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A GENERAL RESAMPLING SCHEME FOR TRIANGULAR
ARRAYS OF o-MIXING RANDOM VARIABLES WITH
APPLICATION TO THE PROBLEM OF SPECTRAL
DENSITY ESTIMATION"

By Dmvitris N. PoLiTis AND JosePH P. Romano?

Purdue University and Stanford University

In 1989 Kiinsch introduced a modified bootstrap and jackknife for a
statistic which is used to estimate a parameter of the m-dimensional joint
distribution of stationary and a-mixing observations. The modification
amounts to resampling whole blocks of consecutive observations, or delet-
ing whole blocks one at a time. Liu and Singh independently proposed (in
1988) the same technique for observations that are m-dependent. However,
many time-series statistics, notably estimators of the spectral density
function, involve parameters of the whole (infinite-dimensional) joint distri-
bution and, hence, do not fit in this framework. In this report we generalize
the “moving blocks” resampling scheme of Kiinsch and Liu and Singh; a
still modified version of the nonparametric bootstrap and jackknife is seen
to be valid for general linear statistics that are.asymptotically normal and
consistent for a parameter of the whole joint distribution. We then apply
this result to the problem of estimation of the spectral density.

1. Introduction. The bootstrap and jackknife [Efron (1979, 1982)] have
proven to be powerful tools for approximating the sampling distribution and
variance of complicated statistics defined on a sequence of independent identi-
cally distributed (i.i.d.) random variables [Bickel and Freedman (1981) and
Singh (1981)]. It also has found application in problems where the assumption
of ii.d. random variables is violated, but always by means of reducing the
problem to an approximate i.i.d. setting by focusing on the ‘“residuals’ of some
general regression. Such examples include linear regression [Freedman (1981)
and Liu (1988)], autoregressive time series [Efron and Tibshirani (1986) and
Swanepoel and van Wyk (1986)], nonparametric regression and nonparametric
kernel spectral estimation [Hardle and Bowman (1988) and Franke and Hérdle
(1992)]. In all these situations it is the residuals that are being resampled, not
the original observations.

Recently, Kiinsch (1989) and Liu and Singh (1988) independently intro-
duced a nonparametric version of the bootstrap and jackknife that is valid for
weakly dependent stationary observations. This technique amounts to resam-
pling or deleting one by one whole blocks of observations. Kiinsch’s exposition
was influenced by an earlier related work of Carlstein (1986).
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However, in both Kiinsch (1989) and Liu and Singh (1988), attention is
concentrated on estimators of parameters of the m-dimensional distribution of
the observations, with m fixed. Nonetheless, in many time-series problems the
objective is to estimate a parameter of the whole (infinite-dimensional) joint
distribution. A prime example is the problem of estimating the spectral density
function. We will extend the technique of Kiinsch and Liu and Singh in this
direction. In order to do this, we naturally will be brought into the setting of a
triangular array of mixing random variables.

Let {X,, n € Z} be a strictly stationary and weakly dependent multivariate
time series, where X, takes values in R?. The degree of dependence is
quantified by the various mixing coefficients [cf. Roussas and Ioannides (1987)].
We will particularly make use of Rosenblatt’s a-mixing coefficient, which is
defined as follows:

(1) ax(k) = iuglP(A NB) - P(A)P(B)|,

where A € %, B € & are events in the o-algebras generated by {X,,
n < 0} and {X,, n > k}, respectively. The special case of m-dependence holds if
ax(k) =0,V k > m, where m is some fixed integer.

Suppose p is a parameter of the whole (infinite-dimensional) joint distribu-
tion of sequence {X,,, n € Z}. The objective is to obtain confidence intervals for
u based on a stretch of observations from time series { X, }. Attention will focus
on estimators of u that can be put in the form of an average of functions
defined on the observations. For each N = 1,2,..., let B; , ; be the block of
M consecutive observations starting from (i — 1)L + 1, that is, the subseries
Xi-vL+1--- X(l DL+ where M and L are integer functions of N. Note
that B; » 1. for i= .. 1,0, +1,... can be obtained from {X,, n € Z} by a
“window” of width M wh1ch is “movmg at lags L at a time. Now define
T m 1 = du(B; p, 1), where ¢, : R¥™ - R. So, for fixed N, the T; 1 for
i € Z constitute a strictly stationary sequence. In practice a segment
X,,..., Xy from the time series {X,} would be observed, which would permit
us to compute T; 5, ; for i = 1,...,@Q only, where @ = [(N — M)/L] + 1 and
[-]is the 1nteger part function. We can think of the T; y, 1’s as a triangular
array whose Nth row consists of T, 5 ,, i = Q The general linear
statistic is now defined by

_ 19
(2) TN=§ZTi,ML
i=1

A linear statistic of this form for the special case M = m and L = 1 was
also discussed in Kiinsch (1989), as an estimator of a parameter of the
m-dimensional joint distribution of sequence {X,,, n € Z}, where m is a fixed
integer. We now mention some examples of time series statistics that can fit in
the framework of the general linear statistic. For the following examples,
assume X, is univariate, that is, d = 1.
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(I) The sample mean: X = (1/N)Z¥ ,X,. Just take M = L = 1 and ¢,,
to be the identity function.

(II) The (unbiased) sample autocovariance at lag s:
1 N-s

X.X.
N -—s igl 1“1 +s

Take L=1, M =s + 1 and ¢y (xq,...,%p) = x1Xy.
(III) The lag-window spectral density estimator (cf. Section 5).

For multivariate time series, we similarly can use the above formulation of
the general linear statistic to define the sample cross-covariance and cross-
spectrum estimators (cf. Section 6).

We propose a ““blocks of blocks” resampling scheme as follows: Given the
observations Xj,.. XN, we concentrate on row N of the triangular array,
that is, on T; 5, 1, i = 1,...,Q. Define &, to be the block of b consecutive
T, mL's startmg from T-vh+1,m Lo that is, the block %, = (T(;_1yn+1, M, 1>

«» Tj—1yn +», m, ). This should be compared with the deﬁmtlon ofour T; 5 1.
from the original observations. The &% blocks can be obtained from the

T, M1, i=1,...,Q by means of a window of width b moving at lags h at a
time. Note that there are ¢ = [(@ — b)/h] + 1 such & 1,...,q.
Sampling with replacement from the set {#,, .. ﬁ or deletlng one of the

%, at a time from the Nth row of the trlangular array, defines our blocks of
blocks bootstrap and jackknife procedures. In Sections 3 and 4 we show that
under regularity conditions these procedures yield consistent estimates of the
sampling distribution and the variance of Ty. Kiinsch [(1989), page 1218] used
the blocks of blocks idea in the special case M =m and L=h =1 and
indicated how by a simple blocking transformation the problem can be trans-
lated into one with m = 1, in which case the ‘“moving blocks” procedure of
Kiinsch (1989) and Liu and Singh (1988) immediately applies. It is to be noted
that while examples (I) and (II) can be handled by the moving blocks proce-
dure, our example (III) cannot.

The reason is that taking M fixed is done under the condition that, for
fixed M, TN —, u as N — », where u is the parameter of interest. However,
this requires unblasedness that is, ET) p 1 = m. It turns out that, as in the
case of the spectral density, this is not a valid assumption. A more plausible
assumption is just to require asymptotic unbiasedness, that is, ET, » , = u
as M — oo,

As a matter of fact, if we are not willing to make analytical corrections for
“the bias, it will be apparent that it is necessary to let M — « at a properly fast
rate. In the spectral estimation problem this amounts to undersmoothing the
periodogram. It will be further shown that undersmoothing is not required for
variance estimation, but only for the proper centering of confidence intervals
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obtained either by the blocks of blocks methodology or by the central limit
theorem.

2. Basic assumptions. In the sequel all limits and order notations will
be taken as N — « unless otherwise stated. We will make frequent use of the
following assumptions:

(A, (X,, n € Z} is strictly stationary and a-mixing, that is, ax(k) — 0 as

k — o,

(A)) EIT, M,le‘”'s < C, for all M, where p is an integer with p > 2 and
0 <& <2and C > 0 are some constants. (Note that by definition T; 5, ; does
not depend on L since it is obtained from the first block of observations.)

A,) ETL L =m +0(@ '/?), where u is a parameter of the infinite-
dimensional joint distribution of the X, ’s.

(Ay) VQ(Ty — ETy) =, N(0,02), with 0 < 02 < =

Assumption (A,) is basically required so that the asymptotic order of the
bias of Ty is smaller than the asymptotic order of its standard deviation. It
should be pointed out that assumptions (A,) and (A;) together permit us to
treat confidence intervals for ETy as confidence intervals for u asymptotically,
since they imply (by Slutsky’s theorem) that

(3) VQ (Ty — u) = N(0, 7).

The asymptotic normal distribution of (3) can be used to yield approximate
confidence intervals for u. However, the variance o2 must somehow be
estimated because, more often than not, a closed-form calculation is not
feasible. In addition, a different estimate of the sampling distribution of
V@ (Ty — n) might be a still better approximation than (3), thus giving
confidence intervals that are more accurate. It is these two roles that the
jackknife and bootstrap are usually called to play.

The following lemma ensures that the T} ,, ; are weakly dependent in each

row if the original series is weakly dependent.

LeEmMA 1. The following hold for each N fixed:

(a) If the X,, are m-dependent, then the T, y 1, i € Z, are m'-dependent,
with m' =[(M + m)/L].

(b) If the X, are a-mixing with mixing coefficient ax(k), then the T, 4 1,
i € Z, are also a-mixing with mixing coefficient ar, (k) < ax(kL — M), for
kE>[M/L]+ 1. ’
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If we have aM < L, for some constant a > 0, then the following also holds:

(c) If the X, are a-mixing with mixing coefficient ax(k), then the T, » ;,
i € Z, are also a-mixing with mixing coefficient ar, (k) <ax(kL — M ) for
k>[l/a] + 1.

If in addition to aM < L we have M — © as N — o, then the following holds:

(d) For any fixed k > [1/a]l + 1, we have lim _,., aTM,L(k) =0

Proor. () For k >m' =[(M + m)/L], T; 3 ; and T,,, 5 ; are functions
of B; y 1 and B,,, 1, respectively, and hence are independent.

(ii) Similarly, looking at T, mpand T, o ; for k> [M/L] + 1, there is a
block of kEL — M observatlons separating B, y1. and B;,, 5 ;. Hence
ar, (k) <ax(kL - M). O

Parts (c) and (d) of the lemma are trivial consequences of parts (a) and (b),
but they will be most useful since they give bounds for the mixing coefficient of
the T 5, ;’s that hold regardless of the value of N. It is interesting to observe
that part (d) implies that the T; ,; ;’s are asymptotically m-dependent, with

=[1/al.

In the next two sections, we will extend the asymptotic results of Kiinsch
(1989) and Liu and Singh (1988) in the case of the triangular array of the
T; 1, where M is allowed to tend to infinity as N — o,

3. Blocks of blocks jackknife. By focusing attention on row N of the
triangular array of the T; », , i = 1,...,@Q, define &; to be the block of b
consecutive T; 5 ;’s starting from T ;_y); .1 u, 1; that is, &, = (T(J Dh+1, M, Ls

T 1ynn, M, L) The &%, blocks can be obtained from the T LMLy b=
1, ..., ®, by means of a w1ndow of width & movmg at lags h at a tlme Note
that there are ¢ = [(Q — b)/h] + 1 such &, ,q. The %#;’s depend on
M and L as well, although we do not exphcltly put it in the notatlon The
block size b and the lag ~ will be assumed to be integer functions of N. Let
Ty _; be the average of the remaining T; ), ;’s after deleting block ;. Then,
deﬁne the so-called pseudovalues o}, J 1,...,q, by J,=01 /b)(QT
@ - b)TN _)

The blocks of blocks jackknife estimate of the variance of /@ Ty now is
defined as

i 2
(4) vJACK(‘/ETN) = gl(Jj - TN) .

Q| o
<

The following theorem gives conditions ensuring the consistency of the
jackknife estimate of variance.
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THEOREM 1. Under assumptions (Ay)—(A;) and if:

(i) M =0o(N) and L ~ aM, for some a € (0, 1],
(i) & » ©and h = O(b) and b = O(h),
(iii) b = 0(@),
(v) T5_ kP Hax(R))P/@P*d) < o
then

(5) VJACK(\/QTN) “p ol

Proor. Note that conditions (i)-(iii) imply ¢ — © and h — «, as well as
@ — . In addition, they imply that N/M ~ aQ. Let

B 1 G-Dh+b .
i T Z T',M L
‘/5j=(i—1)h+1 e
Then,
. _ b 9 (1 G-Dh+bd _ 2
VJACK(\/QTN) = - Z E Z Tj,M,L - TN
qi-1\9 j-G-Dhr+1
1 9 — .2
qi-1
19 (. El7 1 2
= — B, - EB, — Vb |Ty — —EB,;
q l§1{ ' ( N \/' )}
where

_ Now from the central limit theorem [assumptions (A,) and (A ;)] we have
Ty = n + 0,(Q'/?), and since

1
T

by invoking condition (iii) we get &(Ty — n)* -, 0.

N\ 1
EBi) +2(TN-—,u) no— WEBi)}’

1a [
Dy= o L o|(Ty—n) +
i=1
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From (A,) and (iii) we get

_ 1
b(TN - /.L)(/J, - V_E_EBi) = op(bQ_l) -, 0,

2
b(u - TIE-EBL) =0(b@ ') - 0.

Gathering these three results yields Dy -, 0.
Now by reasoning as in Lemma 1, the X,’ s _are ay-mixing and the B are
functions of finite blocks of them. Hence, the B, are aj B, m, -TiXing w1th

(6) ap,u,1(n) <ax([(n - Dh - (b~ 1)]L - M)

for n > ny=[M/hL + (b — 1)/h] + 1. From conditions (i) and (ii) [namely,
M = O(L), b = O(h)], it is assured that there will be a smallest n, such that
(6) will hold regardless of the value of N. Hence, for all practical purposes, all
rows of the triangular array (i.e., for each N the sequence T, ML i €Z)can
be treated as governed by the same mixing coefficient, namely, the right-hand
side of (6).

Now,

1 - L \2
Var Ay = EVar(Bl—E )

qg—1

+ P Y (g- i)COV{(Bl - EBl)za (Bi+1 - EBi+1)2}'

i=1

However,

Cov((B, — EB,)',(Bi.y - EB,.,) )

< 10(E|1§'1 _ EB-llzp)z/p(aR M’L(i))(p—2)/p

[cf. Roussas and Ioannides (1987), page 109].
Also, under condition (iv) and (A,) the following moment inequality
[Yokoyama (1980) and Roussas (1988)] holds:
~ ~ |2p 2p/(2p+8)
E|Bl _EBI| SKX(ElTl,M,L|2p+B) )
where Ky depends only on ay and p. Combining the above with assumption
(A)) yields

1 _
Vardy =0\ + Z (q = i)(ap, ()27

Now, from condition (iv) it also follows that Y5_ (ax(k)?~?/P < o, since in
assumption (A,) it is assumed that p > 3. Thus, by the discussion relating
ap p, 1 With ay, it follows that Var Ay = O(1/q) — 0. Hence, by Chebyshev’s
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inequality we get Ay —, a2 since by assumption (A ;) we have

- 120
EAy=Var B, = Var(\/gg _EITJ.,M,L) -, o2
j=
Finally, look at Cy. By the a-mixing property of the Bi and by the same
argument that showed Var Ay — 0, it can be shown that Var{(1/q)X¢_ (B, —
EB;)} - 0 and hence (1/9)X{_, B, — EB,;) -, 0. Also

Vo (Ty — (1/V6)EB,) = V6 0,(Q"*/?) = 0,(1) by condition (ii).

Therefore, Cyy —, 0 and the proof is complete. D

REMARK 1. From the proof of Theorem 1 it is seen that assumption (A,) is
not needed in its full force. In particular, the following assumption can be
substituted in place of assumption (A,), and Theorem 1 would still be valid.

(A,) ET, . =u+0Q V.

This is of quite some interest, since in problems where a trade-off of bias and
variance of an estimator exists (cf. the spectral density example in Section 5),
an optimal estimator from the point of view of mean squared error (MSE)
would satisfy (A',) but not (A,).

ReEMARK 2. It also can be shown [cf. Politis (1990)] that the requirement
b = O(h) can be dropped from condition (ii) of Theorem 1. In particular, the
variance of Vj,cx is of order O(b/Q), regardless of choice of h. Hence, the
following corollary of Theorem 1 is true.

CoRrOLLARY 1. Under assumptions (A,), (A)), (A,) and (Ay) and if:

(i) M =0o(N) and L ~ aM, for some a € (0, 1],
(ii") b - w and h = O(b),
(iv) T5_ kP Haxy(k))P/@P*2 < oo,

then
(7) VJACK(\/QTN) -, 0.

A very important implication of Corollary 1 is that & can be taken to be a
fixed constant and is not required to tend to infinity. Intuitively, the choice of
h influences the constant factor in Var(V;,x) = O(b/Q), and it is advisable to
let A = 1. For the special case of example (I), where Ty is the sample mean, it
has been shown [cf. Kiinsch (1989) and Brillinger (1975)] that letting A =1
corresponds to a 33% reduction of lim(Q /b)Var(V;,cx) over letting k = b.

Another important observation is that if u is a parameter of a finite-dimen-
sional marginal distribution of sequence { X, }, say the m-dimensional marginal,
then M could be taken to be a fixed constant equal to m, provided the
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estimator T, is designed so that it satisfies assumption (A’,). In the autoco-
variance example (II), the choice M = s + 1 makes T, exactly unbiased for w.

Moreover, if M is fixed, then the choice L =1 is also permissible [cf.
condition (i). However, in the general case where M — o, condition L ~ aM
is necessary for the consistency of Vj,cx (see also the discussion after Theo-
rem 3 in Section 5).

Finally, observe that condition (iv) is satisfied if any one of the following
three holds:

(v) The X,’s are m-dependent, that is, ax(k) =0,V £ > m.
(vi) ax(-) has an exponential decay.
(vil) ax(k) = O(k*), where A > p(2p + 8)/6.

Examples of Gaussian processes satisfying one of the above mixing conditions
are given in Ibragimov and Rozanov (1978).

Note that if we assume the mixing condition (vii) for some sufficiently large
A, assumption (A ;) can be omitted from Corollary 1, since it is a consequence
of Tikhomirov’s (1980) results on the central limit theorem [see also Rosen-
blatt (1984)]. However, the existence of a common asymptotic variance for all
rows of the array is needed. So let us formulate the following assumption:

(A If Q5o as N - o, limy_.Var(1/ /Q)LL T, 5 1) exists and
equals o2 > 0.

COROLLARY 2. Under assumptions (A,), (A,), (A,) and (A3) and conditions
@), (i"), Gii) and (vii), we have

VJACK(MTN) ~p al.

Proor. We just need to verify assumption (A;). From Tikhomirov (1980)
this follows if A > 6, since E|T; 1|2 < . However, this is satisfied because
p(2p +6)/5> 6.0

4. Blocks of blocks bootstrap. The blocks of blocks bootstrap is defined
as follows: Sampling with replacement from the set {#,,..., #,} defines
(conditionally on the original observations X, ..., X)) a probability measure
denoted by P*. Let Y,,...,Y, beiid. samples from P*. Obviously each Y; is
a block of size b which is denoted by Y; = (y,;, ..., ;). Concatenate the y,; in
one big block of size | = kb which will be called T}, ..., T/*, where T* = y,,,
for r =[i/bl,v =1 — br.

A natural assumption is as follows:

(A) @ and [ are of the same asymptotic order, that is, / = O(Q) and
Q = 0W).

The blocks of blocks bootstrap approximation to the sampling distribution
of Ty is provided by the following theorem.
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THEOREM 2. Under assumptions (A,), (A)), (A,), (A,) and (A,) and if:

(i M =0o(N) and L ~ aM, for some a < (0, 1],
(ii') & —» o and h = O(d),
(iii") b = o(Q'?),
(iv) X5 _ kP Wax(k))?/@P+® < oo

then
(8) sup‘P*{ T -Ty) < x} ~-PYQ(Ty — 1) < x}‘ -, 0.

Proor. First note that (A,) along with & = 0(Q'/?) implies that & — .
Now, by (A,) and (A,), it follows that

supIP{\/E(TN — ) <x} - ®(x/0,)| - 0.

So, to prove the theorem, it suffices to prove the following three statements:

Tl* _ E*Tl*
(I) sup | P* st —®(x)[—,0
(II) I Var* T} - o2,
(IIT) E*T} =Ty + 0,(171/?),

where E* and Var* stand for E and Var under the bootstrap probability P*.

Define Y, = 1/ vo VB)L%_1y;;. Then VI(T¥ — E*Tf) = Vk Tt_(Y, — E*Y).
Now the Y, are i.id. under P*. Therefore bg the Berry—Esseen theorem it is
seen that (I) holds provided E*|Y, — E*Y,|° is bounded in probability. How-

ever,
3

il o

1/3

which by the triangle inequality is bounded above by
q ~
+q7 23 Y B !

1 (i -
— |B;|
q ; j=1

This quantity converges in probability to {(EIBll3)1/ 8+ |EB, [}2, because a
weak law of large numbers holds for the a-mixing sequences B, and |B,/?,
similarly as in the proof of Theorem 1. So (I) is proved.

Now look at

I Var*(T) = I Var* {; i( Zy”)

i=1

25 Ly} ovary
=[] Var Z-‘/-b='i—al'1

i=1

= |

because the Y, are i.i.d. and I = kb. However,

Vart ¥, = — ¥ (B, - E*Y,)’,

i=1
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where
q (G—Dh+d 1

- 14 .
BY--YB--Y YL T
= qz11(11)h+1\/5JML

In this double sum, each T, ; for b <j <@ — b is represented exactly
[6/h + 1] times, because of the overlapping %, blocks. Taking into account
that each T} , , = O, (1) (by Chebyshev’s inequality) yields

a2
q\/_ oM gl P\ LR )
Recalling that ¢ = [(@ — b)/h] + 1 and that b = o(Q) yields

3 _ p3/2 p3/2
2, -0 | -0 °q )
1
q;

p3/2 2
Q ))
in view of the fact that from Corollary 1 we have
R — 14 . _ .2
VJACK(\/_Q—TN) = -q_ )y (Bi - ‘/ETN) ~p ol
i=1

and condition (iii’), we have proved (II).
Finally, look at

~

E*Y, =

Therefore

Var* Y, =

N M-Q

(B - Vb Ty +0,

kMK 1 : 7 1 *V m b
by our previous discussion. B using now condition (iii’) [namely, b = o(;/Q)]
and in view of the fact that / and @ are assumed of the same order, (III) is
proved and so is the theorem. O

REMARK 3. Assumption (A,) was only used at the very last part of the
proof. It is easily seen that Theorem 2 is still true if we substitute (A,) with
the more technical assumption that £ — » and [ = o(Q?2/62).

REMARK 4. It is easy to infer that under the assumptions of Theorem 2 the
following result is also true:

9)  sup|P*{VI(Ty - E*Ty) <x) - P(YQ (Ty — n) <a}| =, 0.

Practical use of this result involves an increased computational effort, in order
to “calculate E*T}*. Nevertheless, there is an additional by-product of this
extra effort, namely, that in this form [equation (9)] the blocks of blocks
bootstrap estimate of sampling distribution is potentially a more accurate
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distribution estimate than the one offered by the central limit theorem. This
claim was proven [cf. Lahiri (1990)] in the special case of the sample mean, in
which the blocks of blocks and the moving blocks methods coincide.

The sample mean result, with little modification, can be applied to show
that under some additional regularity conditions (including an exponential
mixing rate and a Cramér-type condition on the distributions), the blocks of
blocks bootstrap approximation of (9) is accurate to more than first order, in
the case where u is a parameter of a finite, say, m-dimensional, distribution of
the {X,} process. In that case, M is taken equal to m, L is taken equal to 1,
and all rows of the triangular array of the T; ,, ;, i € Z, are identical and
therefore can be treated as just one new stationary sequence {7}, i € Z} [see
also Kiinsch (1989)].

The above discussion is more precisely formulated in Lemma 2. Assuming
that the sequence {X,, n € Z} is defined on the probability space ({}, &, P),
denote Z,, n € Z, a sequence of sub-o-fields of &/, and 2,2 the o-field
generated by Z, ,...,9,..

LEMMA 2. Suppose p is a parameter of the m-dimensional joint distribu-
tion of the sequence {X,, n € Z}, with m finite. Also assume that ET, = u and
EIT,|* < ®, where T, = T; .1, for M =m, L = 1. Under assumptions (A,),
(Ay) and (A ), conditions (ii'), (iii’) and (vi) and the following three additional
conditions:

(a)) 3 d >0 such that, for all k,n €N, with n > 1/d, there exists a
D¢ -measurable random variable Z, ,, for which E\T), — Z, | <d 'e "
and E\Z, , |°1(Z,,, | < kE/*) <d~*, where n is a sequence of real numbers
satisfying log k = o(n,) and n, = O(log k)'*9 ', as k — =,

(agy) 3 d > 0 such that, for all k,n €N, with k > n > 1/d, and for all
t>d,

E|E(exp[jt(Ty_p + Thopsr + - +Thi)]| 9, i # k)| <e7?,
where j is used to denote the imaginary unit v — 1;
(ag) 3 d > 0 such that, for all k,n;,n, €Nand A € 9",
E|P(A|9;,i +ny) — P(A|2,,0 < In, — il <k + n,)| < d~le"9;

the following is true:
Ty - E*T} Ty -
sup | P* \/Z——l——-—————:————_-l— <x —P{\/a——N———M— Sx}
(10) x VVar*(VITy)
= Op(Q_l/z)'

T}le proof is an immediate application of Lahiri’s (1990) result to the
stationary sequence {7}, i € Z}. Equation (10) can be strengthened to hold
with probability 1 if it is additionally assumed that & = o(@'/*) [which is not
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desirable because it can be shown, cf. Politis (1990), that the MSE of the
blocks of blocks jackknife or bootstrap estimate of variance is asymptotically
minimized by taking b ~ A,Q'/3, with a resulting MSE of order @ /2], or by
assuming a stronger moment condition [cf. Lahiri (1990)].

However, the applicability of Lemma 2 is limited by the fact that conditions
(a;)—(ay) are quite difficult to verify [cf. G6tze and Hipp (1983)] in specific
settings. Furthermore, a corresponding result for the general case, where
m = o, seems intractable at this point. It should be noted that analogs of both
Lemma 2 and Theorem 2 are valid in a multivariate setting as well, that is,
where T, takes values in R? [cf. Lahiri (1990) and Politis and Romano
(1992)].

Returning to the general case, it is easily seen from the proof of Theorem 2
that assumption (A,) was used only to ensure that P{y/Q (Ty — n) < x} —
®(x/a). If it is replaced by the weaker (A,), the following result remains true.

CoroLLARY 8. Under assumptions (A,), (A,), (A,), (Ay) and (A, and if:

(i) M =o(N) and L ~ aM, for some a € (0, 1],
(ii") b » © and h = O(b),
(iii") b = o(@'/?),
(v) T5_ 1P Max(R))?/CP+d) < oo,

then
(11) sup|P*{VI(T} - E*Ty) <«} — P{yQ (Ty - ETy) < x| -, 0
as well as

(12)  sup|P*{VI(T# - Ty) <x} - P{YQ(Ty — ETy) < x}| -, 0.

ReEMARK 5. The result of Corollary 3 allows for the construction of boot-
strap confidence intervals for ETy, in the case where T} is an estimator with
bias of the same order as its standard deviation. In that case, even the central
limit theorem of assumption (A;) can only provide asymptotic confidence
intervals for ET, and not for u. To obtain confidence intervals for u using
either the blocks of blocks bootstrap or the central limit theorem, an adjust-
ment for the bias must be made via an expansion of the form ETy = u + u, +
0(Q~1/?), provided p, can itself be estimated with 0,(Q~'/?) accuracy.

REMARK 6. Using the &-method, it is immediately seen that both the
jackknife and the bootstrap remain valid for statistics of the form
&((1/QTL \T; ) 1) as long as the function g has a nonzero derivative at p.
This is the statement in Bickel and Freedman (1981) that ‘““the bootstrap
commutes with smooth functions.” An example of such a function that we will
use later on is g(x) = log x, for x > 0.
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ReEMARK 7. Note that in the construction of the jackknife and bootstrap we
are effectively resampling whole blocks (of size b) of blocks (of size M) of the
original observations. Equivalently, this can be thought of as resampling
bigger blocks of size (b — 1)L + M of the observations X,,, but then applying
to them your estimating procedure based on a window of width M moving at
lags AL at a time. In Kiinsch (1989) and in Liu and Singh (1988), because they
consider L=1, h=1and M =1 or at best M = m, a fixed number, this
distinction does not appear. It should be pointed out, though, that this
equivalence holds only up to some asymptotically negligible “edge’ effects (at
the places where the bigger blocks are joined together in forming a resampled
sequence). However, in a finite sample situation these edge effects could be
important, and it is advisable to eliminate them. The blocks of blocks construc-
tion does eliminate the edge effects, as well as making the whole procedure
more transparent, since by separating the whole construction into two stages,

1. blocking to get a consistent estimator,
2. blocking to get a valid bootstrap or jackknife procedure,

we have greater freedom to fine-tune our design parameters. Choosing the
design parameters in the estimation and in the bootstrap procedures indepen-
dently is, of course, of great practical value and is also an attribute of the
procedures in Hirdle and Bowman (1988) and Franke and Hérdle (1992).

As before, we also have the following.

COROLLARY 4. In the hypotheses of Theorem 2 and Corollary 3, condition
(vii) can be substituted for condition (iv), and assumption (A;) can be substi-
tuted for assumption (Aj), and the respective results of Theorem 2 and
Corollary 3 will hold true.

5. Approximate confidence intervals for the spectral density. The
concrete application which in fact was the motivation for our previous abstract
discussion is the following. In this section assume that the time series X, is
univariate. Let

1 | LG-D+M 2

T, w) = —— W, X, e /tw| |
() 2rM t=L(iZ—1)+1 a

that is, T; »s ; is the periodogram of block B, of data, “tapered” by the
function W,, evaluated at some frequency w € [—m, ]. Note that the symbol j
denotes the imaginary unit v — 1, to avoid confusion with i, the block count.
Also define Ty = (1/Q)L&,T; ; (w) as before. It can be shown [Zhurbenko
(1980)] that T, is a consistent estimator of the spectral density function f(w)
which is defined by f(w) = (1/2m)X;_ _.R(s)e™/**, where R(s) = EX,X,,
is the autocovariance (for simplicity, assume EX, = 0).

Estimators of this type are called lag-window spectral estimators and were
previously considered by Bartlett (1946, 1950), Welch (1967), Brillinger (1975),
Zhurbenko (1979, 1980) and Thomson and Chave (1988). It is interesting to
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point out the close connection of the lag-window estimators with the more
commonly used kernel smoothed estimators that were pioneered by Daniell
(1946), Grenander and Rosenblatt (1957), Blackman and Tukey (1959) and
Parzen (1961). This connection actually led Bartlett to introduce the triangu-
lar kernel for smoothing that now bears his name. To be specific let us take
W, =1, V ¢ (no tapering). Then it can be shown [cf. Priestley (1981)] that if
R(s) = (1/N)Z)-:X, X, ., is the usual sample autocovariance,

1 il 1 |S| 1% —jws

( M) (s)e ,

where f(w) is the kernel smoothed (with Bartlett’s kernel) estimator. By
computing a tapered periodogram for each block (with an appropriate choice of
data window W,), we can obtain a correspondence with other kernel estimators
(not just Bartlett’s).

For concreteness we will continue our discussion in this case (with W, = 1),
although everything can be generalized to the case that we have tapering.
Under regularity conditions [namely, that f(w) is Lipschitz and the fourth-
order spectral density is bounded, which can be ensured by a condition on the
mixing coefficient], it can be shown [c¢f. Zhurbenko (1979, 1980)] that, for
M = o(N) as N — x, the estimator Ty is asymptotically normal, with asymp-
totic variance given by

_ M
(13) Var(TN) ~cﬁf2(w)(1 + n(w)),

where n(w) =01if w # 0 (modw) and n =1if w=0,+ 7. If L ~aM, the
constant ¢ can be explicitly calculated as ¢ = a + 2aX}/%(1 — ka)? [cf. Welch
(1967)]; if L = o(M), we have ¢ = 2/3. Thus the existence of an asymptotic
variance [cf. assumption (A3)] is ensured.

It is to be noted that a sufficient condition for the spectral densities up to
order p to exist and be bounded is ay(k) = O(k~*), where A > (p + D((v —
2)/v), and E|X,|’" < «, for some v > 2 [cf. Zhurbenko (1980)]. Hence, by
taking v = 2 + ¢, with ¢ small enough, the asymptotic formula (13) holds
under condition (vii) and if E|X 1|10 < oo,

Let us now check the conditions that will enable us to apply our theorems in
this setting. Using Yokoyama’s (1980) theorem and condition (iv), it is easy to
see that assumption (A,) will hold, provided E|X,|* "¢ < o, for r = 2p + §,
and some ¢ > 0.

Now, to check assumption (A,), it is well known [cf. Hannan (1970)] that if
f € €1 orif it is just Lipschitz near w, then the bias of the periodogram of a
series of M observations is O(log M /M). But a sufficient condition for f € €*
is that X |s||R(s)| < », which is ensured by condition (vii) and a moment
assumption.

Therefore, ET, j; ;(w) = f(w) + O((log M)/M), and in order to have
O(og M)/M) = o(yM/N), it is required that N/M? — 0. If, as usual, we
put M ~ AN, then it is required that 8 > 1/3. This is what we referred to
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earlier on as undersmoothing, since for the particular case of the Bartlett
estimator the choice B = 1/3 makes the asymptotic order of the squared bias
equal to the order of the variance, thus minimizing (asymptotically) the MSE.
Note that if, with appropriate tapering, we succeed in bringing the bias down
to O(M™7), then to get assumption (A,) to hold we would need B8 > 1/(1 + 2q),
which is undersmoothing in the general case.

By the above observations and using Corollaries 2 and 4 the following result
is established.

THEOREM 3. Suppose M ~ ANP, B > 1/3. Under assumptions (A,) and
(A,) and conditions (1), (ii’), (iii’) and (vii), and under the additional condi-
tion:

(vii)) E|X,*** <, for some ¢ > 0, and for r = 2p + 8, where p > 2 is
some integer, and & € (0, 2] is some real constant,

the following are true (where c, is some positive constant):
(14) VQ (Ty — f(w)) =_ N(0,¢o fA(w)(1 + n(w)));
(15) sup|P*{Vi(T7 - ETy) <z} - PYQ (T — f(w)) <x}| =, 0;

(16) sup‘P*{\/l_(’._T’—l* - TN) sx} - P{\/Q(TN ~ f(w)) < x}‘ -, 0;

(17) VJACK(\/Q_TN) =, ¢ fA(w)(1 + n(w)).

In addition, if M ~ AN'/3, then ETy, should be substituted instead of f(w) in
the left-hand sides of equations (14)-(16).

The case where M ~ AN'/3 deserves special attention, because it corre-
sponds to a T, estimator that has asymptotically minimum mean squared
error. As in Remark 5 (after Corollary 3), in that case (14)-(16) would only
provide confidence intervals for ETy and not for f(w). However, an expansion
for the bias of Ty, is readily avallable by the approximate equality of Ty and
Bartlett’s f(w) [cf Priestley (1981)], namely, f(w) = ETy + u; + o(Q /2,
where u;, = (1/M )Ei_"imlis(s)e_fsw is the “‘generalized” first derivative of
f(w), [cf. Parzen (1961)]. By us1ng an estimator f,, such that 4; —u, =
0,(Q@ /%), (14)-(16), with f(w) — A, put in place of f(w) in their respective
left hand sides, would yield asymptotlcally valid confidence intervals for f(w).
This sort of analytic bias correction in the confidence intervals is also present
in the work of Hiérdle and Bowman (1988) and Franke and Hérdle (1992).

It is also important to consider the two cases, L ~ aM and L = o(M), in
order to explain the assumption of condition L ~ aM in all our asymptotic
results. From (13), it is apparent that the estimator Ty [with L = o(M)] has a
smaller asymptotic variance than the estimator Ty (with L ~ aM). However,
note that in either case the variance of T, is asymptotically proportional to
M/N and that the gain in taking L = o(M) over taking L ~ aM is minor,
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since by letting a be small enough, we can bring the constant ¢ arbitrarily
close to 2/3.

Moreover, it easy to see that the blocks of blocks bootstrap and jackknife
estimates of the variance of T, turn out to be proportional to 1/, which is of
the same order as M /N if and only if L ~ aM (recall that @ ~ N/L). Hence,
the blocks of blocks bootstrap and jackknife estimates are simply inconsistent
(by an order of magnitude!) in the case L = o(M), M tending to infinity. The
reason is that the whole blocking idea is crucially based on having weakly
dependent data [see also Kiinsch (1989), page 1225]. The T; ,, , “pseudodata”
are weakly dependent if L ~ aM, and strongly dependent if L = o(M).

The result of Theorem 3 can be taken one step further by an approximate
studentization, since typically [cf. Babu and Singh (1983), Hall (1988) and
DiCiccio and Romano (1988)] this leads to a faster rate of convergence. Since
we know that Ty, — » f(w), an application of Slutsky’s theorem shows that, if
f(w) # 0, (16) also implies

*
P"‘{x/l_—Tl—T-qh sx}—P{@TN—M sx} 0.

p

18 su;
(18 s . Fw)

We will prefer to use this version for setting confidence intervals because
under the hypotheses of Theorem 3 the quantity @ (Ty — f(w))/f(w) is
asymptotically pivotal since \/6 (Ty — f(w))/f(w) =_, N(O, c,), where c, does
not depend on f(w).

Incidentally, there is a close connection between this studentization and the
logarithmic transformation. The logarithmic transformation is suggested (by
the §-method) in order to stabilize the variance in models such as this, where
the standard deviation is approximately proportional to the mean. In particu-
lar, after some algebra and using the fact that log(1 + x/N) —x/N — 0, it
can be shown that (16) is equivalent to

P*{\/l—(log Tr - log Ty) < x}

sup
(19) *
—P{/Q (log Ty — log f(w)) < x}l -, 0.

This latter representation is more convenient to work with in practice, because
it brings us in a location-parameter setting.

6. Approximate confidence intervals for the cross-spectral density.
Assume now that the time series {X,} is bivariate, that is, X, = (X, ;, X, ),
with EX, = 0. Let

1 LG-1D)+M ) LG-1D+M .

Tim, (W) = 57 Y WX, e ™ Y WX, e,
2rM \ ,_rG-D+1 t=LG-1)+1

that'is, T; 5 ; is the cross-periodogram of block B, of data, tapered by the
function W;, evaluated at some frequency w € [—, w]. Again, take W, = 1 for
concreteness. Also, define Ty = (1/@)L& T, 4, .(w) as before. The cross-spec-
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tral density function f(w)is defined by f(w) = (1/27)X>_ _R(s)e 7**, where
now R(s) = EX, ;X,,, , is the cross-covariance. However, it should be noted
that, in general, the cross-spectral density is a complex function. Let us denote
by fr(w) and f,(w) its real and imaginary parts and by T;¥, T the real and
imaginary parts of Ty. B _

Similarly as in the previous section it can be proved that |Tyl, T and T
have bias of order O(log M /M), under the mixing condition (vii). Hence, by
ensuring that M —» » and M = o(N), we see that |T|, TF and T are
consistent estimators of |[f(w)l, fz(w) and f;(w), respectively.

The situation then would appear to resemble the previously discussed case
of the (individual) spectral density, only in more complicated form. For exam-
ple, under the strong assumption that X, is Gaussian (and other regularity
assumptions), it can be proved [Jenkins (1963) and Zhurbenko (1986)] that, for
some constant c,

fi(w) fa(w)
If(w)|2 )(1+77(w))1

where f(w) and f,(w) are the individual spectral densities of X, , and X, ,,
respectively. Similar formulae [involving f(w), f(w) and fy(w)] also exist for
the asymptotic variances of T\¥ and T}.

In view of the complicated form of the asymptotic variances, it seems that
the bootstrap and jackknife represent a most practical way to assess the
statistical accuracy of the cross-spectral density statistics | Ty, TF and T}. We
can formulate the following theorem, which like Theorem 3 is based on our
corollaries.

_ M
(20)  Var(Tyl) ~ cﬁlf(w)lz(l +

THEOREM 4. Suppose M ~ ANP, B > 1/3. Under assumptions (A,) and
(A ), conditions (1), (i), (iii’) and (vii) and under the additional condition:

(ix) EIX“IZ’” < oo, EIXt,2|2'+‘e <, for some ¢ > 0, and for r = 2p + 6,
where p > 2 is some integer and & € (0, 2] is some real constant,

the estimators |Ty|, TF and T} are asymptotically normal, and their respec-
tive asymptotic variance and sampling distribution can be estimated consis-
tently via the blocks of blocks jackknife and bootstrap procedures, analogously
to Theorem 3.

As in the discussion after Theorem 3, analytical corrections for the bias can
also be employed in order to work with mean squared error optimal estima-
tors, in which M ~ AN /3,

In addition, recalling the fact that ‘‘the bootstrap commutes with smooth
functions” (or from the discussion at the end of the previous section), it is seen
that the theorem also implies

P*{\/l_(logITl*l — log| TNI) < x}

—P{yQ (log|Ty | - log| f(w)) < x}| -, 0,

provided f(w) # 0. We would again prefer to work with the above version

- sup
(21) *
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because, in view of the asymptotic formula for Var(|Tyl), the quantity
V@ (T — If(w)))/If(w)l would still be approximately pivotal in case the
squared coherency |f(w)?®/f(w)f,(w) is approximately constant along w.
Notably if X, , is the output of a linear time-invariant filter with input X, ,,
the squared coherency is identically equal to 1.

Estimating the coherency function ¥(w) = [f(w)l/ /fi(w) fo(w) is itself
of some interest. A consistent estimator can be formed if lag-window estimates
of the modulus of the cross-spectral density and of the f; and f, spectral
densities are substituted for |f(w)|, fi(w) and fo(w) in the definition of ¥(w).
As a smooth function of the lag-window estimates, this estimator, [call it
¥(w)], would be asymptotically normal, and its asymptotic variance and sam-
pling distribution could be estimated consistently via the blocks of blocks
resampling scheme. Note also that Fisher’s z-transformation is applicable here
[cf. Priestley (1981)] and could be used to derive confidence intervals for y(w)
through the asymptotic normal distribution of the variance stabilized statistic
tanh~(¢(w)). If the blocks of blocks bootstrap method were used, variance
stabilization would not affect the asymptotic first-order accuracy, but it is
likely to improve the rate of the asymptotic approximation, analogously to the
increased accuracy of the bootstrap approximation of the sampling distribution
of a studentized sample mean [see also Hall (1992) and Hall, Martin and
Schucany (1989)].

7. Some practical considerations. In this section we will discuss the
practical implementation of the blocks of blocks resampling procedure in the
spectral density problem. Two comments are in order.

The problem of bias. Although by undersmoothing the bias will be asymp-
totically negligible, in a finite-sample setting it usually is not, especially if the
true spectrum has sharp and narrow-band peaks or troughs. This can be
understood intuitively through the analogy with the kernel smoothed estima-
tors in which it is obvious that a sharp peak of f at w, can significantly
influence the value of f(w) for w € (w, — Aw, w, + Aw), thus introducing
bias. Here Aw is of the order of /M, since the Fourier transform of the
Bartlett kernel is (4 M /w?)sin%(w /2 M).

Now observe that the bias in Ty(w) is due entirely to the bias of the
periodogram of a block of M observations (cf. Section 5). By recalling that the
bias of the periodogram of white noise is zero, the technique of whitening is
suggested [cf. Brillinger (1975)] in order to alleviate the problem of bias in
practice. This technique amounts to first fitting a parametric (usually autore-
gressive) model to the data and then filtering the data with the estimated
whitening filter. The filtered data now would have an approximately constant
(true) spectrum, and applying the blocks of blocks resampling procedure to
them will give more accurate results because of reduced bias.

Choosing the design parameters. The asymptotic restrictions on M, L, b,
h and [ = kb imposed by the assumptions and conditions of the theorems do
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not give practical guidelines for choosing these parameters in a finite-sample
situation. However, we will describe some intuitive considerations that would
lead to reasonable choices.

In practice, the choice of M and L is made in an exploratory fashion, by
examining plots of the lag-window estimator for different choices. One can
choose a combination of M and L that leads to a visibly undersmoothed
estimator. At this stage one can also decide on whether it is necessary to
perform a whitening procedure, by looking at the peaks and troughs of the
estimator as a function of w. In addition, since the computation of peri-
odograms is efficiently done by the fast Fourier transform (FFT) algorithm,
then the choice of M also determines for which frequencies w the estimator
will be evaluated. (Recall that the FFT algorithm computes a periodogram for
frequencies on the discrete grid: w; = 2mj/M, for j = 1,..., M.)

By the discussion after Corollary 1, we are justified in choosing A = 1. This
is most desirable since the effective sample to be bootstrapped or jackknifed is
of size ¢ ~ (@ — b)/h. Also, to satisfy assumption (A ,), it is reasonable to let
k=[Q/blor k =[Q/b] + 1, and then I = kb.

Regarding the problem of choosing b in a finite-sample situation, an inter-
play between the choice of M and L and that of & should be noted. It can be
shown that to have a reasonable variance estimate provided by the bootstrap
we should at least require b >[1/a] ~M/L. Since each %; consists of
(b — 1)L + M observations X,, this requirement can be interpreted to read as
follows: Each resampled block &, should at least contain about 2M of the X,
observations. Of course in practice we cannot take b too large as well. An
upper limit on & must also be set, which is reflected in the condition that
b = 0(;/Q) of Theorem 2 or the b ~ A,Q"/2 dictated for MSE optimality.

Let us elaborate on this last point by using a numerical example. Suppose
the sequence {Y}, ¢t € Z} is actually m-dependent and the statistic in question
is the sample mean. This case is discussed in detail in Liu and Singh (1988),
with particular mention to the situation that, for all ¢, n, Cov(Y,,Y,) > 0, in
which case it is claimed that V;,cx increases monotonically with the block size
b and approaches the true value. However, this requires an infinite sample
size. The following numerical example shows that in a finite-sample case,
taking too large a block size might spoil the correction that the moving blocks
jackknife offers versus the classical jackknife.

A sample Y,,...,Y;,, was generated from the moving average model:
Y,=Z,+Z,_, +Z,_,, where the Zs are iid. N(0,1). By observing that
TI0Y, = 3519 Z,, we see that Var(£1%,Y,/10) = 9. A plot of V;,cx(X1%Y;/10)
as a function of the block size b is shown in Figure 1. It is seen that although
Viack increases and “captures” the true variance at about b = 10, taking a
greater b worsens the approximation and, for b > 20, the moving blocks
correction is totally lost. The part for 80 < b < 100 is understandably bad, due
to a very small equivalent sample to be jackknifed. Obviously, for & = 100 the
equivalent sample is of size 1, which of course leads to a variance estimate of
zZero.

The variability of V;,cx(X1%Y,/10) as a function of b is an indication of the
difficulty of estimation in problems with dependent data. The moving average
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Fic. 1. VJACK for the sample mean case, as a function of the block size b.

model that was used was very simple, and the situation itself (estimating the
variance of the sample mean) is the simplest of the ones discussed in our
paper. Even in slightly more complicated examples, for example, a moving
average model of higher order or an autoregressive model, it is not uncommon
to have variance estimates that are off by an order of magnitude from the true
parameter, for a sample size of 100 (which was used in our example). It follows
that a result like Lemma 2 on higher-order accuracy is of theoretical value
only, unless a huge sample size is available. One cannot expect higher-order
accuracy of the bootstrap distribution approximation if the scale parameter is
not estimated accurately.

To return to the spectral density example, it is noteworthy that in the
special case of nonoverlapping B; 1, blocks, that is, L = M, Brillinger (1975)
proved that the T; 5, ;’s are in fact asymptotically independent (i.e., 0-depen-
dent), under the condltlons that all cumulants of X, exist and are summable
This is a refinement of our Lemma 1 in that partlcular case. So for L = M we
could theoretically use b = 1, that is, the classical jackknife and bootstrap, and

.have an asymptotically valid procedure. However, even here, it would be
advisable in a practical application to take b larger than 1, since in a finite
sample setup the T; 5, ;’s are not independent.

Acknowledgment. Thanks are due to the anonymous referees for many
helpful suggestions that significantly ameliorated the presentation of our
results.
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