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LIMIT DISTRIBUTIONS FOR MARDIA’S MEASURE
OF MULTIVARIATE SKEWNESS

By L. BARINGHAUS AND N. HENZE

Universitit Hannover and Universitit Karlsruhe

We study the asymptotic behavior of Mardia’s measure of (sample)
multivariate skewness. In the special case of an elliptically symmetric
distribution, the limit law is a weighted sum of two independent x2-variates.
A normal limit distribution arises if the population distribution has positive
skewness. These results explain some curiosities in the power performance
of a commonly proposed test for multivariate normality based on multivari-
ate skewness.

1. Introduction and summary. Let X,,...,X, be independent ob-
servations on a d-dimensional random column vector X with expectation
E[X] = u and nonsingular covariance matrix 3 = E[(X — uXX — u)], where
the prime denotes transpose. Writing
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for the mean vector and the empirical covariance matrix of X, ..., X, , Mardia
(1970, 1975) introduced

1 =2 —, —\\3
bra=— L {(X-X)s7(x, - X))

neyj=1
as an affine invariant measure of multivariate skewness and showed that it
emerges in a natural way in connection with robustness studies on Hotelling’s
T2 test [Mardia (1974)]. An algorithm for computing b, ;, was given by Mardia
and Zemroch (1975). For a survey on measures of multivariate skewness and
kurtosis, see Schwager (1985). Obviously, the affine invariant ‘population
counterpart” of b, , is

Bua= E[((X, - w37 (X; - w))].

Within the class .#; of all nondegenerate d-dimensional normal distributions,
B, 4 takes the value 0. Denoting by PX the distribution of X, Mardia proposed
to use b; ,(Xi, ..., X,) as a statistic for testing the hypothesis Hy: P* € .4;
of multivariate normality. Let

(1.1) W=3"V3(X - p),
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1890 L. BARINGHAUS AND N. HENZE

where 3712 is a symmetric positive definite square root of 3 ~! so that
E[W]=0 and E[WW'] = I,, the identity matrix of order d. Writing W =
(W, W,,...,W,Y, we have

d
0<B o= L (E[W]) +3L (E[wzw)]) +6 L (E[WwWWw,])’
i=1 i#j 1<i<j<k=<d
Consequently, rejection of H, is for large values of b, ,(X;,..., X,). Under
H,

(1.2) nbl,d(X17"" X,) 29 6X3(d+1)(d+2)/6

as n — « [Mardia (1970)], where ¢ ”” denotes convergence in distribution.
Observe that b, ; is an estimator for the population parameter g8, , which is
zero not only in case of normality but also within the wider class of all
elliptically symmetric distributions (see Section 2). Therefore, it may be sup-
posed that the test for multinormality based on b, ; is consistent only against
alternative distributions having positive multivariate skewness.

It is the purpose of this paper to provide the asymptotic behavior of
multivariate skewness for a wide class of multivariate distributions. If the
underlying distribution is elliptically symmetric, it turns out that

2 2
nby 4(Xy,..., X,) 29 @1xXa + ®eXa@-1xd+a,6

where the coefficients «; depend on E[|W|*] and E[|W|®], with W given in
(1.1). Here and in what follows, |x| denotes the Euclidean norm of a vector x.
On the other hand, if E[(x’ W)3] is not constant P %-almost surely, we have

‘/E(bl,d(XD“': X,) — Bl,d) g J/(O’U )

with o2 depending on the distribution of W.

The main results will be presented in Sections 2 and 3. In Section 4 we
clarify some curiosities in the power performance of Mardia’s test for multi-
variate normality based on b, ; observed in Monte Carlo studies. Moreover, it
will be seen that this test is consistent for a fixed alternative distribution if and
only if 8, ;, > 0.

2. The limit distribution of b, , for elliptically symmetric distribu-
tions. A random (d X 1) vector X is said to have a spherically symmetric
distribution (or simply spherical distribution) if

X =, HX for every orthogonal (d X d) matrix H,

where the symbol “ =, ”’ denotes equality in distribution. A random (d X 1)
vector X is said to have an elliptically symmetric distribution (or simply
elliptical distribution) with center u € R? and ellipticity matrix A if there is a
.random (% X 1) vector Y having spherically symmetric distribution and a
(k X d) matrix A of rank & such that A = A’A and

X=ppu+AY.



DISTRIBUTION OF MULTIVARIATE SKEWNESS 1891

In the following we assume that A is positive definite and that P(X = u) =
0. Since Mardia’s coefficient of skewness b, ; is invariant with respect to affine
linear transformations of X;,..., X, that is, b, ,(X,,..., X,) = b, J(XT,
..., X¥), where X =b + BX; for a nonsingular (d X d) matrix B and a
vector b € R?, we can (and do) assume without loss of generality that

E[X]=0 and E[XX']=1,.
In other words, the distribution of X is spherical with

(2.1) E[IX?] = d.
We need the further assumption
(2.2) E[IXI°] <o,

which guarantees that mixed moments of sufficiently high order exist.

Note that |X| and X/|X| are independent and that X/|X| is uniformly
distributed on the surface of the unit d-sphere [see Fang, Kotz and Ng (1989),
page 30]. Then B, ;, = 0 because this is true for the uniform distribution on
the surface of the unit d-sphere [see Fang, Kotz and Ng (1989), page 72].
Letting

1 n
(23) Vn(XI’""Xn) = 3 Z h(Xi: XJ)
i,j=1

be the V-statistic with kernel
(2.4) h(x,y) = (x'y)?, x,yeR?
[see Serfling (1980), page 174], we have
by (X1, X,) = V(873X - X),..., 873X, - X)),
where S~1/2 is a symmetric positive definite square root of S~! which exists
almost surely if n > d + 1 [see Eaton and Perlman (1973)].

LeEmMA 2.1.  If the distribution of X is elliptical we have

(2.5) %i’él[(Xi - )—()'S—I(XJ. - )'Z)]?’ - %idzn‘;lh*(Xi, X;) +o0p(1),
where the kernel h , is given by

(2.6) ho(x,y) = (x'y)° - 3(Ix|2 + |y|2)x’y + 3(d + 2)x'y

and satisfies

(2.7 E[h,(x,X)] =0, xeR%

Proor. For spherically distributed X we have
E[h(x,X)] =E[(¥X)’] =0, zeR
which shows that the kernel A figuring in (2.4) is degenerate. Since (2.2)
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entails E[A?] < », standard results [see e.g., Gregory (1977)] yield that

-~ T (xx)

i, 1

has a nondegenerate limit distribution. Using this fact, the idea is to expand
1z - : =13
(2.8) ~ ¥ [(x-X)s7(x, - X)|
i, j=1

by neglecting terms which are of order 0p(1) as n — .
To this end, observe that

~ Z 1X,°X, = E[IX1PX] + 0p(1) = 0p(1)

i=1

because E[|X|?X] = 0 for spherically distributed X satisfying (2.2). Further-
more, letting

1 n
(2.9) A, = WEI(XiX{ 1),

the multivariate central limit theorem yields A, = Op(1) and Vn X = Op(1).
Consequently,

1 1
= — + —
S=1I,+ ‘/;An OP(n)
and thus

1 1
(210) S_1=Id— TE_AH-'-OP(;)

A tedious but straightforward evaluation of the squared bracket occurring in
(2.8) leads to 64 terms, most of which are of order o0p(1) and thus are
asymptotically negligible. The only asymptotically nonvanishing terms (ignor-
ing symmetric cases) are

1 3 1
S ¥ (xisTx,) = _’;;(x;xj)%op(l),
i,J t,J

1 roe1v \2 v 1T 1 2+,

— Y (X;87'X;) X;S7'X = ;Z|Xj| X/ X; +o0p(1),

nij i,

1 o 1
— ¥ (X;87'X,)°X'S7'X = E[Ix?] ~ L XiX; + 0p(1)
i,J

nij
and

1 — 1
~ Y XiSTX XS TIRK'S 7K, = — LX(X; + 0p(1).

iJ
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Counting the number of symmetric cases, we finally obtain

% : Znil[(xi - X)s(x, - X)|°

1 n
-~ X [(x:x,)° - 3(1 % * +| X, ) x; X,
i,j=1

+3(E[IXP?] + 2)X/X;| + op(1).

Recalling (2.1), the result (2.5) follows; (2.7) is an immediate consequence of
the spherical symmetry of X. O

Lemma 2.1 implies that nb, ;, and nV*, where

1 n
Vn*(X17"'7Xn) = 32 Z h*(Xi’ Xj),
ne =1

have the same limit distribution. However, from standard theorems on the
asymptotic behavior of V-statistics in the degenerate case [recall (2.7)], we
have

AP Z /\kUk27

k>1
where U, U,,... are independent unit normal random variables. The A,,
k > 1, are the nonzero eigenvalues corresponding to the integral operator
(2.11) g~ Ag(x) = [h.(x,7)&(y)P¥(dy)

on the Hilbert space L,(PX) of measurable functions g on R that are
square-integrable with respect to PX associated with the kernel 4 , [see, e.g.,
Gregory (1977)]. More precisely, we have the following result.

THEOREM 2.2. Let X have an elliptical distribution with expectation u and
nonsingular covariance matrix 3 such that E[{(X — uY3 X — w)?] < .
Then

nby o(Xy1,..., X,) 2o arx’s + a2X2d(d—1)(d+4)/67
where
31 mg
al:E[d+2 —2m4+d(d+2)],
6mg
*27 d(d + 2)(d + 4)
and

my, = E[(X - (X - )], j=2s.

x% and  x%y4_1ya+a6 are independent x*-variables with d and
d(d — 1Xd + 4)/6 degrees of freedom.
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Proor. We may assume that d > 2 since in the univariate case the
assertion of Theorem 2.2 follows from Theorem 1 of Gastwirth and Owens
(1977). Let X have a spherical distribution with P(X = 0) = 0, E[X*1=d
and E[|X|®] < «. To determine the eigenvalues of the integral operator A
given in (2.11), we put R = |X| and Z = X/R. Remember that R and Z are
independent, with Z being uniformly distributed on the unit sphere §d-1 =
{x € R%: |x| = 1}. Let » denote the uniform distribution on S -1 and let F
be the distribution of R. Note that (2.11) takes the special form

(2.12) /f[r333(z’w)3 —3(r2 +s?)rs(Zw) + 3(d + 2)rs(z’w)]
x g(sw) dw(w) dF(s) = Ag(rz),
which holds for F ® w-almost all (r, z) € [0,) X ¢ .
We now treat the cases d >3 and d = 2 separately. First, let d > 3.
Denoting by CJ(t) the Gegenbauer polynomial of degree g and order vy =

(d — 2)/2 [see Erdélyi, Magnus, Oberhettinger and Tricomi (1953), Section
10.9], we have

3
Ay 3O 1@ty

1
=—2—;C{(t) and ¢ = Cr(¢).

Thus (2.12) can be rewritten as

2C(Zw)r3s?

3
|y
(2.13) ( r3s3

+ Frrie (r2+s®)rs+ (d + 2)rs)C{’(z’w)}g(sw) dw(w) dF(s)

=Ag(rz).
Putting

v(q)=(d;E;q)+(d;3;q),

there is a complete system {¢, ,: k= 1,...,1(¢); ¢ =0,1,.. .} of orthonormal
continuous functions ¢, ;, € Ly(w) such that

} -1 v»(q)
Cg(z’w) = (1 + -;) Z (pq’k(z)gpq’k(w), zZ,w € §d-1
k=1

[see Erdélyi, Magnus, Oberhettinger and Tricomi (1953), page 243, and Stein
and Weiss (1971)). It is easily verified that the functions

[r2 = (d + 2)r]eya(2)
(me — 2(d + 2)m, + (d +2)°d

(214) gl,k(x) = )1/2 ’
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xe€RY r=xl,z=x/r,k=1,...,v(1), and

r’p3 4(2)
(2.15) 8sx(%) = —5 57—,
mg

xe€RY r=lxl,z=x/r, k=1,...,v(3), are orthonormal eigenfunctions with
associated nonzero eigenvalues

2.16 A S M, d +2)d

(2.16) 1= 5| gag — 2ma+ (@ +2)d]
and

6mg
(2.17) A‘3,k =

d(d +2)(d + 4)°

Addition of A, , and A;, according to their multiplicities »(1) =d and
v(3) = d(d — 1Xd + 4)/6 yields

»(1) »(3)
Y Mt LAz ,=mg—6m,+3(d+2)d=E[h, (X, X)].
= E=1

This shows that we have obtained all nonzero eigenvalues of the kernel %,
[see, e.g., Serfling (1980)], so that the assertion of Theorem 2.2 follows for
d > 3. The case d = 2 can be treated in a similar manner by considering
Chebyshev polynomials instead of Gegenbauer polynomials. Denoting by C,®
the Chebyshev polynomial of the first kind and degree q [see Erdélyi, Magnus,
Oberhettinger and Tricomi (1953), Section 10.11], we have

t=Cy(t) and *=1C4(t) + 3Cy(2).

Then, starting from (2.12) and expressing the powers of (z/w) in terms of
Chebyshev polynomials, one gets the similar expression to (2.13). Now there is
a complete system {1} U {¢, ,: £ = 1,2; ¢ = 1,2,...} of orthonormal continu-
ous functions ¢, ;, € Ly(w) such that

Co(2w) = 3[0g,1(2) 0 (W) + ¢4 2(2)¢g 2(w)],  2z,w, €S

Keeping these new notations in mind, the functions given in (2.14) and (2.15)
turn out to be orthonormal eigenfunctions with associated nonzero eigenval-
ues given in (2.16) and (2.17) with d = 2. Since these eigenvalues have
multiplicity 2, the assertion of Theorem 2.2 is shown to be true also for
d=2.0

ExamPLE 2.3 (Normal distribution). If X has a normal distribution with
expectation u and nonsingular covariance matrix 3, the quantities m, and
mg figuring in the statement of Theorem 2.2 are

my=d(d+2), mg=d(d+2)(d+4).

From this it follows that a; = a, = 6. Since d + d(d — 1X(d + 4)/6 =
d(d + 1Xd + 2)/6, we obtain Mardia’s result (1.2).
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ExamMPLE 2.4 (Symmetric multivariate Pearson Type II distribution). The
random vector X is said to have a symmetric multivariate Pearson Type II
distribution [denoted by X ~ MPII ,(k, u, A)] if X has the density

Ld/2+e+1)
I'(k + 1)wd/2|A|1/2(
XI{(x — p)yA Y (x —p) <1},

for some vector u € R% and some symmetric positive definite matrix A, k € R,
k > —1 [see Fang, Kotz and Ng (1989), Section 3.4]. We have E[X] = u and

E[(X (X -] = grg—m7gh
Since (X — uYA~ %X — w) has the Beta distribution with density
I'(d/2+«+1)
T(d/2)T(k + 1)
it is easily seen that for X ~ MPII ;(«, u, A)
d+ 2+ 2k
d+4+ 2’
(d + 2 + 2«)*
(d+4+2«)(d+6+2)

— (x - YAz —n)"

f(x) =

ut/?"Y1-u)", O0<u<l,

m,=d(d + 2)

me =d(d + 2)(d + 4)

and thus
6[(d + 6 + 2k)d + 16(x + 1)]
T (d+4+2¢)(d+6+2k)
12(3d + 6k + 10)
S (d+4+2¢)(d+ 6+ 2)

a, =

Qg =

ExaMpLE 2.5 (Symmetric Kotz type distributions). The random vector X is
said to have a symmetric Kotz type distribution [denoted by X ~
MK ,(a, r, s, u, A)] if the density of X is of the form

— oA a—1 1A — s
F(x) = calAI7V2[(x — pY Az — )] exp(—r[(x — ) A~ (x - w)]),

r,s >0, 2a +d > 2, for some vector u € R and some symmetric positive
-definite matrix A [see Fang, Kotz and Ng (1989), Section 3.2]. The normalizing
constant c, is

sT'(d/2)
m?/?T((2a + d — 2)/(2s))
. We have E[X] = u and

F(2a+d—2)/@2s)

Cd=

, I'((2a +d)/(2s))
E[(X'— w(X - ,LL)] = drl/sr((za +d - 2)/(28)) A.
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Since the density of (X — uYA~YX — w) is given by

74/2

T(d/2)
straightforward calculations yield for X ~ MK (a, r, s, u, A)
2 ['((2e¢ +d +2)/(2s))T((2a +d — 2)/(2s))

d/2+a=2 exp( —ru’), u>0,

Ma = T2((2a + d)/(25)) ’
_pl@atd+ 4)/(25))T2((2a + d — 2) /(2s))
Me = T3((2a + d)/(25)) :

In the special case s = 1 which includes the normal distribution for a = 1, we
have for X ~ MK ,(a,r, 1, u, A)

d?(d + 2a) + 8(a — 1)*
(d +2)(d + 2a — 2)* ’
d?(2a + d)(2a +d + 2)
(d + 2)(d + 4)(d + 2a — 2)*°

a; =

Ag =

ExaMPLE 2.6 (Symmetric multivariate Pearson Type VII distribution). The
random vector X is said to have a symmetric multivariate Pearson Type VII
distribution [denoted by X ~ MPVII /(«, a, u, A)] if X has the density

I'(a)
T'(a — d/2)(mx)* A2

—a

1
f(x) = L+ —(x—u)fA7(x —p)
for some vector u € R and some symmetric positive definite matrix A,
a > d/2, k > 0[see Fang, Kotz and Ng (1989), Section 3.3]. We have E[X] = u
and
K

E[(X—M)(X_I-L)]=mA, a>d/2 + 1.
This class includes the class of multivariate t-distributions for a = (d + k)/2
and k € N. Since (X — uYA~X(X — u) has the density

1 u\"°
-d/2,d/2-1{1 4 _) >
B(d/%,a-d/2)" " ( <) v
some calculations give
2a —d — 2
m4=d(d+2)———2a_d_4
(2a —d - 2)°

mg =d(d +2)(d + 4)

(2¢ —d — 4)(2a — d - 6)
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and thus
_6(d+2)(2a—d+2)+(2a—d—2)2
T (20 —d — 4)(2a — d — 6) ’
(2a — d - 2)°

Ag

TR B TR R

Note that m, and mg are finite if and only if 2a > d + 4 and 2a > d + 6,
respectively.

3. The limit distribution of b, ; in the nondegenerate case. As
before, assume without loss of generality that E[ X] = 0 and E[XX'] = I,. Let

(3.1) hy(x) = E[(xX)°’], xeR
We now consider the case that the kernel & figuring in (2.4) is nondegenerate,
that is,
(3.2) 0 < Var(h,).
Since
d
hy(x) = ¥ «E[W?] + 3L 22, E[W?W,| + 6 ¥ x,x,x, E[W,W,W,],
i=1 ikj i<j<k
where x = (x,...,x,), X =(W,,...,W,), we see that the weak assumption
that the support of P* has positive d-dimensional Lebesgue measure implies
that (3.2) is equivalent to the condition B, ; > 0 [see, e.g., Okamoto (1973)].

That is, we are virtually dealing with the case of positive multivariate skew-
ness in what follows. Let

-1
Tn= (g) Z h(Xjo)
1<i<j<n

be the U-statistic associated with &, and let V, be as in (2.3). From (2.2) we
deduce that

(3:3) V., = T, = op(n™?),

which in view of the well-known result on the asymptotic normality of
U-statistics with nondegenerate kernel [see, e.g., Serfling (1980), page 192],
implies that n'/%(V, — B, ;) has a nondegenerate normal limit distribution.

LeEmMMA 3.1. Under the conditions (2.2) and (3.2), we have

3 -
bi,a(Xy,..., X)) =V, - =tr(A,B) - 6a'X,, + op(n"'?),
’ ﬁ ]

where A, is given in (2.9),
(3.4) a = E[IXI?X|



DISTRIBUTION OF MULTIVARIATE SKEWNESS 1899

and
(3.5) B = E[ X,(X;X,)°X3).

Proor. In view of the asymptotic normality of vn (V, — B, ), we have to
expand b, ,(X;,..., X,) neglecting terms which are of order op(n~'/2). Using
(2.10), it follows that

1 3 3 1 2
— Y (x5 x,)Y =V, - — Y XX X)X | + op(n12
2 g( /S XJ) v, ~ tr A"n2 123 (X X;) X; op(n )

3
=V, - ﬁtr(AnB) + 0p(n~1?).

Furthermore,
1 9 _ L
715 Z (X,{S_lXj) X}S_IX = E[IXI2X] X+ OP(n—1/2) .
1 ’ J
Counting the number of symmetric cases yields the assertion. O

To state the main result of this section, let B = (b;;); ;_; . 4 with B
given in (3.5). Furthermore, let
u= (2, _3b11, _3b12, ey _3b1d’ —3b21, ceey _3bdd, _6al),

(3.6)

2
c R1+d +d’

with a given in (8.4). Define Z; to be the (1 + d? + d)-dimensional random
vector

Z; = (hl(Xi) - Bl,d’ Xi21 -1, XX, .., X Xia,
X;oXy,..., X5 - 1, X)),
where h, is given in (3.1) and X; = (Xj,,..., X;;).

(3.7)

TuEOREM 3.2. Under the conditions E[X] =0, E[XX'] = I,, E[|X|®] < «
and Var(h,(X)) > 0, we have

‘/;(bl,d(Xl"“’Xn) - Bl,d) 9 /V(O,oz),
where
o> =uE[Z,Z]]u.

Proor. Let
T, = L E[T,X;] - (n-1)B 4
i=1
be the Hajek projection of T, [Serfling (1980), page 188]. Since

2 n
Tn - Bl,d = ; '¥1 [hl(Xi) - Bl,d]
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and E[(T, — T,)?] = O(n"2), we deduce from (3.3) that V, = T + 0,(n"1/2).
Invoking Lemma 3.1 we obtain

1 n
‘/;(bl,d(Xl’ v X)) = Bra) =U = X Z; + 0p(1),
Vn 5
with u given in (3.6) and Z; in (3.7). Since Z,,..., Z, areiid. with E[Z;,] = 0,
the assertion of Theorem 3.2 follows from the multivariate central limit

theorem and the continuous mapping theorem. O

REMARK. Observe that in view of affine invariance the assertion of Theo-
rem 3.2 is more general than stated.

ExAMPLE 3.3 (The case d = 1). In the case d = 1 we have hy(x) = myx?,
where m, = E[X*], k > 1. It follows that the matrix E[Z,Z}] takes the form

Var h, Cov(h,, X% -1) Cov(hq, X)
E[Z,Z}] = | Cov(h,, X?—1) Var(X?-1) Cov(X?-1,X)
Cov(hq, X) Cov(X? - 1,X) Var( X)
[ mi(mg—m3) mams—m} mym,
=| mymg— m? m,—1 mg
mgm, mg 1

Since
u=(2, —3m3, —6m3)',
a simple calculation gives
WE[Z,Z}]u = 4m%i[mg — 6m, + 11m% — 8mgamy + Imi(m,— 1) + 9].
Letting
(1/n)7(X; — X)’

\/b_l,l = . 23/2?
((/m)zry(x, - X))

it follows that in the case m4 # 0

\/77(\/17—1,1 - ma)

1
= b —_ _—
Vn (by,1 = B1,1) ,—b1,1 + my
=45 (0, mg —6my + 11m% — 3mgmy + gmi(m, — 1) +9),

which is the result of Gastwirth and Owens (1977).



DISTRIBUTION OF MULTIVARIATE SKEWNESS 1901

4. Conclusions.

ReEMARK 4.1. We have obtained the limit behavior of Mardia’s (sample)
measure b; , of multivariate skewness. Under the weak condition that the
support of the underlying distribution has positive d-dimensional Lebesgue
measure, two possible types of limit distributions occur according as 8, ; = 0
or By 4> 0.

If B, =0, Lemma 2.1 holds true even if the distribution of X is not
elliptical. In fact, B, 4 = 0 implies that E[|IXI’X] = 0, so the proof of Lemma
2.1 carries over. Consequently, the limit law of nb, , is a weighted sum of
(possibly more than two) independent yZ2-variates. However, it seems to be
difficult to obtain closed-form expressmns for the welghts in case of nonellipti-
cal distributions satisfying B8, , =

REMARK 4.2. Obviously the test for multivariate normality rejecting the
hypothesis H, for large values of nb, , is consistent exactly against those
alternative distributions satisfying B, ; > 0. Theorem 2.2 clarifies some cu-
riosities in the power performance of the test for multivariate normality based
on multivariate skewness for the class of elliptical distributions. In Table 1 we
present the result of a Monte Carlo experiment regarding the power of the test
for multivariate normality based on b, ,. For the case d = 5, 1000 pseudoran-
dom samples of size n = 20 were taken from several elliptical distributions
considered in Section 2. The entries represent the number of significant
samples at the level o« = 0.05. These results, which at first sight might be
striking, are to be expected in view of Theorem 2.2. In the case of the
symmetric multivariate Pearson Type II distribution MPII j(x, u, A), the
weights «; and «, figuring in the limiting distribution of nb, , increase with
k, but are both always less than (the “normal” value) 6 (Example 2.4).
Consequently, the limit law of nb, ; for the Pearson Type II family is

TaBLE 1
Number of 1000 Monte Carlo samples declared significant
by the test for multinormality based on b, ; (@ = 0.05, n = 20, d = 5)

Distribution Number of significant samples
MPIIL0, p, A) 0
MPII (1, u, A) 0
MPII4(4, u, A) 12
MK (—-0.25,r,1, u, A) 222
MK, r, 1, u, A) 133
MK(1, 7,1, 1, A) 47
MK42, 7,1, 1, A) 13
MPVIIg(k, 3, u, A) 997
MPVII;(k, 5, u, A) 557

MPVII(k, 10, u, A) 166
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stochastically bounded from above by 6x34+1yq+2,6- This explains the very
poor power behavior in this case.

For the symmetric Kotz type distribution MK ;(a, r, 1, u, A), @; and a, are
decreasing functions of a (Example 2.5), which implies that the limit distribu-
tion of nb, , is stochastically decreasing with a. For a>1 (a < 1) the
asymptotic power of Mardia’s test for multivariate normality is less than
(greater than) the nominal level.

For the symmetric multivariate Pearson Type VII distribution
MPVII ,(k, a, u, A), both «; are decreasing functions of a (Example 2.6) and
approach the (‘“normal”) value 6 as a — «. For small values of a the test for
multinormality based on b, ; will have very high power due to the fact that
m, and mg are infinite (see Example 2.6).
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