(Hg (1 5 — @) and Hg =
R5'Bg. Since {Q,,) and {Q} are contiguous, we can show as in Beran (1977)
the existence of Z(a) satisfying the first equation of (5.1). For the second one,
we have E|u(&)* = Elw(Hg W)I? = Elun(Hg (1,5 — Q)I? = Var(n). O

(5.1)

APPENDIX

Proor oF LEMMA 1. Proof of (i). Since d(UV) = UdV + V_dU, by (3.1)
and (3.3) for 0 < S(#) < 1,
(A1) K(t)dh(t+)=g(t)dS(t+), K(t—-)dh(t) =g(t—)dS(t),

where dh(t) = h(t) — h(t — ) and dh(¢ + ) = h(¢ + ) — h(¢) at discontinuities
for all h, and

) h(u)
(A2) HORS) Sy BSr(w) - J TSy 42

Assume h(ty) > 0 and 0 < S(¢,) < 1 at some point ¢,. Our goal is to establish
a contradiction. Define

J={t: h(t) >0,t; <t <t}
Then, t, € J and (¢,,t,) CJ C ¢4, ¢,].
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SteP 1. Show that g(¢) = g(¢ —) =0 on J. By (A.2) g(¢) is a right-con-
tinuous function with
dSy(t)  dSy(1)

(A.3) dg(t) = ()| 555~ * Tos | <0 7

To show that g(¢) < 0 and g(¢ — ) < 0 in JJ, we have four cases; the “greater
than or equal to”’ part is similar and omitted.

Case 1. t; = —wor S(¢) =1.By3.3) [, . (h(w)/S(u))dSy(u) < 0in J,
which implies [, ., (1 — S(w))"*h(u) dS,(u) > 0 by (3.1). Since ¢, & J, g(¢) <
0and g(¢ —) <0on J by (A.2).

For Cases 2-4, we show g(¢; —) <0 for ¢; €J and g(¢,) <0 for ¢, &,
which will imply g(¢) < 0 and g(¢ — ) < 0 on J by (A.3).

CaseE 2. h(t) > 0,t; €J. Since K(¢;, —)dh(¢;) > 0, g(¢; —) < 0 by (A.1).

Case 3. h(t) <0, h(¢, +)> 0, and S(¢;) < 1, t; & J. Here (3.2) implies
dS(¢; +) < 0, and (A.1) implies g(¢,) < 0.

CasE 4. h(t;)) <0 and h(¢; +) =0, t; &J. Since ¢; < ¢, there exists
{¢,} cJ with ¢, | t; and dh(¢,) > 0 or dh(¢, + ) > 0. Therefore, g(¢, — ) < 0
or g(¢,) < 0 by (A.1), so that g(¢,) < 0 by the right continuity of g.

SteP 2. Find a contradiction. Since A > 0 on ¢/, by Step 1 and (A.3),
(A4) dSy(t) =dSz(¢t) =0 and K(¢t) = K(¢—) = constant > O on J.
By (A.1), Step 1, and (A.4), we have dh(¢) = dh(¢ + ) = 0 on J, so that
(A.5) h(t) =h(ty) >0 ond and ¢,€dJ = (#,ty).

Case 1. S(¢)) <1. By (A5) h(t;)) <0 and h(¢, +) = h(¢y) > 0. Since

K(¢,) > 0 by (A.4), it follows from (A.1) that g(¢, + ) < 0, which is a contradic-
tion to Step 1.

Case 2. S(¢,) > 0. By (A.5) h(ty) < 0 and h(ty, — ) = h(¢,) > 0, so that by
(A.1) and (A.4) g(¢, — ) > 0, which is again a contradiction to Step 1.

Case 3. S(¢,) =1 and S(¢,) = 0. It follows from (3.3) that the right-hand
side of (3.1) is nonpositive, so that h(¢)K(¢) < 0 for all . However, h(¢)K(¢) >
0 on J by (A.4) and (A.5).

Proof of (ii). It suffices to show that (3.3) holds. Let ¢, = max{¢: h(¢) # 0,
Sy(t) — S;(t —) < 0, S(¢) = 0} if the set is not empty and ¢, = inf{¢: S(¢) = 0}
otherwise. Since {¢: h(¢) # 0, Sy(¢) — S,(¢ — ) < 0} does not have a limit point
from left, the maximum is reached for the nonempty case. For ¢ > ¢, by (3.1)
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K@®)h(@) = [, ., h(u) dS,(u). Assume h(¢,) > 0 for some ¢, > ¢t,. We shall find
a contradiction. Let ¢; = inf{¢: h(¢) < 0, ¢ > t,}. By the right continuity of A
and (2.6), & has to change sign on the right of ¢,, so that Sy(¢;) > 0. Since
K(t)h(t) is nondecreasing in [¢,, ¢,), by (3.1)

0 <h(ty —)K(t; =) = h(t3) K(83) + h(t3) dSy(23)

= h(t3)[SY(t3) —8z(25 _)]

This gives a contradiction to the definition of #; and ¢,. Therefore, ~A(¢) = 0 for
t > t, and t; = inf{¢: S(¢) = 0} by its definition, so that S(¢) = 0 = A(¢) = 0.
Similarly, S(#) =1=h()=0. O

Proor or LEMMA 2. A sequence of functions is totally bounded if every
subsequence contains a uniformly convergent further subsequence. Basically
we shall establish the total boundedness of K,,/,, and then prove that there
exists exactly one cluster point Kh. Define

1-Sy (¢
V() = /t<uT:m((u))h'"(u)dSZ’”‘(u)’
Sy (¢
va(t) = [ Sts)’(‘T(u))hm(u) dSy, ().

Step 1. For a fixed 0 <7, <1 establish the total boundedness of
v (OHS(t) < 7o} and v, (HI{S() > 7o) for the case ||K,h,ll<1. Since
S — Sx € Dyla, b], there exists 0 < 7 < 1 such that

(A6) {S(t) > 1) c{Sx(¢) >7} and {S(¢) <1- To} € {Sx(t) <1 —17}.
It follows from (4.1)-(4.3) and (2.15) that
dSy ,(u) dSy(u)

/ - 0.
u<t,Sxy(u)<1 Km(u) u<t,Sy(u)<1 K(u)

sup
Sx(@)>r

Let s <t, Sx(s) < 1and S(¢) > 7,. Since |K,,h,,|l <1, by (A.6)
v,(8) /8x,m(2) = vy (8)/Sx, m(5)l

[ (Sxm(2) k() dSy, n(u)

s<u<

=8m

< (70— IS, = SI) 7|26, = [ (K(u)) " dSy(u)].

Since g,() =h,(t) =v,(t) =0 for Sy(#) =1, by (2.13) the sequence
[v,,(®)/Sx (OU{S(¢) > 7} is totally bounded. Since Sy, — Sl — 0,
v,,()I{S(¢) > 7,4} is the product of two totally bounded functions and therefore
totally bounded itself. The total boundedness of v, (¢)[{S(¢) < 7,} can be
proved similarly.
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STEP 2. Assume ||K, Ak, |l < 1. Verify sup{|v,(®)|: S(¢) > 1 — 8} = o(1) and
sup{lv,,(8)]: S(#) <8} =o0(1) as m — « and then 6 » 0 + . There are two
cases for the first equation.

CaseE 1. {S(#) <1} c {Sx(#) <1 — 7} for some 7 > 0. Since 1 — Sy ,(¢) =
vi(t) = 0 for S(¢) = 1, by (4.3), (2.15) and the dominated convergence theo-
rem we have

sup{lvs(8)l: S(¢) > 1 - 8}

1—-Sx,.(¢ —-dS; (u
1-6<8()<170<Sx(u)<l-7 1- SX,m(u) Km(u)
1-S(¢) —dS,(u)
- sup ——— It <u}————0.
1—5<S(t)<1[0<Sx(u)<1—71 - S(u) K(u)

Caskt 2 (Not case 1). Since S — Sy € Dyla, b], we have S(a) = Sx(a) =1,
so that 1 — 6 < S(¢) < 1 for small § implies that ¢ is close to a. Given ¢ > 0,
by Step 1 there exists 7 > 0 such that

(A7) sup lg. () + sup v, (O <e, Vm,
S@®>1-7 S)>1-7

since g,(t) =h,(t) =v,.(t) =0 for t <a and |lg,, — gll = 0. By the defini-
tion of v,; and R, .k, = &,,,

(A-8) U (t) = K () R (2) = 0,,(2) = &u(2).

Assume v} (¢,) > ¢ with S(¢y) > 1 — 7. Then, h,(¢,) > 0 by (A.7) and (A.8).
Let ¢, = inf{¢t > ty: h,(t) < 0}. We shall prove that S(¢,) < 1 — 7. Similar to
the derivation of (A.1) we have

K, (t; =) (hu(t) = hu(t —))
(A9) = [v;z(tl =)/Sx m(t1 —) — U (2 _)/(1 — Sx m( _))] dSyx, m(t1)
+ dgm(tl)‘

Since v} (¢) is nondecreasing in (¢, ), v,:(¢; — ) = v, (¢,) > &, so that by (A.9)
and (A.8)

0=>K,(t; —)h,(t)
> K, (t; =)hp(t; =) + [v(t =) /Sx, m(t1 —)] dSx m(t) + dgm(t1)
= vyt =) +v,(t; =) Sx, m(t1) /Sx, m(t1 =) + &m(t1)
> = v, (¢4 =)l = lga(2)l,
which ﬁnplies S(¢,)) < 1 — 7 by (A.7). This proves k,(¢) > 0 on the set {t, < ¢,
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S(t) > 1 — 7}, and therefore

1- SX m(tO)
+ >
i) = [ Ty o () 48z n()
y 1= Sy ulte) dS;, (1)
S(u)Sl—“'l _SX,m(u) Km(u)
Since ¢, is arbitrary, by (4.1)-(4.3) and (2.15), as 6 - 0 + and then ¢ —» 0 +,

8/7)dS
lim sup sup{v,}(¢): S(t) > 1 —3}s£—f (/le(*u)z(u) —g 0.
m — oo S(u)<1-71

<

For the second equation of Step 2, the proof for “Case 1” is similar to that
of the first equation and omitted, but “Case 2" is slightly different. Let = be
such that [v,, ()| + |g,, (| < & for S(¢) < 7 [see (A.7)]. Assume v, (¢,) > ¢ for
some S(ty) < 7. Then, h,(¢,) > 0. Let ¢, = sup{¢ < ¢,: h,(¢) < 0}. Then

dSX, m(tl) SX,m(tl _)
SX,m(tl) SX,m(tl)

so that v, (¢, —) > v, (¢)) > v,,(¢,) > &, which implies S(¢, — ) > . The rest
of the proof is omitted.

U (£1) —U(¢ —) = U () + h.(t1) dSy () <0,

SteP 3. Prove that the equation Rgh = g has at most one solution with
Kh € D[a, b] for every g. Since R is a linear operator, we assume g = 0. It
suffices to check the conditions of Lemma 1(ii). Condition (3.1) says Rgh = 0
and holds naturally. Since S — Sy € Dla,b], S is right-continuous and
{0 <8S(@#) <1} cdy=1{0<8Sx() < 1}. Since K and Kk are both right-con-
tinuous, A is right-continuous on Jx by (2.15). Since Kh € D[a, b], h(t) = 0
for ¢ & Jy. It remains to show that the set Jy N{¢: Sy(t) < S,(t — )} does not
have a limit point from left. If Sy(¢) <S,(¢ —) and 0 < Sx(¢) < 1, then
by (2.6) 0 < Sy(u) — Sy(u) <S,(t —)— Sy(u) for u>t and S,(t —)>
S;(t + ¢) for € > 0, so that

_[t5u<t+s[SY(u) N SZ(u)]_ldSZ(u)

> —[ [Sz(t =) — Sy(u)] "dS,(u) =1, Ve>o0.

It follows from (2.13) that the set {S,(¢) < S,(¢ — ), 0 < Sy(t) < 7} is finite
forall0 <7< 1. ‘

Step 4 (Conclusion). Let us consider the case |K, k| <1 first. If Kh
is a cluster point of the sequence K,/ ,,, then by the conditions of this lemma
and (2.15) we have Rgh = g. Since K, h,, = g,, + v,, + v, and lig,, — gl -
0, Steps 1 and 2 imply that the sequence K, h,, is totally bounded. By
Step 3, the sequence has only one cluster point. Hence |K, Ak, — Kh| — 0
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and Rgh = g. if sup,,l|1K, h, |l = M < », then the conditions of this lemma
hold for k,,/M and g,,/M, and we come back to the case [|K,,A,l < 1.
The proof is completed if we can find a contradiction to the case where
1K, ml =M, - = Let k) = hmk/Mk’ &, = gmk/Mk’ Sk r = SX,mk’ Sy, =

mp " myp
Sy m, and Sz, =S ,, . Then by Lemma 2 for the case K, %, |l < 1, we have
K~ = 0, since [lgll = 0. This is a contradiction to |[K, A%/l = 1. O
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