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ALMOST SURE REPRESENTATIONS OF THE PRODUCT-LIMIT
ESTIMATOR FOR TRUNCATED DATA

By WINFRIED STUTE

Universitit Giessen

In the left-truncation model, one observes data (X,,Y;) only when
Y; < X;. Let F denote the marginal d.f. of X,, the variable of interest. The
nonparametric MLE F, of F aims at reconstructing F from truncated
data. In this paper an almost sure representation of FA,, is derived with
improved error bounds on the one hand and under weaker distributional
assumptions on the other hand.

0. Introduction and main results. Let (X;,Y;), 1 <i <N, be a se-
quence of independent identically distributed random vectors in the plane such
that X; is independent of Y;. In the left-truncation model, (X;, Y;) is observed
only when Y; < X;. Woodroofe (1985) reviews examples from astronomy and
economy where such data may occur. As a consequence of truncation, n, the
size of the actually observed sample, is random, with » < N and N unknown.
From the SLLN, as N — ,

n
N_)a:= P(YSX) P-a.s.

Now, conditionally on the value of n, the observed data (X, Y;) are still i.i.d.,
but their joint distribution has changed to become

H*(x,y) =P(X<x,Y<ylY <X) = a_lf_wa(y A 2)F(dz),
with F and G denoting the d.f. of X and Y, respectively. Write
F*(x) = H*(x, %) = a—lj:G(z)F(dz)
and
G*(y) =H*(%,9) =a" [~ G(y A 2)F(d2)

for the marginals of H*. The problem now is one of reconstructing F' and G
from a data set (X,,Y;), 1 <i <n, with d.f. H*. By convention, X is the
variable of interest. The nonparametric MLE of F has been derived by
Lynden-Bell (1971). For ease of presentation we shall assume throughout that
F and G are continuous. Also, we shall assume that both X and Y are
nonnegative, though this in no way limits the method. This is only because
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typically X and Y are measurements of failure time, length and so on. As in
the random censorship model the cumulative hazard function

« F(dz)

A p— P
)= T-Fey 0=*<>

serves as a fundamental tool for reconstructing F. Following Woodroofe
(1985), put

ap=inf{x: F(x) > 0}, by =sup{x: F(x) < 1}.
Similarly, this is true for a; and b;. Woodroofe (1985) showed that F can be

reconstructed only when ag < a . In this case,
C(z) ~

0<x <o,

A(z) = [

with
C(z) = G*(2) - F*(2)
=a_1G(z)[1—F(Z)], aFSZ<°°.

C is consistently estimated by
n
Cn(z) = n_l Z 1(Y,sst,)’
i=1

while the above representation of A in terms of F'* and C suggests estimation
of A by

x F*(dz
An(x) = [ )y o).

ar Cn(z) it X, <x

Here and in the following F,* and G, will denote the empiricals of X,..., X,
and Y,,...,Y,, respectively. The MLE of F equals

nC,(X,) - 1
1o Fn(x) B i:!(:[sx[ nCn(Xz) ]

ReEmark. The following facts about C,, will be used without further men-
tioning:

@ C(X)>1/nforl<i<n.

(i) C(2) = Gi(2) — Fi(z—).
By (ii), the LIL for empirical d.f.’s provides the familiar (Inln  /n)!/? bound
for |IC,, — Cll». Note, on the other hand, that C, is not monotone. Though C is

strictly positive on a; <2z < by, C, may vanish for some z € (ag, bp). In
particular, C, vanishes for all z less than the smallest Y order statistic. Since
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F* may have positive mass there, we typically get, for example,
b
[ Cil(2)F*(dz) ==,  b>apg.
ar

Similarly, this is true if the lower bound e is replaced by some sequence
(a,), tending to a too fast. We shall come back to that point later.

Now, Woodroofe (1985) in his Theorem 5, proved the weak convergence of
W, (x) = n'2[A,(x) = A(x)]
and
Z,(x) = | F,(x) - F(x)]

to certain Gaussian processes W and Z (in the space Dla, b)), provided that
ag<ap<b<bpand

(0.1) [ 1/GdF <.
ar

Trivially, the last condition is satisfied if a; < ap. Chao and Lo (1988)
obtained an almost sure representation of A, and ¥, in terms of a sum of i.i.d.
processes with remainder o(n~'/2). Such results are useful, for example, for a
representation of the quantile function of Fn or for estimating the density,
respectively, hazard function of F. It turns out, however, that bounding the
error term by o(n~1/2) is insufficient for that purpose. It is the goal of this
paper to derive an i.i.d. representation of A, and Fn with error term O(n~1)
(up to a logarithmic factor). Instead of (0.1), we require a little bit more than
(0.1), namely (apart from a; < ay),

«F(d
(0.2) /a GL"’(E_; < o,

Of course, (0.2) is satisfied when a; < ap. But proofs simplify a lot in this
case. The interesting situation is ay = a; = a, that is, F(a) = G(a) = 0 but
F,G > 0 on (a,»). b will always denote a constant less than b;. Theorems 1
and 2 yield the i.i.d. representations of A, and Fn. Needless to say, from these
functional CLT’s and LIL’s are easily available.

THEOREM 1. Assume ag < ayp and (0.2). Then uniformly in ap <x <
b < b,

= C,(2) — C(2)

C2(2) F*(dz)

An(x) = Ax) = [ CTH2)[Fi(d2) = F*(d2)] - |

arp

t R, (x)=L,(x) + R,(x),
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where for each 6 > 3/2
sup |R,(x)|=o(n"'(In n)s) with probability 1.

ap<x<b

It is easy to check that

c-cC, . o «[C-C,T
gz (DE - F)(da) + [ 5

=R, (x) + R,,5(x).

R,(x)= [ (2)F¥(dz)

arp

THEOREM 2. Under the assumptions of Theorem 1, uniformly in ap < x <
b < by,

F(x) — F(x) = (1 - F(x))L,(x) + R3(x),
with

In®n
sup |RY(x)|=0 P-a.s.
ap<x<b n

Needless to say, L, is a sum of i.i.d. (centered) processes in the Skorokhod
space Dlag, b].

Compared with Chao and Lo (1988) our approach utilizes three new techni-
cal tools. First, R, is dealt with by employing some new results on U-statistic
processes as obtained by Stute (1993). Second, as for R, ,, C/C, is bounded on
{X;: X, < b} by relating it to the sup of a properly weighted bivariate empirical
d.f. on the unit square (Lemmas 1.1 and 1.2). Finally, a result of Csaki (1975)
on the asymptotic behavior of a properly weighted univariate empirical process
is used.

1. Proofs. Our first goal will be to bound the process (C/C,Xz) for
z =X, and X; <b. As mentioned in the remark, C(z) > 0 on (ay, b], but
C,(2) may be zero outside the X’s. For example, it will not be allowed to
consider integrals of the form

[ ez F*(d2),

when a, is less than the smallest Y order statistic. From the asymptotic
theory of order statistics it is therefore possible to create situations for which
the last integral on page 666 of Chao and Lo (1988) is infinite with probability
1, as n — . In other words, I have some doubts whether the arguments for
Lemmas A.3 and A.4 there are readily adaptable from the censorship model.
Now, in order to incorporate the independence of X, and Y, it is first
necessary to consider the (possibly unobservable) full sample (X;,Y;), 1 <i <
N. It will be seen, that C/C, on {X;: X; < b} is strongly related to the properly
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weighted bivariate empirical d.f. Hy of the full sample. In such a situation, the
independence of X; and Y] (in the full sample) is then useful for applying some
maximal bounds for two-parameter (strong) martingales, since it guarantees
the crucial “conditional independence’ property (F4) of, for example, Cairoli
and Walsh (1975).

The following lemma presents the two-dimensional analogue of inequality
(5) of Shorack and Wellner [(1986), page 415]. For this, let (U,,V,),1 <i <N,
be an i.i.d. sample from the uniform distribution on the unit square. Denote
with

— 1
1¥N(8,t) = jvi

™M=z

Ly <s v, <ty 0<s,t<1,

1
their empirical d.f.

LEmMa 1.1. Forany 0 <a,b<land A =1

P| sup Hy(s,t)/st = A| <exp[—Nabh(A) + 1],

a<s<l
b<t<1

where
h(A) =A(InA —-1)+1 forr>0.

Proor. Set, for 0 < ¢, < 1,
Gy =0(ly <y 1 <i<N,ty<t<1,U,...,Uy).

to

Then

(Hy(s,8)/st, F; )yperzn

is a reverse martingale for each a < s < 1. Hence for each r > 0
sup exp[rEN(s, t)/st]
a<s<l

is a reverse submartingale. From Doob’s maximal inequality

P| sup EN(s,t)/stz)\) Sexp(—r)\)[E[ sup exp[rﬁN(s,b)/sb]].
RN esss1

Another application of Doob’s maximal inequality for pth moments yields,
since

exp[rﬁN(s, b)/sb], a<s<l,
is a reverse submartingale w.r.t.,
G =0(Ly<sp 1 <i<N,so<s<1,V,...,Vy),

rHy (s, b) p \? rHy(a, b)
ELE‘:&’I Xp[—b” <5 E[""p —b”
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Letting p tend to infinity yields

P| sup Hy(s,t)/st>=A| <exp(—rr + I)E[exp[rHN(a, b)/ab”.
a 1
b

IAIA
[
INA

t<1

The last expectation equals
(1 — ab + abexp[r/Nab])" < exp[ —Nab(1 — exp(r/Nab))].
Take r = Nab In A to get the result. O

We are now in the position to study the ratio between C and C,,.
In the following we shall assume w.l.o.g. that each Y, has the quantile
representation

Y, =G (V;), 1<i<N,

where V,, ..., Vy areii.d. from a uniform distribution on the unit interval. As
to the X’s, we have

{(t<X}={-X,< -t}

—X,; has d.f.

P(-X;<x)=1—-F(—x—0) =L(x).
In terms of L™, we may write

-X, =L YU, 1<i<N,
the U’s again being uniformly distributed and independent of the V’s. Hence
(t<X) ={L7(U) < -t} = {U; < L(-1)} = {U; < 1 - F(¢ - 0))
and therefore
{(V,<t<X}={U<1-F(t-0),V, <Gt}

As a consequence,
(1.1) C,(t) = NHy(1 — F(t — 0),G(¢)) /n.
Note also that C,(X;) > 1/n > 0. We shall now be concerned with a bound for

[FD( sup C(X;)/C.(X)) 2)\).
i: X,<b

First, C(X,)/C,(X,) > A implies C(X;) > A/n. So

{ sup C(Xi)/Cn(Xi)zA}c{ sup  — C,(¢)/C(t) = —1/,\}.

it X, <b t:C()=A/n
t<b

But C(¢) > A/n implies G(¢) > aA/n, so that in view of (1.1) and n < N the
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last event is contained in

1-F(b)<s<1
ar/N<t<1

{ sup — Hy(s,t)/st> —1/aA}.

The same reasoning as in the last proof, but now applied to the reverse
martingale — Hj rather than H,, yields the following lemma.

LemMaA 1.2. For b < by and aA > 1 one has

(1.2) P( sup C(X,)/C(X;) > )\) < exp[ (1 — F(b))arh(1/ah) + 1].
i X,<b

Note that
arh(l/ad) =al —Inar — 1,
so that the right-hand side of (1.2) is less than or equal to
re?exp[—(1 — F(b))ar].

From Borel-Cantelli we therefore get the following corollary.

COROLLARY 1.3. For b < by, as N — o, with probability 1,

(1.3) sup C(X;)/C,(X;) =0(InN).
i: X,<b

NoTE. As mentioned before,
n
N — a with probability 1.
Since the theorems have been formulated in terms of n, the size of the
actually observed data set, we prefer to reformulate (1.3) so as to become
(1.4) sup C(X;)/C,.(X;) =0(Inn) P-a.s.

i: X, <b

Now we come to the representation of A,. Assume a = 0 w.l.o.g. through-
out. Recall that conditionally on the value of n, the observed data form an
i.i.d. sequence from H*. We first deal with the remainder term R, ;. Note that

2 Cy(2)
|y oy

Fi(dz)=n"2 Y l(X,sx)]'(Yjinsz)C_z(Xi)‘

1<i,j<n

Split the last sum into its diagonal and off-diagonal part. Write, for i # j,
1(X, < x)l(YJ <X, < XJ)C_Z( Xz)
= 1ix <ylix, < X,)C_z( X)) — Lx <nlix < YJ)C_2( X,).

Each of these summands contributes to a U-statistic process as studied in
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Stute (1993). Theorem 5 there yields a representation in terms of the pertain-
ing Hajek projection and a remainder. In particular, this approach leads to

z Cy(2)
CZ( 2)

n n—1 .x
Fi(dz) =n"2 L Lz c0C % X)) + [ C7H(2)F(dz)
i=1 0

(1.5) + 2= 1/ 02(2) F*(dz)

“1(2)F*(dz) + RY(x),

where for each 6 > 3/2
sup |R(x)|=o(n"'(Inn)’) with probability 1,

O0<x<b

provided the variable
1{Y2 <X;< X2)C_2( Xl)
has a finite second moment, This, however, follows from
F(dz)
G*(2)(1 - F(2))°

by (0.2) and b < by. Application of the SLLN to each of the remaining
processes on the right-hand side of (1.5) allows one to replace (n — 1)/n by 1,
so that the following result is immediate.

fObC’3(z)F*(dz) - azfob

LEmma 1.4. Under (0.2), for each 6 > 3/2,
sup |R,,(x)|=o(n"'(In n)s) with probability 1.

0<x<b

LemMAa 1.5. Under (0.2),
sup |R,5(x)| = O(n~(Inn)>?) with probability 1.

O0<x<bd

Proor. Immediate consequence of the D-K-W bound for empirical mea-
sures, (1.4) and the SLLN applied to

fobC‘3(z)Fn*(dz). O

Lemmas 1.4 and 1.5 together yield the assertion of Theorem 1. As for
Theorem 2, we need a slight modification of F.. This is only to safeguard
against In 0 when taking logarithms of 1 — F (x). Wlthout further mentioning,
(0.2) will be assumed throughout.
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Define F, by
nCn( X i )

LR = Al exy 1

LemMmaA 1.6. Uniformly in 0 < x < b < by one has

2

- In*n
F(x) - F(x)= O( ) with probability 1.

Proor. For each 0 < x < b, the above difference equals
nC (X)—-1 nC (X,
(1.6) I—I n( L) _ l—I n( L) .
nC,(X,) i x<x nC (X)) +1

it X, <x

In view of

n n
[la; - T1b
J=1 Jj=1

n
Jj=1

(1.6) in absolute values is less than or equal to

T nTiCrA(X) a7t [(CrA(2) Fi(d2).

it X, <x

The assertion follows from (1.4) and the SLLN giving

fo”c—2(z)Fn*(dz) > fObC‘Z(z)F*(dz).

LemMma 1.7. Uniformly in 0 < x < b < by one has

2

— n
In(1 - F,(x)) + A (x) = O( ) with probability 1.

ProoF. The expression on the left-hand side equals

1 ® 1
Z nCn(Xl)(nCn(Xl) + 1) - i:XZ,sx mZ=2 m[ncn(Xt) + ]‘]m ’

it X, <x

which in absolute values is less than or equal to
2n" [°Cr%(2) Ff (dz).
0

The assertion now follows as in the proof of the last lemma. O
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LEmMA 1.8. For 0 <x < b,
F(x) - F(x) = —[A.(x) = A(x)](1 - F(x))
+3[An(%) = A(x)] exp[ - A ()]
+ [An(x) + ln(l - Fn(x))]exp[—/\*n*(x)],
with
min(A,(x), A(x)) < A%(x) < max(A,(x), A(x))
and
min(A,(x),In(1 - F(x))) < A4*(x) < max(A,(x),In(1 - F(x))).
Proor. Apply Taylor’s expansion. O

LEmMA 1.9. For 0 <x < b,

x F¥(dz) «F*(dz)
An(x) — A(x) = /0 e /0 O]

() -F*(x) | +C(2) - C(2)

. cx  Thomee
Fi(2) — F*(2)
+f0 ey Cda).

Proor. Use integration by parts. O

LemMA 1.10. Under (0.2), with probability 1,
n3/2

sup [4,(x) = A(x)]| = 0( = )

O<x<
Proor. We will utilize Lemma 1.9. From Csaki (1975), with probability 1,
(18) sup Fi(x) - F*(x) _ O( In'** n )
0<x VF*(x) n
for each £ > 0. Furthermore, by (0.2), on 0 < x < b,

p 1 aF*(x)
oo>f()F(7)—F(dz) Z )

that is,
(1.9) G3*(x) = cF*(x), somec > 0.
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This, together with (1.8), yields the desired bound for the first summand in
(1.7); take € = 1. The bound for the second is available from the LIL for
empirical measures, (1.4) and the SLLN applied to

fobc—z(z)F:(dz).

Finally, the third integral is dealt with by using (1.8), (1.9) and the finiteness
of

fobc—l/z(z)()(dz). O

The proof of Theorem 2 is a simple consequence of Lemmas 1.6-1.8,
Lemma 1.10 and Theorem 1.
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