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USING PRIOR INFORMATION IN DESIGNING
INTERVENTION DETECTION EXPERIMENTS!

By PETER SCHUMACHER AND JAMES V. ZIDEK

Statistical Sciences, Inc. and University of British Columbia

This paper investigates the effect of prior information on the design of
experiments for detecting the potential impact of an event which is to occur
at a specified time, in the knowledge of possible overall changes to the
population as a whole. It is assumed that an F' test of interaction is to be
used to decide if an impact has occurred. Maximizing the power of this test,
or rather the simpler, closely related goal of maximizing the noncentrality
parameter is taken to be the designer’s objective. Some of the results
obtained are qualitative. For example, for certain fairly realistic general
models of how a subregional impact might distribute itself, it is shown that
it is never optimal to place more than 50% of the monitoring sites in any
one of the homogeneous subregions in which the impact might occur.
Another qualitative, more intuitively obvious result is that it is essential to
monitor subregions where the impact is not likely to occur
(“‘quasicontrols”); this would maximize the contrast created by the poten-
tial impact. A very general solution to the optimal design problem is given
in a form which could be readily implemented in practice with the aid of a
computer. Explicit solutions are also given for certain realistic impact
models.

1. Introduction. Designing experiments invariably requires the use of
prior information because the data which the experiment is designed to
produce is not yet in hand. For example, in the first phase of a major study of
surface water in the United States, Linthurst and his co-investigators chose
the population of lakes to be sampled as ‘‘lakes located within those regions
expected to contain the most lakes in the U.S. characterized by alkalinity less
than 400 u eq/L (i.e., those areas where acidic deposition would potentially
have the most effect)”’ [Linthurst, Landers, Eilers, Brakke, Overton, Meier and
Crowe (1986), page 4]. Because this prior information is usually introduced in
an informal way, its influence on the selection of the ultimate design may well
be obscured. In this paper we investigate the influence prior information can
have on an experimental design. We do this in a very specific context to be
described below, by introducing the prior information explicitly through intu-
itively natural parameters in an objective function which expresses the goal of
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the design, taken here as the detection of a potential impact on a certain
population of an (“intervention’) event occurring at a specified time. A
tractable objective function is developed in the next few paragraphs under
what we believe to be reasonable simplifying assumptions. The optimization
problem that emerges is to maximize the function H given in (2), as a function
of f whose coordinates represent the fractions of the sample which are
allocated to certain sampling zones defined below. Within zones, sampling will
be random.

Our interest in the general problem addressed in this paper was originally
stimulated by work related to various potential environmental impacts like
those anticipated from the commencement of exploratory drilling in Harrison
Bay on the North Slopes of Alaska [see Zidek (1984)]. In these examples, the
population of interest is a spatial array of sites, some subset of which is to be
sampled. The approach described here is an extensive generalization of that of
Zidek (1984) and was stimulated in part by an anonymous referee who pointed
out that our results might well apply outside the context of environmental
monitoring and include human populations, for example.

Key features of the problem addressed in this paper are first, that it is not
known, a priori, which if any items in the population will be changed by the
intervention and second, that there may well be a pervasive or ambient change
which affects the population as a whole. Thus interest focusses on the interac-
tion, if any, between the event and the population, rather than on just the
change in levels of the attributes of interest, since the latter might simply be
due to the ambient change itself.

The item-event interaction, called the ‘“space-event interaction” by Millard
and Lettenmeier (1986) in the context of environmental monitoring, is quite
commonly assessed by the F test in that context [cf. Green (1979)] and we
assume it is to be used here. This implicitly assumes that the ambient change
will be approximately constant. And clearly, to be effective, the design must
not only incorporate a sample of items whick do change as a result of the
intervention, but also a sample of “pseudo controls” of those items which do
not.

The designer’s problem is made even more challenging, typically, by a
paucity of background data which makes model parameters, like the interitem
covariance matrix, inestimable. This forces subjective choices to be made on
the basis of educated ‘“hunches” about the size and likelihood of change. In
this paper, these hunches are explicitly expressed by an assumption that the
impact field is random and has a joint probability distribution which expresses
the uncertainty in the prior opinions of the experimenters.

The power of the F test at the heart of this paper depends upon the
noncentrality parameter 82, a quadratic functional of the differences between
“before” and ““after’’ expected values of measurements at the design stations.
A marked departure of any one of the differences from their average over all
design points would represent a change for that item and increase §2. But
conversely 82 = 0 would not necessarily imply no impact on the study popula-
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tion; this could happen simply because by bad luck or judgement, the design
points did not include items affected by that impact. Clearly, to maximize the
power of the test, the design points must maximize the unknown &2, pointing
once again to the need, in practice, to resort to subjective strategies based on
prior knowledge.

With uncertainty about the impact field expressed by a probability distribu-
tion, 82 becomes a random variable whose distribution depends on the choice
of the subset of design points, say D. The power of the F test is therefore
random, so the actual power of the test is the expected value of that of the F
test. The optimal D, for testing at least, would maximize the expected power,
but finding it with such a complex objective function is completely impractical.
Instead we tackle the simpler problem of maximizing the expected noncentral-
ity parameter. While our goal in doing so is primarily that of reaching a
mathematically and numerically tractable problem and an objective which is at
least consistent with that of maximizing the power, this simpler objective
function has its own intuitive appeal: It is a natural index of the degree of
change and might well be of interest even where testing is not the ultimate
goal.

The simplified objective function thus becomes E(82), which is just a
quadratic function of the vector of 0’s and 1’s which represents the design.
However, even this quadratic binary programming problem is well beyond the
scope of modern programming methods (Professor M. Queyranne, personal
communication). The problem is unrealistic as well in that it calls on the
designer to provide input at a level of detail which would almost surely go well
beyond the prior information at hand. So in this paper, an additional simplifi-
cation is made by assuming the population can be stratified into relatively
homogeneous clusters, which we will call ‘“zones” in recognition of the context
in which this problem originated. Our assumption is stated more precisely
below in terms of second order zonewise exchangeability (SOZE).

As a lead-up to this assumption, suppose n replicate vector-valued measure-
ments are to be made at each design point before and after the intervention.
Assume these are conditionally independent given their expected values and
common covariance matrix o2 Denote the difference between the expected
value vectors, “after” minus “before”” say, by Z,;, for zone i = 1,..., K, and
item j =1,...,n; in zone i. A priori uncertainty translates into randomness
of the various parameters of the measurement distribution and it is assumed
in particular that the Z,; are distributed independently of a2

It is easily shown that

— T —
E[52] = Z E[(Zij - ZD) Q(Zij - ZD)]:
G,))eD
where @ = E[(¢®/n)" '] and Z}, = (1/d)%; j,c pZ;;, and d denotes the num-
ber of points in D. All expectations here and in the sequel except where

otherwise indicated in specific contexts, are with respect to the joint prior
distributions of the Z’s and o2



450 P. SCHUMACHER AND J. V. ZIDEK

This expression can be simplified using the notation {(x,y) = x7Qy and
x> = {(x,x) for arbitrary vectors x and y. With this notation

(1) E[5*]= X E”Zij - ZDIIZ-

(i,j)eD
Remembering E[82]’s role as an index of change, we would remark that the
analysis of this paper will apply equally well whatever inner product is selected
in obtaining (1), and Z;; can even be infinite-dimensional as in the case where
it is an analogue signal or time series.

We now impose the additional assumption of second order zonewise ex-
changeability (SOZE): E(Z;;) = u;, EUZI*) =, ECZ,;;,Z;;)) = B;;, for
certain constants p;, v;, B;; and all #, j # j' and at the same time E(Z,;,Z,,))
= B, for all values of these subscripts, with i # k.

The assumption of SOZE implies

E(8%) = Y EIZ I - dE{Z,,Zp)
(i,j)eD

= Zni‘)’i -d! Z Z E<Zij’Zi’j’>
Gi,/)eD (', jHeD
=Xy, —d ' Xny,—d P Yn(n, — DB —d7 Y Y ninyBy,
Qi
where n; denotes the number of sampling points to be allocated to zone i. It
thus follows that

2) E[6%] = Y f{(d — 1)y, + B} —d X X fi fiBiv
2 H(f),

say, where f = (f},..., fx) and f; denotes the fraction of the total number d
of points in zone i, for i = 1,..., K, that is, f, = n,/d.

It is assumed that the sample points within zones will be chosen at random.
If no further randomization is admitted in the design, the problem of finding
the optimal design now reduces to solving the quadratic integer programming
problem of finding the optimal sampling fractions f, those that maximize H in
(2). The resulting design will be called the optimal design (OD).

In general, finding the OD remains out of reach of current techniques and
technology. But our discretization of the original problem has an obvious
approximate solution derived from treating the sampling fractions as continu-
ous rather than discrete decision variables. The only constraints imposed in
obtaining the approximate solution are f; > 0 and X f; = 1. In general, it may
be necessary to impose the additional constraints that L; < f; < U;, and this is
permitted in the theory of Section 2. The resulting design will be called the
optimal approximate design (OAD).

Randomization can be carried one step further and the n; made random.
One fairly simple scheme would endow them with a joint multinomial distribu-
tion with zone randomization probabilities 7; and w = (w4, ..., mg); these cell
probabilities satisfy exactly the same constraints as the sampling fractions f;.
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The expectation in (2) would need to be carried one step further with the
result that

(3) E[6%] = (d - 1)[277';“)’;' - Z’Tz""i'ﬁii']’

for which we can write Hpg(w). An optimal design can now be found by
maximizing Hp with respect to the 7; and the result will be referred to as the
optimal random design (ORD). The OAD would be selected as an approxima-
tion to the OD purely for expediency and most of this paper is devoted to an
investigation of the OAD. However, our results apply equally well to finding
the ORD since, from a technical point of view finding these two designs are one
and the same problem. Thus we are in fact investigating both the OAD and
ORD in this paper.

Special features of the problem addressed in this paper place it beyond the
current repertoire of optimal design theory which, broadly speaking, is based
on either of two distinct paradigms [Federov and Mueller (1988), (1989)] which
we will call the “regression’ approach and the ‘““random fields’ approach for
simplicity. The regression approach, deriving from the work of Smith (1918)
has been developed by Elfving (1952), Kiefer (1959) and others [cf. Silvey
(1980) for a review]. It seeks optimal designs for fixed effect regression
experiments where estimation of functions of regression coefficients is the
ultimate objective. There is a complementary literature on algorithms for
finding the optimum or approximately optimum designs for this theory [see
Pazman (1986) for a recent review]. While algorithms for finding optimal exact
design are available, finding optimal designs can involve insurmountable com-
putational difficulties and even the well known algorithm of Mitchell (1974)
does not generally converge to an optimal solution, according to Fedorov,
Leonov and Pitovranov (1987).

But the problem of this paper is not amenable to the regression approach.
Our objective is testing and not estimation. And although the designer decides
where to monitor for change, ‘“nature” decides where the change occurs.
Within the framework of fixed effects linear models the design matrix is thus
unknown. This problem disappears in the random effects model. The design
matrix can be specified and the randomness due to nature incorporated in the
random effects. Our problem thus fits into the context of the second, or
“random fields” approach to optimal design.

The random fields approach encompasses a number of design strategies,
none of which applies to the problem of this paper. These strategies include
designing to maximize the performance of the kriging interpolator, and design-
ing to maximize some functional of entropy. The latter was proposed as a
monitoring network design strategy by Caselton and Zidek [(1984); hereafter
CZ] and again by Shewry and Wynn (1987). CZ formalize an idea applied by
Caselton and Husain (1980); they advocate the use of an entropy based design
criterion when there is a multiplicity of specified and unspecified objectives.
This criterion has been implemented by Caselton, Kan and Zidek (1992), for
the case of Gaussian fields where the spatial covariance matrix is unspecified,
and refinements are added by Wu and Zidek (1992). The CZ approach is
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Bayesian while that of this paper is only partially so for reasons discussed in
the last section.

Federov and Mueller, in two very similar papers [Federov and Mueller
(1988), (1989), hereafter FM], attempt to bridge the gap between the regres-
sion and random field approaches by making the regression effects random.
The validity of their random effects model as a description of a spatial random
field is unclear. Formally, the FM method does yield a design criterion which is
related to, but more structured than, that of Caselton and Zidek (1984). The
orientation of the resulting theory remains on estimation. And formally, their
approach could be interpreted as Bayesian although FM do not exploit the rich
existing Bayesian design theory.

In fact the CZ approach is really an implementation of a proposal of Lindley
(1956) on the use of entropy in experimental design. There is a substantial
body of work on optimal design in the Bayesian context although none as far
as we are aware covers the application which is made here. For a recent review
of Bayesian design see Verdinelli (1992).

While our work fits into the random fields context, our emphasis on testing
and the resulting objective function (the expected noncentrality parameter)
sets it apart. The pixelization scheme used in this paper and described above
also gives our work a special feature which is vitally important to our analysis
and its practical implementation. Finally, we are considering the case where
the response variable is a vector rather than a scalar valued object, whereas
the work we have been citing deals with scalar valued responses.

In summary, Section 2 of this paper gives a very general characterization of
the OAD (ORD) and applies it in the particular case of K = 2 zones. The
general characterization is then applied in Sections 3 and 4 to obtain the OAD
(ORD) in certain special cases. A number of properties of the optimal sampling
fractions (zone randomization probabilities) are presented. Except where oth-
erwise indicated, the proofs of all of the results are given in the Appendix. The
results derived in Sections 2-4 are discussed in Section 5. Some of the
shortcomings of the present approach are noted and possible extensions are
indicated.

2. Subregionally homogeneous impacts. The form of 62 allows us to
assume without loss of generality that the uniform ambient change over the
entire region under study is zero and we will now impose that assumption for
convenience. Now to allow for the inclusion of a zone where it is certain that
no impact occurs, that is, where Z, =0 for all j in zone ¢, under the
assumption just made of a zero ambient change, we allow y;, = 0 = B, for at
most a single i, say i = 1, and for all i'. We assume that vy, > 0 for i’ > 1 and
that the (K — 1) X (K — 1) matrix (B;;) for which i,i' > 1 is positive definite.
It follows that H as defined in (2) is a concave function of f with a unique
global maximum f, on the convex set ¥={f 0 <L<f<U<1, Xf;, =1},
where 1 denotes the vector all of whose elements are 1, and L, U are any
feasible bounds on f imposed by the problem. The OAD sampling fractions are
characterized in Theorem 1, where .#; and .#; denote the subscripts i for
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which f,; = L, or f,; = U, respectively, and the corresponding constraints are
binding. Let .# denote the complement of .7, U .#; in{1,..., K}.

THEOREM 1. For K > 2, the sampling fractions which maximize the ex-
pected noncentrality parameter are, for a uniquely determined partition
1,...,K} =7, U LU A, the solution of the equations

(4) A=M(f,), icF

subject to f,, =L, i€ S, and f,;=U, i€ F,, where Mf,) =y, —
A/dXy, — B;) — 25, .1 fa;Bij» M) <A or > A according as i € 7, or
i € Ay, and M is a uniquely determined constant.

Proor. See the Appendix.

The method of proof used in Theorem 1 uses the Kuhn-Tucker approach to
optimization and since H is concave, .#;, #; and A are unique. With .#; and
#, identified (binding constraints must be determined first), the optimization
problem becomes Lagrangian in nature. In fact condition (4) simply asserts
that the optimal f (on .#) must be chosen so that the contours of the functions
H(f) and ¥, . >f; are tangent, that is, the gradient of H(f) must be parallel to
that of ¥;. zf;, that is, must be a multiple (1) of the vector all of whose
coordinates are one and whose dimension is the number of points in 7.

In the case of just two zones, the theorem yields an explicit result. The
sampling fractions f;, fo=1—f; must satisfy L, <f, < U, i = 1,2 and a
feasible solution exists if and only if the L’s and U’s satisfy L, + L, < f; + f,
< U; + U, that is, min{L,,1 — U,} < max{U;,1 — L,}. In applying Theorem
1, we must first determine which if any of the constraints is binding. Now it is
easily shown that subject only to 0 <f; <1 and f, =1 — f;, the optimal
solutionis f,; = f2 (1/2 a; — ay + 2B;; — 2B12XB1; + Bas — 2B15) 1, where
a;, =v; + Q/dXB;; —v;) for i = 1,2. One of the other constraints is bind-
ing when f < min{l — U,, L} or f> max{U,;,1 — L,}, more explicitly when
fou=L, if1-U,<f<Ly, f,=1-U, if Ly<f<1-U,, f,;=U; if
U <f<l-Lyand f,;=1-L,ifl1-L,<f<U,.

Observe that f=1/2if y; = y, and B;; = By, While if f = 1/2 is feasible,
then it is optimal under these conditions regardless of the size of the ‘““inter-
class correlation” B;,, roughly speaking. To interpret our results let us con-
sider the univariate case with d large so that «; is approximately equal to

= (02 + ui)a?/n)~', where o = Var(Z;,) for all J. Also B;; (o-o-pu
p, I J)(az/n) 1. where pl ; denotes the correlation between Z " and m (With
k#+mif i —J) Then f= (1/2M1 — (02pgyy — U1P11)D '], where p, ;= T = Pijs
i=12 D=(Ap?+ (A0)® + 20'10'2P12 0ip11 — 03P A =p, — py and
Ao = 0y — 0,. It follows that if Ap is large relative to the other parameters
fal = 1/2 is optimal if feasible, the same result as is obtained when o2p,, =
T3pgs, a fact noted earlier. It is expected that within-zone covariances should
exceed between-zone covariances and hence that typically D > 0. It then
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follows that f < 1/2 or > 1/2 according as o2py,> 02p,; or < op;;. This
seems intuitively natural since the designer’s objective is to maximize the
expected noncentrality parameter, that is, the contrasts among the Z;;, and
this is more likely to be achieved where o;? is large unless p,; is unduly large
at the same time. The optimal f takes account of these competing factors
through o%;;.

3. Particular covariance structures. A potentially applicable special-
ization of the model leading to Theorem 1, for which the OAD sampling
fractions can be found explicitly, is analyzed in this section. Let

5
(&) ¥i = Bii — Cod] = By + B1¢i2 - Ci¢] foralli,
where r=00r2,0<¢; < -+ <¢g, By >0,Cy>0,C, <0and B, are all
specified constants and f is restricted only by 0 < f < 1sothat 0 =L, U = 1.

If r = 2, ¢; > 0 is assumed to avoid degeneracy. Example 1 shows how such a
covariance structure can arise. With this added structure (4) becomes

A =By + B1¢? — d7'Co¢; + 2C14] f;
(6) _2Zfaj(BO+Bl¢L¢J), 16‘7-
Jj=1

Consider first the case where r = 0. Here (6) becomes
@) A =%+ 2C,f, — 20,1, i€ S,
where A, =(A + B, +d~'Cy)/B;, C;=C,/B; and u = Lf, ¢; Multiply
both sides of (7) by ¢, and sum the result over all i € .£. The result is
(8) A8y =83+ 2Cu — 28,u,
where S, = ¥, 7¢!, —o <t < . Now sum both sides of (7) over i € .Z to
get
(9) ASy =8y + 2C, - 28 .

Equations (7), (8) and (9) are readily solved for f,;, A; and u. The results are
far = 3C3 [ A — 97 + 20,u], i€,
— _ -1
(10) m= %[C(d’z, ‘15) - 2C,8,8, 2][0((1’, ¢) — C,S; 1] s
Ay =1[8; +2C; — 28,1]/8,,
where, in general, c(x, y) = (1/S)L; c 7(x, — Ny, — 7).

But f,; > 0 entails A, < ¢? — 2¢, for i € # while Theorem 1 requires
Ay > % — 2¢,u for i € £= 7. Since x — x2 — 2xu is a quadratic function
which attains its minimum at x = u, it follows that /= {i: I <i <u} for
integers [, u €{1,..., K} unless .#={1,..., K} where .£= .

OAD sampling fractions are now readily found by trying successively smaller
#’s until a A; and p are found for which the conditions of Theorem 1 are
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satisfied. That a unique A; and u exist follows from that theorem as well. The
procedure is illustrated in Example 1.

The case where r = 2 and ¢; > 0 for all { in (5) is handled in a similar
fashion. Instead of (7) we obtain

(11) Ay = (l"zz + 203¢i2fai — 2B;¢,u, i€ s,

where A, = (A + By)/B,, B, = (B, + C,/d), C; = C,/B,, B; = B,/B, and
u is as defined above. If 0 < ¢, for all i, (11) may be solved in the same
manner as (7) to yield

fai = %Cs_lﬁbi_z[’\z - ¢i_2 + 2B3¢1,U«], i€/,
(12) Mm= %[C(¢’¢_2) + 2035—1]/[035—2 - B3c(¢_1,¢>—1)],
Ay =[8o+2C; —2BzuS _,]1/8_,

with c(-,- ) as defined just below (10). As before we may deduce that .#= & or
H#={i:l <i < u}sothat .# can be found without resorting to a combinatorial
search. The next theorem summarizes the results of this section.

THEOREM 2. With the assumptions in (5) added to those of Theorem 1, the
OAD sampling fractions are given in (10) or (12) according asr = 0 or 2 in
(5). In any case, zones selected for monitoring by the OAD are the complement
of = Qor £={i:l <i <u} forintegersl,u €{1,..., K}.

Proor. The proof is contained in the discussion which precedes the state-
ment of this result.

The following example involves a special case of some interest in its own
right.

ExaMpLE 1. Suppose the data vectors are one-dimensional, B; = o2 + u?,
y; = 0%, + u? for all i and B:j = a?p, + uip; for all i #j with p, <p,.
Then assumptions (5) obtain with By, =0%,, B; =1, ¢, =p,; for all i,
Co=0*(1-p,), r=0and C, =o0%p, —p,) <O.

A natural alternative to the last covariance model would have Var(Z,) o u?
provided u; > 0 for all i. In this case assumptions (5) obtain with r = 2.

To illustrate how to get the optimal design corresponding to the first of the
two models in this example, let K =5, p, = 0.1, p, = 0.6, 02 = 16 and the
{1;} be those given below:

i=12345,
w; =124510.
Both u and A; are computed successively for the various (but not all)

possible choices of .#, each a subinterval of {1,..., 5} to illustrate the process
of finding the optimal subset. The results, shown in Table 1, reveal that
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TaBLE 1
Computations for selecting the optimal monitoring zones in Example 1, using (10)

uZ — 2p;p for given i

Network zones m A 1 2 3 4 5
1 1 -17 -1 0 8 15 80
5 10 -116 -19 —36 - 64 ~75 —100
1,5 5.5 -18 -10 —18 —28 -30 -10
1,2,5 5.5 -18 -10 -18 —28 -30 -10
1,4,5 5540 —22.426 -10.081 -18.161 -—28.322 -—30.403 —10.805
1,2,35 4896 —15.370 —8.793 -15586 —23.172 —23.965 2.070
1,2,45 4852 —15.164 —8.703 -15.406 -—22.813 -—23.516 2.969
1,3,4,5 5.6 ~24.5 -10.2 —-18.4 —28.8 -31 -12
2,3,4,5 5472 —22.154 —9.944 -17.888 -—27.776 —29.720 —9.440

#=({1,2, 5} is the optimal selection of zones since A, > u? — 2u,u for i = 3,4
while A; < u? — 2u,u for i = 1,2,5. Then using (10) it follows that f,, =
f.s = 1/2 while f,, = 0. Thus, equivalently, #={1,5} is optimal. However,
f2 = 0 is a nonbinding constraint; f,, = 0 cannot be improved on by choosing
f.2 < 0 in violation of this constraint.

4. Uniform impacts. To the assumptions underlying Theorem 1 add:
Z,; =12, for all j in zone i; L = 0 and U = 1. Consequently B;; = v,. Assume
E|Z, - Z;|> > 0 when i # j.

Theorem 1 simplifies substantially with these added assumptions and the
result is the next theorem with .#; = ¢ and 7, = 7.

THEOREM 3. The OAD sampling fractions, { f,;}, are uniquely characterized
by the conditions
E”Zz_zllzz/\’ 16‘7’
(13) 712 .
E|lZ, - Z|” < A, ie s
for some constant A, where Z = ¥, f,,Z,.

It is easily shown that the constant A of Theorem 3is A = EY; f,;IIZ, — Z2.
The proof of the following result is straightforward and omitted.

COROLLARY 4. The OAD places sampling sites in at least two subregions.
The next result is not intuitively obvious.

COROLLARY 5. The following statements are equivalent:

(i) The OAD places all the monitoring stations in zones i and j.

(ll) fai = faj = 1/2
Gii) E(Z, —Z,,Z, — Z,) <O forall 1 #1, .

Proor. See the Appendix
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It is not obvious that if stations i, j satisfying (iii) exist, then they are
unique. A simple direct proof is the following. For any two pairs of zone labels,

-EZ,~Z,,2,-7,) +EZ,~Z,,Z, - Z,)

So it is impossible that (i, j) and (m, r) both satisfy (iii), proving the assertion
of uniqueness.

COROLLARY 6. f,; <1/2 foralli.
Proor. See the Appendix.

Theorem 3 does not in general admit an explicit solution. Through further
specialization, explicit solutions of certain particular cases of this theorem are
given by Theorem 2. One of these cases will be investigated below. It is a
distinguished special case in that it is the only one of reasonable generality for
which an integer programming algorithm and hence exact solution is available.
In this case it is possible then to compare the OAD solution with the exact
solution, and this has been done in an example which for brevity will not be
included here. The results are identical [Schumacher and Zidek (1988)].

To the other assumptions made above in this section, add B;; =0, i #;
which means that the case where at most one zone undergoes change is
included, given the assumption we have made (without loss of generality) that
the ambient change is zero. This case would arise in practice in situations
where the affected zone was decided by a structural element like the direction
of the wind at the time of the event.

Our assumptions imply

K
(14) E(8*) =d ¥ fi(1 - ).
k=1
Relabel the {y,} if necessary so that
O0<y, <yy< '+ < yg.
Observe that in our counterpart of (13),
(15) ElZ; - ZI* = v(1 - 2f;) + ¥ fi:.

We now dispose of an easy special case to simplify our exposition.
THEOREM 7. IfK =2,f,, =f,. =1/2.
Proor. The result follows directly from (14). O

The following specialization of Theorem 1 gives the OAD (ORD) sampling
fractions (zone sampling probabilities) in an explicit form.



458 P. SCHUMACHER AND J. V. ZIDEK

THEOREM 8. For K > 2, the sampling fractions which maximize the ex-
pected noncentrality parameter are:

O, I,=1, ,m>
fai = %[1—)\'}’;1], i=m+1,.., K,

where A = X(m)=[K —m — 2% .. 1v7 17}, and m = 0 unless a unique

i=m

positive m < K — 2 can be found which satisfies v,, < A(m) < y,, 1.

Proor. This is essentially a consequence of Theorem 3. The proof appears
in the Appendix.

There are a number of notable consequences of this theorem. These are
given in the following corollaries whose proofs are immediate. The optimal
approximate design (OAD) D, is that having the sampling fractions stated in
Theorem 8.

CoroLLARY 9. For any K > 3, the number of zones in D, is K — m > 3.

Proor. The result is obvious since otherwise A(m) <0 for all m and
Ym < A(m) cannot then be satisfied for any m, a contradiction. O

CoroLLARY 10. If K =4, it is approximately optimal to monitor just
K — m = 3 zones if and only if

yit> vyttt

when zone 1 is excluded from D,.

Thus far we have considered the design problem from the point of view of
choosing continuous sampling fractions. An algorithm for finding the optimal
solution in the discrete analogue is given by Schumacher and Zidek (1988). For
brevity it is not presented here. In an example, the approximate solution given
by rounding off the optimal continuous solution is exactly the same as that
given by the integer programming algorithm, an encouraging result.

5. Discussion. This paper has investigated design problems involving
subjective choices based on prior information, explicitly admitted and used in a
fairly conventional setup where an experiment is to be designed to detect the
potential impact of an event occurring at a known time. General optimal
designs are derived and some interesting qualitative conclusions are reached.

It may well be objected that it is inconsistent to ‘‘break the Bayesian eggs’’
as we have done by expressing the prior information through probabilities and
then not enjoy the ‘‘Bayesian omelette,” opting instead to use the classical
approach of hypothesis testing. However, our goal is not that of finding
alternatives to the F' test which as noted above is a conventional method in
this context, but rather to discover how to incorporate prior information into
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the design if the F test is to be used, and to discover something about the
character of the resulting design.

We recognize that in practice, ‘“‘good’’ rather than “optimal”’ designs are
needed and optimal designs like those in this paper must be considered as
tentative proposals susceptible to modification depending on the circumstances
prevailing in the context of their implementation. These ‘“‘optimal” designs
may well be valuable starting points, however, since they can be explicated in
terms of their axiomatic underpinnings and proposed changes to these optimal
designs can be interpreted in terms of the axioms. This can provide a degree of
clarity in the typically complex situation confronting a designer.

Schumacher and Zidek (1988) discuss various issues, implications and
interpretations of the theory developed in this paper and throw some addi-
tional light on the value of the theory. For brevity we will merely highlight
some of these comments.

Our assumption that the unknown ambient change is approximately con-
stant implies a need to minimize the breadth of the study population while
preserving the pseudo controls to insure its validity.

Relying on the power as a design criterion is a concession to simplicity and
has the shortcoming of ignoring substantive factors such as economic impact.

A surprising conclusion is that of Corollary 9, which says that when at most
one of a group of three zones can potentially be impacted, with a uniform
impact across the zone, monitoring must be done in all three, never in only
two, regardless of the underlying parameters. This does not carry over to the
more general model of Section 4 where monitoring just two zones may
sometimes be optimal. Undoubtedly the most striking result of the paper is
that of Corollary 6, which states that for the most general situation addressed
in Section 4, no more than 50% of the network’s sites should ever be placed in
any one zone. This result seems very unintuitive. It would be interesting to
know how general it really is.

APPENDIX

The proofs of most of the results in the paper are given in this Appendix.

Proor oF THEOREM 1. Our assumptions imply H(f,) > H(f, + h) when
f, + his feasible, that is, LA, = 0, h, < 0 for i € Ay, h; > 0 for i € 4, and
lh| is small. But then H(f, + h) = H(f,) + G(f,,h) where G(f,,h) =
Lh,M(f,) and M,(f,) is defined in the statement of the theorem. Here “ = ”
means equal up to the first two terms in the Taylor expansion in h. It follows
that 0 > G(f,, h) for all such h. Suppose .7 contains at least two elements, say
{k,1}. Set h; = 0 except for i = k,I with h, = —h, = h. Then H(f, + h) =
H(f,) + h(M,(£,) — M,(f,). Now if M, (f,) — M,(f,) = 0, for sufficiently
small |h|, H(f,) > H(f,) + h(M,(f,) — M,(f,)). Then since A may be either
negative or positive we have a contradiction. Thus, M,(f,) = M,(f,)
and, by extension, M,(f,) is a constant, say A, on i € #. Thus G(f,,h) =
LhiM®£,) = Z;c 7h M) + Zic shy(M(£,) = Z;c +h(M£,) — 1) since
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Yiezh;=—X,c_-h, Now for any given i € #, take h; <0 and h; = 0 for
any other j except for some j € 7, to preserve the feasibility condition
Lh; = 0. Then since Hf, + h) = Hf,) + £, _,h,(M,(f,) — A), we obtain a
contradiction unless M;(f,) — A > 0. Similarly we may choose, successively,
h; > 0 for any given i € %, to obtain the conclusion. The cases where .#
consists of one or no elements are straightforward. O

Proor oF COROLLARY 5. Suppose f,; =0 except when [ =i or j. With
a=f,; and (1 — @) = f,,, Theorem 1 implies

0=EIZ; - aZ,— (1 — a)Z,I’ - E|Z; — aZ, — (1 — a)Z,|
= (1-2a)EIZ; - Z,I.

Thus a = 1/2 and this establishes the equivalence of (i) and (ii). Now suppose
Gii) holds: 0> E(Z, — Z;,Z,— Z,) for all I +i,j. Then —E<Z,Z; >
EXZ, Z,) — 2EZ,,Z) where Z = (1/2XZ, + Z,). Thus

EZ,-Z,Z,-Z) < EZ,Z) - E<Z;,Z;) = (1/4)E|Z, - Z |*

127y

_ =2
= (1/2)E|Z, - ZI° + (1/2)EI|Z; - Z|
=A=E|Z,-ZI° - E|Z; - ZI?,

which proves that (iii) implies (ii) by Theorem 3.

Conversely, suppose (ii) holds. Theorem 1 implies E||Z, — Z|? < A for every
l+#1i,j,where A = (1/4)E|Z, — Zjll2 and Z = (1/2XZ, + Z,). A simple calcu-
lation shows that this is equivalent to the assertion that 0 > EXZ, — Z,,Z, —
Z;) for all I # i, j, so the proof of the converse and hence of the theorem is
complete. O

Proor oF COROLLARY 6. Suppose to the contrary f,, > 1/2 for some i, say
i = 1 for simplicity of exposition. By Theorem 1,0 = E|Z, — Z|? - E|Z, - Zl?
for every j € .Z. But

E|Z, - ZI? - E|Z; - ZI* = E|Z,|*(1 — 2f,,) — 2f,;E{Z,,Z,)
- Y 2f,E(Z,Z))

k+1,j
— EIZ,I°(1 - 2f,;) + 2fs EXZ1, Z;)
+ Y 2f,E<Z;,Zy)

k+1,j
= (1-2£,)(EIZ* - EZ,,Z)))
—(1 - 2f£,,)(EIZ? - EZ,,Z,))
- ¥ 2f..(EZ,,Z,) - EZ;,Z,)).

k+1,j
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But —(1 - 2f,) = —2£,) — 4,1,2fas Thus 0= (1 — 2£,)E|Z, —
Z|? - £, .:2funEZ; — Z,,Z; — Z,). So [, > 1/2 implies 0 >
Lhe1far BXZ; — Z,,Z; — Z,,) for every j # 1, j € #. Thus

0> ) Y fojfarB<Z; — Z,,Z; — Z})

J*LEk+1

or

0> Y Y forfo;EZ,~-2,,Z, - Z)),
E#1j#1
where the last inequality is obtained from its predecessor simply by inter-
changing the indices of summation, j and k. But the sum of the right-hand
sides of these last two inequalities is ;1% .1 f,, far EIIZ; — Z,)1> > 0, and
this is a contradiction. Thus f,; > 1/2 is impossible and the conclusion of the
corollary obtains. O

Proor oF THEOREM 8. Theorem 3 and (15) imply that
(16) A=7i(1_2fai) + Z a2jYJ7 lE/
If v, =0 i € .7 for otherwise, A = Lf.2y;, #= ¢ (for y; < 0 is impossible),
hence f,;, =1/2,i € #={1,..., K] and K = 2 contrary to our assumptions.
Thus f,; = 0 in this case. Now (16) implies f,; = (1/2)1 — Ay; Dforall i € ¥
where, with an abuse of notation, A now replaces A — X f.2y;. At the same
time, Theorem 3 implies A >y, for all i € £ Thus #={1,...,m} for
some m and £={m + 1,..., K}, therefore. Finally Yf,; =1 implies A =
(K—m = 2XZE,, ;v DL

It remains to determine m explicitly by the requirement that f,; > 0,
i € #. That such an integer m exists follows from considering

L(m)2(K-m-1)r(m)—-1(m)— - —-7(K), m=1,...,K,

where 7(i) = y; ! for all i. Observe that L(K) = —27(K) < 0. Suppose L(m)
> 0. Then

L(m—-1) —-L(m)=[K-(m—-1)—-1]t(m-1)—17(m —-1) — -+ —7(K)
—[K-m - 1]7(m) + 7(m) + -+ +7(K)
=[K-m—1][r(m — 1) — r(m)]

> 0.
Thus L has at most one sign change.
But
A= Ypip XAr(m +1) =1
alK-(m+1)-1]r(m+1) —7(m+1) — -+ —7(K)
=L(m+1)

for m = 1,..., K — 1. Thus either A < vy, for all i and hence m = 0, or there
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is a unique m for which y,, <A <4y,,,; when A (a function of m) is as
defined above. This completes the proof. O
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