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ON SOME FILTRATION PROCEDURE FOR JUMP MARKOV
PROCESS OBSERVED IN WHITE GAUSSIAN NOISE

By RAFAIL Z. KHAS’MINSKII AND BET'I;Y V. LAZAREVA

Institute of Information Transmission

The importance of optimal filtration problem for Markov chain with
two states observed in Gaussian white noise (GWN) for a lot of concrete
technical problems is well known. The equation for a posteriori probability
7(¢) of one of the states was obtained many years ago. The aim of this
paper is to study a simple filtration method. It is shown that this simplified
filtration is asymptotically efficient in some sense if the diffusion constant
of the GWN goes to 0. Some advantages of this procedure are discussed.

1. Let X(¢) be a Markov process with the states 0 and 1, which is
characterized by the transition densities A (from 0 to 1) and p (from 1 to 0)
and the initial condition P(X(0) = 0) = £. The observed process Y(¢) has the
form

(1) Y(t) = [O’X(s) ds + oW(t),

W(t) is a standard Wiener process, o is a constant.
Let us denote by %’ o field of the events generated by Y(s), 0 <s <¢. Itis
well known that the estimator
1, ifw(t)=1/2,
0, ifw(t)<1/2,

m(t) = P(X(t) = 1| %)

minimizes the filtration probability error. It is well known [Liptser and
Shiryayev (1977)] also that the function 7(¢) is the solution of the stochastic
differential equation,

dm(t) = (A — (A + p)m(t)) dt
(3) + o7 lm(t)(1 — w(¢))(dY(¢) — =(t) dt),
7(0) =1-¢.
The mean square error of the optimal in mean square sense filter for this
model was obtained by Wonham (1965). In this paper we propose a ‘‘sim-
plified” filter and compare its probability error to those of (2).

It was known that (¢) is also a Markov process because the expression
oW dY(t) — w(¢t)dt) is equal to the differential of new Wiener process

(2) X() =
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(W), F) (innovation process). So the infinitesimal generator of 7 has the
form

d 1 . , d?
L=(/\—()t+/.l,)x)a+§0' x(l—x)w

and the Fokker-Plank-Kolmogorov equation for the stationary density g(x)
of this process is

L*q = 0.
Here L* is the formal adjoint operator for L.
This equation together with the boundary conditions

q(x) >0, ¢'(x)x>(1-%x)>>0, x—> +0andx—1-0
has the unique solution [see Liptser and Shiryaev (1977)]
1—x )2<B-“> 2¢(1 —x)  2Bx

x 1-x)

q(x) = c( x72(1-x)? exp(—

where the constant ¢ is defined by the condition

/Olq(x)dx -1

We use the notation a = Ao%, B = uo? Note that a and B are the dimension-
less parameters of the transition densities for X(z).

The process ((t), X(¢)) is an ergodic Markov process for A > 0, u > 0. Let
P, (), E,(-) denote the probability and expectation over the stationary initial
distribution of this process. It is clear that the value

Ry(A, p,0) = Tli_rgo%/oTl(X(t) + X(t)) dt

1(X(t) = 1) + l(w(t) > %) 1(X(t) = 0)}

=FE (1|7 (¢t <l
IEORE
(4) 1
+(1- w(t))l(w(t) > 5)}

- [Est{w(t)l(w(t) < %

= /1/2xq(x) dx + fl (1-x)g(x)dx
0 1/2
is equal to the average probability of error for the estimator (2). Note that
lim E(X(¢) — X(£))" = Ro(A, 4, o)
t— 00

and Ry(A, u,0) = Ry(a, B,1). It follows from (4) and the explicit formula for
¢(x) that for fixed A > 0, u > 0 and o > 0
2ap

a+ B

(5) Ro(A,p,0) = — In(aB) + O(o?).
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But the optimal filtration procedure requires the solution of a rather
complicated stochastic differential equation (3). The aim of the presented
paper is to propose a simpler filtration method which is asymptotically (as
o — 0) equivalent to (2).

2. Equation (3) and It6’s formula imply the following equation for
Z(t) = In(w=(2)/(1 - m(2)),
(6) dZ(t) = o~ 2(dY(t) — 1/2dt)
+(A —p + rexp(—Z(t)) — mwexp Z(¢)) dt.
The process Z(t) is #; measurable, Z(0) = In((1 ~ £)/£) and the decision
rule (2) in terms of Z(¢) has the form

208 = 1, ifZ(t) =0,
() = 0, if Z(t) <o0.
The principal part of the right-hand side in (6) if o — 0 is o~ 2(dY(¢) —

1/2 dt), provided the value |Z(¢)| is not too large. In addition, if Z(#) > 1.

exp Z(t)

P(X() = 1U5) = 7(t) = 1 oo

=1 - exp(—Z(t))
and the drift coefficient for the process Z(¢) is approximately equal to the
value (202)~! — u exp Z(2).

This drift changes sign in the vicinity of the point Z% = —In(28) and is of
the order of o~2 for Z > Z° + ¢, for any constant & > 0.

So we see that Z(t) is changing direction in the vicinity of the point Z?,
where X(#) = 1. The analogous heuristic arguments leads to a conclusion that
a similar point for Z(¢) while X(#) = 0 is the point

Z° = In(2a).

These considerations make natural the following simplified filtration
method. Denote by Z(¢) the diffusion process with reflecting barriers in the
points Z_,Z,, Z_< Z ., satisfying for Z,(¢) € [Z_, Z_] the equation

dZ,(t) = o~2(dY(t) — (1/2) dt),
Zy(0) = In((1 - £)/¢).
Our goal is to study the asymptotic properties of the filtration procedure

(7

1, if Zy(t) =0,

®) X(#) = 0, if Zy(t) <0,

for different Z_<0<Z, and t » «©, ¢ = 0.
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3. It follows from the law of large numbers that the value

%/;Tl(}_((t) # X()) dt

converges a.s. to the nonrandom limit R(A, u, o) if T — «. This limit is equal
to the filtration probability error if the initial conditions are stationary:

R(A, 1, 0) = P (X(t) + X(2)).

The main result of this paper is the following theorem.

THEOREM 1. The formula

R(\,p,0) =R(a,B,1)
3
(9) = Y ci{k; (exp(k;z,) — exp(k;2_))
i=1

—exp(k;z,) — exp(k;z_) + 2}

istrueforZ_< 0 <Z,. Herek, < —1 < ky < 1 < k4 are the roots of the cubic
equation

(10) k3 — (1 +2a+2B)k +2(a—B)=0

and the constants c,,cq,c3 are given by the following expressions (AZ =
Z,—Z_):

l{ exp(kyZ,) — exp(koZ_)

2779 ky
- k2)exp(kyZ )(exp(—ky AZ) — 1)(exp((ks — ky) AZ) — 1)
ko(1 — k%) (exp((kg — k1) AZ) — 1)
an , (1= Rhexp(haZ_)(exp(hy AZ) — 1)(exp((ko — k) AZ) — 1) }“
k3(k§ - 1)(exp((k3 - k1) AZ)-1) ’
. = (1 - kg)exp((kz —k)Z )(exp((k3 — ky) AZ) — l)c
1 (k2 — 1)(exp((ks — K;)AZ) — 1) 2
(1 — k3)exp((ky — k3)Z_)(exp((ky — k1) AZ) — 1)
c3 = Co.

(k3 — 1)(exp((kg — k) AZ) — 1)

For barriers Z_=Ino%?—c_; Z,= —Ino?+c,, 0 > 0 and fixed A,u,
c_,c, the relation
2aB

a+ B

(12)°  R(A,p,0) =P, (X(t) # X(8)) = - In(ag) + O(c?)

is valid.
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REMARK 1. It is clear from (10) that k2, = 0 if A = w. It is necessary to put
k;'(exp(k,Z,) —exp(k,Z_ ))=Z,—Z_
in (9) and (11) for this case.

ReEMARK 2. The optimal filtration method (2), (3) depends on the true
values of A, u. On the contrary the procedure (7), (8) for fixed c_, ¢, does not
need a knowledge of A, w. It is interesting to notice that the quality of this
procedure in the sense of (9) asymptotically coincides with the corresponding
value of the optimal one.

ReMaRk 3. It follows from computations that the optimal filtration (2), (3)
is practically useless if A and u have the different’ exponents. Since if for
instance A > pu, the trivial estimator X*(¢) = 1 is rather good. Therefore it is
natural to consider another extreme case A = . The following formula is a
result of the computations in (9)-(11) for ¢_= ¢,= —In(2A) with regard to
Remark 1:

R(AA,0) =R(a,a,l)
162-1-(b-1)*1+4a +4a(b®+1)nb

1
(13) 2 b — 1 + 4a(b? + 1)ln b ’

b _ (2a)—\/1+4a )

It follows from (13) that the procedure (7), (8) is surprisingly close to the
optimal one for A = u, @ < 0.1. In more detail let

R(a) = R(a,a,1), Ry(a) = Ry(a,a,l)

be the probability error for the procedures (2), (3) and (7), (8) correspondingly.
Based on (13) and (4) computations give the results:

R(a) —Ry(a) <1072 ifa<107%
R(0.1) =~ 0.256;  R(0.05) = 0.191;
R(0.1) — Ry(0.1) = 0.01;
R(0.05) — R,(0.05) = 0.004.
The procedure (7), (8) with c¢,= —In(2)) is essentially worse if a ap-

proaches 0.5 and it has no sense for a > 0.5.

Proor oF THEOREM 1. The couple (X(¢), Z,(¢)) is a Markov process with
the,two identical segments [Z_, Z ] as the states space [first of these segments
corresponds to the states with X(¢) = 0 and the other one to the states with
X(#) = 1]. It is clear that this process is an ergodic one for A > 0, u > 0. It is
easy to verify that its unique stationary distribution P,(X(¢) =i, Z(¢) € A)
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has a density. Let us denote it by p,(2), p,(2) so that
pi(2) = lim AR (X(2) =i, Z(t) < [2,2 + Al).

The strong law of large numbers for the process (X(¢), Z,(¢)) implies
0 Z,
(14) B(A,p,0) = [ "pi(2) dz + [ po(2) dz.
z_ 0

The functions p,(z) can be found in a standard way. It is known that the
twice continuously differentiable in z € [Z_, Z,] functions F(i,2), i = 0,1,
satisfying conditions

dF(i,z)
dz

belong to the domain of definition of the infinitesimal generator L of the
process (X(t), Z,(¢)). For such functions

LF(0,2) = (20%) '(F"(0,2) — F'(0,2)) + A(F(1,2) — F(0,2)),
LF(1,2) = (202) '(F"(1,2) — F'(1,2)) + u(F(0,2) — F(1,2)).

In a standard way we obtain that the functions p,, p, satisfy the system of
equations

dF(i,2)

. =0
z=z_ dz

z=z,

(15)

-1 " 12
(20%) (P +po) + upy —Ape =0,

-1 " ’
(20'2) (P +p1) +Apg— pp; =0,
which is adjoint to the system LF = 0. The boundary conditions for p,(z), p,(z)
are adjoint to (15), that is,

(Po + Po)ls-z_=(Ps + Po)|e-z, = 0,
(Py = P)le=z_=(Pt = P1)|:=z, = 0.

A more precise assertion is: Any pair of nonnegative functions p(2), p(2z)
satisfying (16), (17) and the normalizing condition

(16)

(17)

! Z
(18) Y [ p(z)dz =1
i=0"%-

is the stationary distribution density of the process (X(¢), Z,(¢)). An ergodicity
of this process implies the uniqueness of a nonnegative solution of the problem
(16)-(18).

Introducing the notation

(19) q1(2) = po(2) +p1(2),  q2(2) =po(2) — Pi(2)

we obtain from (16) the following system of equations
qi+q95=0,

(20) 1 2

g5+ g1 +2B(q; — q2) — 2a(q; +q5) = 0.



FILTRATION PROCEDURE FOR JUMP MARKOV PROCESS 2159

Equations (20) and (17) imply

(21) 9= -a

(22) q7 — q(1 + 2a + 2B) + 2q,(a — B) = 0.
The general solution of (22) is

3
qi(2) =2 X c;exp(k;2).
i=1
Here £, < —1 < ky < 1 < k4 are the roots of the characteristic equation (10).
Equations (19) and (21) imply

3 3
(23) po(2) = X ci(l - kiz)eXP(kiz), pi(2) = X Ci(l + kiz)exp(kiz).
i=1 i=1
Let us use the first pair of boundary conditions (17) and (18) for determina-
tion of the constants c,, ¢y, c3. We obtain

3 3
Y e(1- k¥exp(hiz_) =0, Y1 — kP)exp(k;z,) = O,
i=1 i=1
(24) 3
Py c;k;'(exp(k;z,) — exp(k;z_)) = 1/2.
i=1

Solving the first two equations of this system with respect to c;,c; and
substituting these expressions in the third equation (24) we obtain the formu-
las (11). Equation (9) is a consequence of (23) and (14).

At last, using the expressions (o2 — 0)

k= —1-2a+o(c?), ky =2(a — B) +o0(0?),
ky=1+ 2B+ o(a?)

we get the assertion of Theorem 1 concerning asymptotics of R(A, u, o) if
o — 0 which follows from the explicit formula (9). Indeed, (24) and (11) imply
the asymptotic formulas

2aB
cy = - +.3(1 +0(1)),

¢y =cpexp(—c_)(41) (L +0(1)),  c3=cyexp(—c,)(4p) (1 +o(1)).
Substituting this value in (9) we obtain (12). Theorem 1 is proved. O

. REMARK 4. It was noticed in Remark 2 that the procedure (7), (8) is still
asymptotically optimal (T' - «, 0 — 0) for unknown A and u. But sometimes
the estimation of A, u is of the main interest. The proposed procedure can be
applied for this purpose.
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Let Z°(t) be a process with the reflecting barrier at the points Z9 =
+In 02 We call a cycle a segment of the process trajectory between two
successive visits of Z° if an attainment of Z? takes place within it.

Let v, be a number of cycles of Z°(¢) in [0, T']. Then it is easily seen that
the statistics

A= VT([OTl(ZO(t) <0) dt)_ , A= VT([OTl(ZO(t) > 0)dt .

are the consistent estimators of A and w as T' - =, 0 — 0. These estimators
turn into MLE (maximum likelihood estimator) of A,u if o =0 [X(¢) is
observed without noise].

1
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