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THE ASYMPTOTICS OF ROUSSEEUW’S MINIMUM VOLUME
ELLIPSOID ESTIMATOR

By LAURIE DAVIES

University of Essen

Rousseeuw’s minimum volume estimator for multivariate location and
dispersion parameters has the highest possible breakdown point for an
affine equivariant estimator. In this paper we establish that it satisfies a
local Holder condition of order 1/2 and converges weakly at the rate of
n~1/2 to a non-Gaussian distribution.

1. Introduction and notation.

1.1. Introduction. It is well known that the mean and covariance matrix
of a k-dimensional data set are highly susceptible to the influence of outliers.
Indeed, one aberrant observation is sufficient to cause arbitrarily large changes
in both estimators. This may be formalized by noticing that the finite-sample
breakdown point in the sense of Donoho and Huber (1983) is 1/n for a sample
of size n. It is of course a simple matter to obtain estimators with a breakdown
point of 1 by, for example, taking the location estimator to be the zero vector
and the dispersion estimator to be the identity matrix independently of the
data. If, however, attention is restricted to affine equivariant estimators, then
it can be shown that the breakdown point for both estimators cannot be
greater than 1/2. In the one-dimensional situation it is possible to find
M-estimators whose breakdown point is arbitrarily close to 1/2 but in higher
dimensions this no longer holds. Maronna (1976) formally defined M-estima-
tors for k-dimensional data and gave the upper bound of 1/(% + 1) for the
breakdown point. Other affine equivariant estimators such as those based on
convex peeling or classical outlier rejection also have breakdown points bounded
by 1/(k + 1) [Donoho (1982)]. Chapter 7 of Rousseeuw and Leroy (1987)
contains further examples and a discussion. The first affine equivariant esti-
mators with the highest possible breakdown point were proposed indepen-
dently by Stahel (1981) and Donoho (1982). A second such estimator was
introduced by Rousseeuw [see Rousseeuw (1986)] and is defined as follows:
Determine that ellipsoid £, of minimal volume which contains at least
[n/2] + 1 data points. The center of the ellipsoid may be taken as a location
estimator and the positive-definite symmetric matrix determining the shape of
E‘n gives an estimator for the dispersion of the data. For data points in general
position, that is, with at most %2 points on any (k2 — 1)-dimensional hyper-
plane, the finite-sample breakdown point of these estimators taken together is
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([n/2] — k + 1)/n, which is close to the theoretical upper bound of [(n — & +
1)/2]/n [see Davies (1987) and Lopuhai and Rousseeuw (1991)]. It is this
estimator which is the subject of the present paper.

The finite-sample breakdown point as a measure of the robustness of an
estimator has become very popular. Its advantages are simplicity of definition,
ease of explanation to nonstatisticians and its calculability for many interest-
ing estimators. Nevertheless, it does have the following disadvantages. It is not
a stochastic concept and has no analogue for theoretical distributions. It
cannot therefore measure the change in the estimators if the underlying
distribution of the data points is not that of the assumed model. Moreover,
the finite-sample breakdown point does not measure the effect of ‘“wobbling”
the data as, when calculating the breakdown point, all but a certain number of
the data points are held fixed. A good robust estimator should be continuous in
a suitable topology on the space of distributions, small changes in the distribu-
tion giving rise to only small changes in the estimate. It is at least theoretically
possible for an estimator to have a high finite-sample breakdown point but not
to be continuous. Continuity of an estimator was part of Hampel’s original
definition of robustness and is a property not captured by the finite-sample
breakdown point. Continuity with respect to the Prohorov metric has often
been proposed as a desirable property of a robust estimator as it incorporates
the idea of robustness against measurement inaccuracy. However, the
Prohorov metric is a very strong metric and, in particular, empirical measures
do not in general converge at the rate of n /2 in the metric to the underlying
distribution [Kersting (1978)]. Furthermore, it is difficult to calculate break-
down points in the Prohorov metric. This may be connected with the fact that
the Prohorov metric is not affine invariant. We call a metric d on the space
W(R*) of distributions on the Borel sets B(R*) of R* affine invariant if
d(@4,Q5) = d(Q,,Q,) for all affine transformations A: R* » R* and where
Q4 is defined by Q4(B) = Q(A~(B)). For affine invariant metrics and using
the general definition of the breakdown point for metrics [see Huber (1981),
pages 11-13], it is seen that the breakdown point is unaltered if the underlying
measures are subject to an affine transformation. There remains the question
as to which metric to choose. It has been suggested that one should first
choose the metric and then try to prove continuity with respect to this metric.
We take the other point of view, namely that the metric should depend on the
problem at hand and, in particular, one should work with the weakest metric
which will give the required results. We address such problems in Section 2
and introduce an affine invariant metric based on ellipsoids. As ellipsoids form
a Vapnik-Cervonenkis class of subsets of R¥, the metric is sufficiently weak to
give an n~/2 rate of convergence of empirical measure to the underlying
distribution [Pollard (1984), page 157, 21 Theorem, and page 150, 15 Equicon-
tinuity Lemma].

Not only should a good robust estimator exist at the basic model, it should
al§o exist in a neighborhood of the model and, in particular, it should exist for
empirical measures. This problem is dealt with in Section 3 where it is shown
that although an estimate may be constructed in the neighborhood of the
model it is not in general unique. This indeed would seem to be a weakness of
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the minimum volume ellipsoid estimator as it means that off the model,
although the set of possible choices will transform in an equivariant manner,
there is no guarantee that a particular choice of the estimator will do so.
Furthermore, the different choices of the estimator can give rise to different
outliers. The practical consequences of such a lack of uniqueness may not be
great, but it is helpful to be aware of the possibility.

In Section 3.2 we consider the form of the minimum volume ellipsoid for
empirical measures and are able to characterize it. Such a characterization is
of interest as it gives some insight into the problem of calculating the ellipsoid.
It corresponds to characterizations of the Hampel-Rousseeuw least median of
squares estimator [Hampel (1975) and Rousseeuw (1984)] given by Steele and
Steiger (1986). It turns out that the description of the minimum volume
ellipsoid shows that the calculation of the minimum volume ellipsoid is of
polynomial complexity in n, the sample size, but is such that a direct calcula-
tion is probably only feasible for small data sets with 2 = 2 and n < 25. For
practical purposes it may not be necessary to calculate the minimum volume
ellipsoid as any ellipsoid whose volume is considerably smaller than that of the
ellipsoid based on the sample mean and covariance matrix will give useful
information. We discuss this point in more detail below.

In Section 4 we consider the breakdown and continuity properties of the
minimum volume ellipsoid estimator in terms of the metric defined in Sec-
tion 2.

The estimator (4,,3.) of location and dispersion based on E, may be
defined as the solution to the following problem. Determine u € R* and a
symmetric positive-definite 2 X 2 matrix 3 so as to minimize det(3) = |3
subject to

(1) [z = w757 = ) < dBy(x) = -,

where now and in the future { } will denote both a set and the indicator
function of the set. If we replace the indicator function in (1) by a function p
which is symmetric, nonincreasing on R, continuous at 0 with p(0) = 1 and
has bounded support, then we obtain a whole class of estimators, the so-called
S-estimators which were first introduced by Rousseeuw and Yohai (1984) in
the context of linear regression. The minimum volume ellipsoid estimator is
thus an S-estimator. The properties of such estimators were investigated by
Davies (1987) and in particular it was shown that for sufficiently smooth
p-functions the resulting estimators are asymptotically normally distributed.
The minimum volume ellipsoid estimator is not covered by this result and
indeed there are reasons to suspect that it will have a different behaviour. If
one specializes to the case £ = 1, the minimum volume estimator reduces to
the middle and the length of the shortest half-sample. Griibel (1988) showed
that the length of the interval has an n~!/2 rate of convergence and tends
weakly to a Gaussian random variable. The middle of the shortest half-sample,
however, has an n~!/2 rate of convergence and the limiting distribution is
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nonnormal [Andrews, Bickel, Hampel, Huber, Rogers and Tukey (1972),
Rousseeuw (1984), Shorack and Wellner (1986), pages 767-771, Kim and
Pollard (1990) and Davies (1990)]. Kim and Pollard (1990) contains a general
theory of cube root asymptotics and in Section 5 we apply this to obtain the
asymptotic behavior of the minimum volume ellipsoid.

For practical applications of the minimum volume ellipsoid, we refer to
Rousseeuw and van Zomeren (1990).

1.2. Notation. We shall employ the following notation. The set of symmet-
ric strictly positive definite 2 X & matrices will be denoted by PDS(%) and the
k X k orthogonal matrices by £,. Elements of PDS(%) will be denoted by 3
and A and a diagonal matrix by A with diagonal elements A, = A;,, 1 <i <&,
which in turn will be represented by A in R*. I, will denote the identity
matrix. Determinants will be denoted by | |. The Borel sets of R* will be
denoted by B(R*) and the set of all probability measures on B(R*) by W(R*).
Lebesgue measure in R* will be denoted by m, and the Dirac measure at the
point x by &,. If @ € W(R*), then @, will denote the empirical measure
defined by n independently and identically distributed random variables with
common distribution . The set of all nondegenerate ellipsoids in R* will be
denoted by € and the ball with center x and radius r by B,(x). The Euclidean
norm of any element x of R* will be denoted by ||x].

2. Affine invariant metrics. As mentioned in Section 1.1 we consider
metrics on W(R*) which are invariant under all nonsingular affine transfor-
mations of R* into R*. The total variation metric dyy is affine invariant but is
much too strong, implying as it does a distance of 1 between any empirical
distribution and a continuous theoretical distribution. We shall work with the
weak affine invariant metrics d s and d defined as follows. We set

dpe(@1, @2) = ES};I(;,QKE) - Qz(E)l

This metric is a form of the total variation metric and does not reflect the idea
of measurement error. It could be weakened by defining a corresponding
Prohorov metric restricted to sets in € but this would not be affine invariant
as the definition of error is based on the Euclidean metric in R*. If, however,
we replace the absolute error in the definition of the Prohorov metric by a
proportional error, it is possible to retain both affine invariance and the
formalization of measurement error. For n > 0 and the ellipsoid E =
{x: (x — wT2 Wx — w) < c}, we define E" by

E" = {x: (x - p)"37Y(x — p) < cexp(n)}.
The metric d is now defined by

de(Q:,@2) = inf{n > 0: Q(E) < @(E") + n,
Qx(E) < QE") + nforall E € €}.
We note that d (@, @) < dys(Q;, @) and we have the following result.
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THEOREM 1. The metrics d s and dgs defined above are affine invariant
metrics on W(RF).

Proor. This follows from the fact that the class of ellipsoids is invariant
under affine transformations. O

One popular model in the theory of robust statistics is the gross error
model. Given a measure @ in W(R*), the mixture @, = (1 — &)@ + ¢W with
0 <e<1land W in B(RP) represents a 100e6% contamination of . The next
theorem establishes a connection between & and the distance between @,

and Q.

THEOREM 2.

sup de(Q,Q.) =&

We B(RF)

Proor. The inequality d (@, ®,) < ¢ is straightforward. In the other di-
rection, it suffices to choose W = §,, where x is some point with @({x}) = 0
and then to consider the ellipsoids B, ,,(x) as n — . @(B;,,(x)) tends to 0 as
Q({x}) = 0 whilst @,(B,,,(x)) tends to &. O

Choosing weak metrics also has another advantage which will not be
directly exploited here. As ds < dgs and the class of ellipsoids is a
Vapnik-Cervonenkis class, it follows that d(@,,Q) = O,(n~'/2). Suppose
now that a functional T is Fréchet differentiable at @ w1th respect to dg.
Then

T(Q,) - T(Q) = [1(x:Q,T) d(@, - Q) +o,(n""/?),

which immediately implies a central limit theorem for T(Q,) [Huber (1981),
pages 34-40]. As the empirical distributions in general converge at a rate
slower than n /2 in the Prohorov metric [Kersting (1978)], Fréchet differen-
tiability with respect to the Prohorov metric will not in general imply a central
limit theorem.

3. Existence of the minimum volume ellipsoid estimator.
3.1. General measures. We consider a probability measure P on B(R*)
with the following properties. P has a dens1ty function fp with respect to

Lebesgue measure of the form fp(x) = f(lx|*), where f: R,— R, is nonin-
creasing and satisfies

1= ff(”x“z) dx = kafowf(rZ)rk—l dr,

where V, = 2w*/2/(kT(k/2)) [see Stromberg (1981), pages 394 and 395].
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Let &, 0 <e <1, be fixed and suppose that 7= 7(¢) is such that
fAllxll < 7} fUlxl*) dx =1 — & and

(2) f(r) > f(+?) > f(r') forall r and r’ with r <72 <r'.
Let U be an orthogonal % X k matrix, s a point in R* and
AT = (Mg, ..., h) € (—1,0)".

For a fixed probability measure @ in B(R*), we denote by B(Q, ¢) the set of
solutions (u, A, U) of the problem of choosing u, A and U so as to minimize
[1#(1 + A;) subject to

J{lz + 27 U(x - ) = 7} dQ(x) = 1 - .
If B(Q, ¢) # T we define )
2(Q.¢) = {(1, UT(Ly + M) °U): (1,4, U) € R(Q,9))

and set {(Q, £) = @ otherwise.

If P is as above with f nonincreasing, (10) of Davies (1987) is satisfied.
Because of (2) the function f has a point of strict decrease at 72. The function
x(z) = {lul < 72}, however, does not have a point of strict decrease at 72 so
that (11) of Davies (1987) is not satisfied. Use of this is made only in Lemma
4.4 of Davies (1987), where the following weaker definition of a point of
decrease

£(u) = £(d) = €(v) and £(u) > £(v) for all u and v satisfying u <d <v

is sufficient. This weakening of (11) of Davies (1987) is also corrected in Davies
(1990), Lemma 1, where a proof is given for the one-dimensional version. This
weaker condition is satisfied because of (2) and given this it follows from
Theorem 1 of Davies (1987) that {(P,e) = {(0, I,)}. We now show that for
measures @ not too far from P in the metric d the problem (@, ¢) has
solutions which lie in a compact set of R* X PDS(%). On denoting the open ball
{Q: dx(P, Q) < n} by bs(P,n), we have the following result.

THEOREM 3. If m, < min(e, 1 — ¢), then R(Q, ) # & for all Q in bs(P, 7).
Furthermore, each 2(Q, €) is compact and there exists a compact subset K(n,)
of R* x PDS(k) such that 2(Q, ¢) C K for all Q in bg(P, 7).

Proor. We defer the proof to the Appendix. O

It is easy to show that in any neighbourhood of P there exist distributions
Q such that (@, ¢) contains more than one element and for which no affine
equivariant choice can be made. This is one of the main weaknesses of the
minimum volume ellipsoid estimator but its importance should not be exagger-
atéd. For @ close to P all choices will be close together and for empirical
measures the minimum volume ellipsoid will, in general, be unique. A unique
choice based on some ordering, for example, the lexographical ordering can be
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made and for such a choice we define the minimum volume ellipsoid esti-
mator Tyyg at @ to be this element of (@, ¢). With this convention Tyryg:
bs(P,my) — R* X PDS(k) is well defined.

3.2. Empirical measures. Let (X;)] be i.i.d. random variables defined on a
probability space (2, #, W) and with a common distribution P as in Section
3.1. We now consider the minimum volume ellipsoid estimator evaluated at f’
and show that if n > % + 1, then ﬁ(p €) contains exactly one point w1th
probability 1. We require the following lemma.

LemMa 1. Let (x;)} with n > k + 1 be points in R* with the property that
no more than k such points lie on any hyperplane of dimension less than k.
Then the following hold:

(@) There exists a unique ellipsoid E(u ., 30y) = {x: (x — )T 33Mx — pyy) <
1} which contains the (x j){‘ and such that |3,,| < |3| for any other ellipsoid
E(p, ) which contains the (x;)7.

(b) At least k + 1 of the (x;)7 lie on the surface of E(wyy, 33) and E(uyy, 25)
is the minimum volume ellipsoid for the points on its surface.

ProoF. The statement of the lemma together with indications of its proof
may be found in Silverman and Titterington (1980), Titterington (1975) and
Sibson (1972). O

THEOREM 4. Suppose n >k + 1 and (X,)7 are i.i.d. random variables
with common distribution P. Then the following hold:

(@) R(P,, &) contains exactly one element (fi,,, 3 ) with probability 1.

M) {x: (x — 4,)72;%x — fi,) < 7% is the minimal covering ellipsoid for the
data points (X J’."){V which lie on its surface.

(© k+1<N < k(k + 3)/2 with probability 1.

PrROOF. An ellipsoid in R* is uniquely determined by %(% + 3)/2 points on
its surface. Using this and the fact that P has a Lebesgue density, it follows
that with probability 1 no more than k(% + 3)/2 data points lie on the surface
of any ellipsoid. Parts (b) and (c) of the theorem follow now from Lemma 1 on
noting that the conditions of that lemma are satisfied with probability 1.
Uniqueness will follow if we can show that minimum covering ellipsoids with
different surface points have different volumes. As the X are assumed to have
a density, most readers will accept this without any qualms and we therefore
defer the proof of the uniqueness part of the theorem to the Appendix.

4. Breakdown and continuity.

1. Breakdown. We define the breakdown point eyyg(P, d ) of the mini-
mum volume estimator Ty at P as the infimum over all n > 0 with the
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following property. Either there exists a @ € bg(P, n) with R(Q, ) = & or ‘

k
sup (sup{ll,u,ll + X (A + AJ-‘I): (v, A,U) € B(Q, Tl)}) =
Qebe(P,n) 1 A

The estimator Ty is therefore considered to have broken down if there are
solutions with an arbitrarily large mean vector or if the eigenvalues of the
dispersion matrix become arbitrarily small or arbitrarily large.

THEOREM 5.
eﬂ];{VE(P’ d@) = min(E, 1 - 8).

Proor. Theorem 3 gives ejyp(P,ds) > min(e, 1 — ¢). In the opposite di-
rection we put @, = (1 — n)P + né,. If n > ¢, then x € E for any ellipsoid E
with @ (E) > 1 — ¢ and breakdown is achieved by letling x tend to «. This
implies eMVE(P de) <. If now n > (1 — ¢), then B(Q,, ¢) has the degenerate
solution E = {x} and again Ty has broken down 1mply1ng evve(P,dg) <
l1—-¢0

4.2. Continuity. As mentioned in Section 1.1 a good robust estimator
should not only have a high breakdown point but should also be continuous.
We prove below, Theorems 7 and 8, that the TMVE([P’ ) converges at a rate of

n~ % to Towg(P). If Tyyg were locally Lipschitz at P, we would have

|TMVE( ) TMVE(P)| = Cd@ )
for some constant ¢ depending on P. As d (P, P) = O (n~'2) it would follow

that Tyye(®,) converges at a rate of n=2/2 to TMVE(P) This argument shows
that Tyyg cannot be Lipschitz continuous at P. A simple extension of the
argument, using the results of Theorems 7 and 8, shows that Ty can at best
satisfy a local Holder condition of order 2/3 at P. We now show that in fact it
satisfies a Holder condition of order 1/2 and that 1/2 is the correct order.

LEMMA 2.

[k + )0 - < 7y ap
k

= [{l=ll <7} dP + co(zAj - %lmlz)

1

+(eqllAll® + cgllul®)(1 + o(1)) + O

E\2
[£4) |
1

where the constants c, to c, are as follows:

co = V,7*f(7?) > 0,

¢, = Vir* 2D (22) /(R + 2) <0,

cy = kakf(l)(*rz) <0,

V, = 27*/2/(kT(k/2)).
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Proor. The claims of the lemma follow from a standard Taylor expan-
sion. O

THEOREM 6. Let Tyyg be as above and suppose that f is continuously
differentiable at % with f™(7?) < 0. Then Tyyg satisfies an exact Hélder
condition of order 1/2 locally at P.

Proor. We write Tywp(Q) = (u, UT(I, + A)2U). If 7> d(P,Q) we
have

1—z+n=[{lxl <7ry(n)}dP < [{lxll < 7y(n)e"} dQ +n

with y(n) = 1 + O(n) as P has a bounded density function. This implies

k
(3) 1:[(1+)tj)51 + O0(ds(P,Q)).
We have

1-¢< [{l(Z,+ 1) U(x - w)|<7)dQ
(4)
< f{”(Ik +A) U - )| < Te*'} dP + 7.
Let (,)7 be a sequence such that lim, ., @, = P and choose a subsequence,

which we continue to denote by (Q,)7, such that lim, . (u,,A,,U,) =
(u*, A*, U*). Then

1-e< [{I(5+ )" 'U*(x - w)| < 7} dP,

giving [1%(1 + X*) > 1. This together with (3) implies [1#(1 + A%) = 1 and the

uniqueness of Tyyg(P) implies (u*, A*) = (0, 0). As this holds for every subse-

quence lim, _,, Tyvi(®@,) = Tyye(P), showing that Ty is continuous at P.
From (3) and A; = o(1), 1 <j <k, as d (P, Q) — 0, we may deduce

k
(5) YA, - %uw < 0(de(P,Q)) + o(lIAI?).
1

In the other direction we note that (4) implies
1-e< [{l(5+ 2)7U(x - w) <7} &P + O(m).
From Lemma 2 we deduce

J{lcz + 8 u(x - )| < 7} aP

k 1
= f{llxll <7}dP + cO(ZAJ- - EHAM2

1

(1 +0(1))

= (callAl® + callul®)(1 + o(1)).
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From this we conclude

—(eqllAl? + egllul®)(1 + o(1))

k
< 0(de(P,Q)) + CO(ZAj - %IIAHZ)(I +0o(1)).

As ¢, and c, are negative and ¢, positive, this together with (5) yields
Al + llull® < 0(d 4(P, @) and hence

I Tvve(@) — Tvve(P) || = O(ds(P,Q)"%).

To finish the proof of the theorem, we must show that for all » sufficiently
small there exists a measure @, with dg(P,Q,) <n and ||T\wr(®,) —
Tauve(P)ll = An'/2 for some fixed constant A > 0. To ease the notation, we
consider the one-dimensional case & = 1 only. The general case follows from
this. We set @, = (1 — n)P + n8_,, for some a. The proof of Theorem 5
shows that for a + 0, d (P, Q,) = n. We write F(u) = [*_ f(v®) dv and define
a=almby F(r +a(n) —F(—-1+an) =10 —-e—n)/Q1—n)forn <1—e¢.
A Taylor expansion shows that a(n)? = An(1 + o(1)) with A =
—1/@27fD(r?) > 0. As f is nonincreasing and strictly decreasing at 72, it
follows that the shortest interval [a, b] with @,([a,b]) > 1 — ¢ is given by
[a,b]l =[—7 + a(n), 7 + a(n)]. The midpoint of the interval is a(7) and hence
IT\ve(Q,) — Tyve(Pll = An'/?(1 + 0(1)), which completes the proof of the
theorem. O

5. Weak convergence. We now consider the empirical process P (E)
indexed by the ellipsoids E € €. As set of ellipsoids forms a
Vapnik—Cervonenkis class, we have dg(P,P,) < dge(P, P,) = 0,(n 1),
which together with Theorem 6 gives lITMVE(P ) = Tmve(P)|| = O (n'l/ 1). We
now show that this result can be improved to |Tyyg(P,) — TMVE(P)H
O ( n—1/3)

We parametrize the ellipsoids as follows. We write

E(A,1,U,v) = {x: (I, + 8)"'Ux - w)| < (1 +v))

with —1 <v <, [T{(1 + A;) = 1 and the convention that A, is defined in
terms of Ay,.. /\k 1- This Tatter equality implies that for small A, TfA; =
IAl?/2 + O(ll/\||3) Given an ellipsoid E, the values of A and u are umquely
determined but the orthogonal matrix U is not. The weak convergence results
we prove below are for processes indexed by ellipsoids and are to be interpreted
in this sense.

We set 8 = (A, 1, U, v) and write E for the elhps01d which is a solution of
the emplrlca.l problem, E, = E(, ) =EA,, 4, U, 0,). We note that
(An, d,,0,) = 0 almost surely because of Theorem 6 and, as € is a
Vapnik- Cervonenkls class,

V.(E) = Vn(P,(E) - P(E)) = V(E), E € G,
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where V is a continuous bounded Gaussian process on €. From Lemma 2 we
have

J{lz + 8 'U(x ~ w)| < 7} aP

= P({llxll < 7}) + cov + cyllull® + c5llAll® + o(ll6l*) + O(v?)

with ¢; =¢c; —¢y/2 < 0.

(6)

TuEOREM 7. Let 0, and V be as above. Then Vn, = — V(B _(0))/c,.

PrOOF. Arguing as in Kim and Pollard (1990), we obtain
1

1-e<B(B,)=P(B,)+

V.(E,)

N 1

= P(En) \/_‘ n(B (0)) + 0 1/;1‘ )

From Lemmas 4 and 8 of Davies (1987), it follows that

P(8,) < P(E(A,,0,0,,0,)) < P(E(0,0,0,,5,)) = 1 — & + cob,(1 + 0,(1))

and hence —cqVn 0,(1 + 0,(1)) < V,(B.(0)) + 0,(1).
In the other direction We note that as E minimizes the volume of the
ellipsoid,

R 1 1
1-&>P,(E0,0,1,,0,)) = P(E(0,0,1,,3,)) + ‘/—’T-Vn(B,(O)) +o0, ﬁ)

=1—-¢+ coﬁn(l + op(l)) + %Vn(BT(O)) + op(‘/—i_-)

and hence —coVn 0,(1 + 0,(1)) = V,(B,(0)) + 0,(1). The two inequalities for 0,
now imply the theorem. O

For %k = 1 this is contained in a result of Griibel (1988) and, in the context
of linear regression, Davies (1990). .
The asymptotic behavior of the ellipsoid E(An, a,,U,,0,) is covered by the

next theorem. In order to state it we write E(An, 15 l?'m 0,) = E(én, Ay, 0,),
where

=0, U,

e

n

and

E(én,ﬁn,an) = {x: "(Ik + é;)'l(x - #)“ <r(1+ v)}.
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We write

X = {E: E is a symmetric £ X %k matrix

k
with eigenvalues A = (A j)f satisfying Y A, = 0).
1

Any symmetric matrix 2 with eigenvalues A may be written in the form
(7 E =UTAU,
where U is an orthogonal matrix.

TueoRrEM 8. Let (X,)] be independently and identically distributed ran-
dom variables with common distribution P as given above. Then
(nY3E,, n'/3%0,) = (8%, u*), where (B*,u*) maximizes Z(5, ) + collpll® +

c3I|AI| and Z is a nondegenerate zero-mean continuous Gaussian process
defined on {(E, u): E € X, u € R*} with covariance structure given by

1 A v
=f(7?) ‘13{1(1) ;mp(E(aE,au,O)E(aE,a,ﬁ,,O) — E(aE, an,0)B_(0)

~E(aH, ait,0)B,(0) + B,(0)).
Furthermore, the process Z(E, u) is independent of V(B _(0)) of Theorem 1.
Proor. The proof is based on the results and arguments of Kim and

Pollard (1990). We write 8 = (E, u, v) and define a norm by [16]| = [|1E|| + ||lull +
lv]. We set

Fg = sup{| E(E, u,v) — E(0,0,v)|: IEll + llull + lvl < R}

and consider the process P (E(E, u,v) — E(0, 0, v)). The conditions of Lemma
4.1 of Kim and Pollard (1990) are satisfied and we may deduce that for any
n >0,

P,(E(E,r,v)) — E(0,0,v)) < P(E(E,p,v) — E(0,0,v))
+ ”’7(”/\”2 + el + v?) + 0,(n~%3).

As P(EE,, i, 0,) > P(E©0,0,0,) and 9, = 0,(n"?), it follows that
A ||+|Ip,n||—0(n 1/3) where we have used (6) We set D(E,u,v) =
E(._,, u,U) — E(O 0,v) and consider the rescaled process

Z,(E,p,v) = n*3(P,(D(n 138, n 3, n"/?v))
—P(D(n"Y?E,n""3u, n"1%v))).

As the ellipsoids form a Vapnik-Cervonenkis class, one may check along the
lines of Lemma 4.6 of Kim and Pollard (1990) that the process Z,(E, u, v)
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satisfies the stochastic equicontinuity condition for weak convergence. It re-
mains to check that the finite-dimensional distributions converge. A short
calculation shows that it is sufficient to prove the existence of

(8) lim %P(lE(aE,au,O) - E(aé,aﬁ,0)|).

Direct calculations give
P(E(aE,a,u,,O) AN E(aé,a/l,O))
= [F(I=®){[| (L, + aB) "'(x - aw)| < 7)
X{“(Ik + a,".:’:)_l(x - a/l)" > T}‘ dx
= (f(7®) +o(1))m,({lx — ayll < 7 + O(a?)}

X{(I, + ad)x| > 7 + O(a®)}),

where y = U(u — i) and A = OUTA — AUUT, m, is Lebesgue measure in R*
and we have used the representation (7). The set {|lx — ayll < 7 + O(a?)}
(I, + aA)x|l > 7 + O(@?)} may be written as the sum of sets of the form

{x: (c® - llxk_lllz)l/2 +aH(x*7 1 y,A) + O(a?) <x,
< (¢ = 1% + aHy(x*71,y,4) + 0(a?))

for some functions H; and H,, where x*~! = (x,,...,x,_;). The Lebesgue
measure of such a set is given by a/+-1, . ,(Hy — H;)dm,,_; + O(a?) and this
implies the existence of the limit in (8). Furthermore, a direct calculation
shows that E(Z(E,u) — Z(E,1))?) = 0 if and only if E=E and u = .
Combining all this, we obtain

B(E(n™%n" o, n20)) = n”2egllul® + c3llAI* + Z,(5, 1))
+(B.(E(0,0,0)) ~ P(E(0,0,0)))
+1—¢+cov/Vn +0,(n"%%),

where Z, = Z and vn (P,(E(0,0,0)) — P(E(0,0,0)) = V(B_(0)). Again fol-

lowing the arguments in Kim and Pollard (1990) on the uniqueness of argmax

and the weak convergence to argmax, we obtain the first part of the theorem.
To prove the last claim, we note that

E(V(B.(0))Z(E, 1))
= lim n'/$(P(B.(0) N E(n~'3E,n""%u,0)))

— P(B,(0)) — P(B,(0))P(E(n~*?E,n"%3%,0) + P(B,(0))*).
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From Lemma 2 we obtain P(E(n~3E,n"3u,0)) = P(B_(0) + O(n"1/3)
and hence it is sufficient to prove that

lim 71| P(B,(0) N E(n~"/°E,n""*%,0)) — P(B(0))| = 0.

This, however, follows from E(n~Y3E,n"134,0) o {x: |lxll < 7 — O(n~=1/3)}
and hence

P(B,(0) N E(n"'/°8,n""/%,0)) = P(B,(0)) ~ O(n"'?),

which proves the theorem. O

APPENDIX

ProorF oF THEOREM 3. As 1 —¢ +ny < 1it follows from the properties of
P that for some 7/, 0 < 7' < oo,

1-c+m< [{lzll <) dP < [(llxll < 7e™)} dQ + mg

and hence f{llx|l < e} d@ > 1 — . If we set m—

€(Q,¢) = {(,L,)\, U): [{l(Z+ 2) Uz - w)] <7} dQ(x) = 1 - g},

we have C(Q,e) # @ and that we may therefore restrict the search
for elements of PR(Q,e) to the set C*(Q,e) = {(u, A, U): (un,A,U) €
€(Q, e)[15(1 + A;) <y} for some y > 0. If, for some u, A and U, 1 — & <
KT, + A)~*U(x — pll < 7} dQ(x), the definition of d ¢ gives

1-e< [{|(Z, +8)7'U - w)| < 7em) dP + 7,
(7)
= [{lcz + 87 (x = )| < mem} dP + mg

with @ = Un. If now A; = —1 for some i or [lull = « the integral on the
right-hand side of (7) converges to 0, giving 1 — ¢ < n,. Thus if 9, <1 —,
||l must be bounded above and the A; must be bounded away from —1.

The fact that 2(Q, ¢) is closed follows from a simple argument using the
upper semicontinuity of the function r — {|r| < 7}. O

Proor oF THEOREM 4(a). To prove uniqueness, it remains to show that for
any two different sets (X;); . 5 and (X)), c g, of sizes r and r’ with k + 1 <,
r' < k(k + 3)/2 the minimal covering ellipsoids which pass through these
points have different volumes with probability 1. Without loss of generality we
may suppose that S, ={1,...,r}, 1€ S., S, US. ={1,...,p} with p > r.

‘For any points (x )f with the property that no £ + 1 lie on a hyperplane of
dimension less than k, we denote by (u((x;);cs), 3((x;);cs)) the
parametrization of the minimal covering ellipsoid through the points (x;); c s,
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Using the separability of the space of & X & matrices, it is not difficult to show
that u((x;);c g ) and 3((x;); c 5,) are Borel measurable functions of (x;);c g -

As the random variables (X;) are independently and identically dis-
tributed, a simple conditioning argument will show that |Z((X));cg)l #
I2((X,);cs) almost surely if we can prove P({x;: |2((xj)jes,3| =
IZ((x;);c s, ) = 0. As 1 & S, it follows that it is sufficient to prove P({x;:
|2((xj){)| =v}) = Oforall v € R,. Suppose then that P({x;: IE((xj){)l =v)>0
and let ¥ = (1/r — DX5x;. Then ¥ lies in the interior of the minimal covering
ellipsoid and hence so does the point x, = (1 — a)x; + aX for 0 <a < 1. On
writing V(x,, ..., x,) = {x;:|2((x;)))| = v} it follows from the fact that P has a
continuous density f that there exists a 8, 0 < § < 1, such that

(8) P({x;: (1 —a)x; + aX € V(xy,...,%,)}) >0

for all @, 0 <a <8. As the minimal covering ellipsoid is unique and
(1 — a)x; + ax lies inside the minimal covering ellipsoid for (1 — a')x; +
a'X, Xy, ...,%,, for 0 <o <a <34, it follows that the sets {x;: (1 — @)x; + aX
€ V(x,, ..., x,)} are disjoint for different a’s, 0 < @ < 8. This implies that not
all such sets can have positive probability which contradicts (8). We may
therefore conclude that with probability 1 the minimal covering ellipsoids for
different subsets are different, proving the theorem. O

Acknowledgments. I would like to acknowledge the help of two referees
and an Associate Editor who found several mistakes in the first version of the
paper and whose comments led to a considerable improvement.

Note added in proof. After the final version of the article had been
accepted for publication the article Nolan (1991) appeared. Nolan also consid-
ers the asymptotics of the minimum volume ellipsoid as described by Theorem
8 of the present paper. Her work is motivated by problems of modality in high
dimensions. )
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