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TESTING GOODNESS-OF-FIT IN REGRESSION
VIA ORDER SELECTION CRITERIA

By R. L. EUBANK' AND JEFFREY D. HART?
Texas A& M University

A new test is derived for the hypothesis that a regression function has
a prescribed parametric form. Unlike many recent proposals, this test does
not depend on arbitrarily chosen smoothing parameters. In fact, the test
statistic is itself a smoothing parameter which is selected to minimize an
estimated risk function. The exact distribution of the test statistic is
obtained when the error terms in the regression model are Gaussian, while
the large sample distribution is derived for more general settings. It is
shown that the proposed test is consistent against fixed alternatives and
can detect local alternatives that converge to the null hypothesis at the rate
1/Vn , where n is the sample size. More importantly, the test is shown by
example to have an ability to adapt to the alternative at hand.

1. Introduction. When one fits a parametric model to data it is always
advisable to test the goodness-of-fit of the postulated model. Parametric
goodness-of-fit tests are efficient in detecting lack of fit in certain specified
directions, but are inconsistent against many alternatives [see, e.g., Eubank
and Spiegelman (1990)]. In contrast, many nonparametric tests are consistent
against virtually every alternative, but have poor power against all but the
most innocent ones [see, e.g., Durbin and Knott (1972) and Eubank and
LaRiccia (1990)]. In this paper we introduce and analyze a new goodness-of-fit
test that adapts to the alternative at hand, and thereby tends to have good
power against a broad variety of alternatives. The test is based on nonparamet-
ric regression methodology, but requires no arbitrary choice of smoothing
parameters.

The setting we shall consider may be described as follows. The observed
data (x,,Y)),...,(x,,Y,) obey the regression model

Y, =2g(x,) +e¢, Jj=1,...,n,

where 0 < x; <x, < -+ <x, <1 are fixed design points, the ¢;’s are inde-
pendent and identically distributed random variables with E(e;) = 0 and
Var(e,) = 0% < =, and g is a function that is essentially arbitrary. We wish to
test a null hypothesis of the form

(1.1) Hy: g(x) = ) Bjt;(x) VYxe[0,1],

Jj=1
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where the ¢,’s are known functions and the B,’s are unknown constants. The
alternative hypothesis is

p

(1.2) H,: g(x) = X Bjt;(x) +f(x) Vaxe[0,1],

j=1

where f is not a linear combination of ¢,,...,¢,.

Hirdle and Mammen (1990) and Eubank and Spiegelman (1990) have
proposed one means of testing (1.1). In their tests, least squares is used to
estimate the parametric null model, and then residuals from the least-squares
estimate are smoothed, yielding an estimator 7 » (with smoothing parameter k)
of f in (1.2). The test statistic is a standardized version of ©7_, fk (x;), which
tends to be moderate under H, and large under H,. A bothersome aspect of
these procedures is that one must fix the smoothing parameter % in order to
carry out the test. Corresponding to each % is a different test of H, and it is
not clear how % should be chosen in practice.

A novel feature of the test proposed in this paper is that it uses a data-driven
smoothing parameter as the test statistic. This eliminates the arbitrariness of
fixing a smoothing parameter as in the procedures discussed above. In the next

section we define estimates a;,, j = 1,...,n — p, of Fourier coefficients a;
Jj=1,2,..., of the function f in H The null hypothesis (1.1) is then
equlvalent to a; = O for all j. Our test statistic is £, the maximizer of r(k)
over £ =0,1,. — p, where r(0) =
k kca&2
(13) r(k) Z - ’ k=1>"~>n_p’
J=1 n

&2 is any consistent estimator of o2, and ¢, > 1 is a constant depending on

the desired level a of the test. If H, is true, meaning that all the a’s are 0,
then r(k) is likely to be maximized at zero. Thus, the null hypothesis is
rejected at level « if and only if £ > 1.

The statistic £ may be regarded as the data-driven number of terms in a
truncated Fourier series estimator of f. In fact, if ¢, = 2, then maximizing
r(k) is equivalent to minimizing an approximately unbiased estimator of the
risk function

1 2
R(e) =B\ L (fix) ~ 1)) |,

where fk is a Fourier series estimator of f with % terms. Smoothing
parameter selectors based on criteria akin to r(%k) have been studied by Rice
(1984) and Hart (1985).

Those familiar with time series will recognize a similarity between r(k) and
the various AIC criteria proposed for selecting the order of an autoregression
[see, e.g., Akaike (1969) and Bhansali and Downham (1977)]. In fact, part of
our asyiptotic distribution theory for £ parallels Shibata’s (1976) theory for
AIC. However, unlike the time series setting, we are able to develop our theory
without the need for a fixed upper bound on £.
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The remainder of the paper is organized as follows. In Section 2 the test is
defined and some examples of its applicability are discussed. Section 2 also
provides the numerical values of ¢, in (1.3) that yield tests of various levels.
Section 3 details the distribution of £ under the null hypothesis. The power of
the test for both fixed and local alternatives is investigated in Section 4, where
it is shown that the test can detect local alternatives converging to the null at
the rate 1/vVn . Examples are also provided which demonstrate that our test
has desirable power properties against “high frequency” alternatives. Proofs
of all results are collected in Section 5.

2. The proposed test. Let «;,(:), j = 1,...,n — p, be functions on [0, 1]
that satisfy the orthogonality conditions
Z ujn(xr)uln(xr)=n6jl’ j,l=1,...,n—p,
r=1

and
n

X ou,(x)8(x,) =0, j=1,...,n—-p,l=1,...,p.
r=1
Also assume that the n X p matrix T = {¢;(x,)} is of full column rank and
define the sample ‘“Fourier” coefficients

1 n
(21) ajn = ; Z ujn(xr)yr'
r=1

To test H, we consider fitting the alternative “model”

p k
(2.2) yr = Z Bjtj(xr) + Z ajujn(xr) + €., r= 1,...,n.

J=1 Jj=1

For this purpose let y be the vector of responses, and define b, =
(by,,...,b,,) =(T"T)"'T"y, which is the least-squares estimator of B =
(By, ..., B,) in (1.1). Assuming for the moment that ¢ is known, an estimate
of the risk or mean-squared error associated with (2.2) is

12 P k ° 20%(p +k)
=) (y, - ¥ bty () - T a,-nujn<x,>) s
23 /o S
1 P k 20%p +k
-2 L |- Eoantn] - Bt D
-1 j=1 j=1 n

[see, e.g., Rice (1984)]. An indication that H, is false is provided if (2.3) is
minimized by any value of % other than zero.
Minimizing (2.3) is equivalent to maximizing
202k

k
(2.4) Eaf-n— —
Jj=1
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Therefore, the preceding discussion suggests using the maximizer % of (2.4) to
test H,. To achieve a prescribed level of significance «, one can use the test

(2.5) Reject H, if £ > k,,

where %, is the upper a percentage point for k. It can be shown that
P(k = 0) - 0.71 as n — «. Therefore, if one desires a test with a < 0.29, k,
must exceed 1. Unfortunately, test (2.5) is not consistent against alternatives
such as (2.2) with 1 < £ < k. This follows from the fact that the asymptotic
distribution of % has support %, 2 + 1,... when (2.2) holds with a, # 0. (The
proof of this result is much like that of our Theorem 3.1.)

To avoid the problems with test (2.5) we propose using as test statistic the
maximizer £ of

0, k=0,

_ ] &k &2,k
(2.6) r(k) =)y g2, - - k=1,...,n—p,
j=1

n )
where &% is any consistent estimator of o¢? and ¢, is chosen so that
P(k=0)=1—-a under H,. For 6% we can use the estimators of Gasser,
Sroka and Jennen-Steinmetz (1986) or Hall, Kay and Titterington (1990). The
proposed test is formally given by

(2.7) Reject H, if £ > 1.

Using the rejection region £ > 1 insures that our test will be consistent under
very general conditions whenever model (2.2) holds with at least one a; # 0
(see Section 4).

It is important to note that one need not maximize (2.6) to obtain %. One
can alternatively minimize (2.3) with 2 replaced by ¢, and o by &. Since
estimation is conducted by least squares, the u;, and a;, need not be
computed explicitly in this expression. Instead the sum of squared residuals
term can be computed using any convenient basis that has the same linear
span as ty, ..., tp Uy, .oy Upy, (see, e.g., Example 2). This can lead to consider-
able computational savings.

An attractive feature of the test (2.6) is that it leads immediately to a point
estimate of the regression function in‘the event that H, is rejected. The data
analyst generally desires such an estimate if there is reason to believe the null

model is inadequate. In our setting, a natural estimator of g(x) is
p k
é(x) = Z bjntj(x) + Z ajnujn(x)‘
j=1 j=1

When the null hypothesis is not rejected g(x) is simply the least-squares

estimate of the null model. Otherwise, § is a nonparametric estimate of the
regression curve g.
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TABLE 1
Values of ¢, which make test (2.7) asymptotically valid at level o

o 0.01 0.05 0.10 0.20 0.29

c 6.74 4.18 3.22 2.38 2

a

Note: When c,, = 2, test (2.7) is using the £ which minimizes the estimated risk (2.3).

A good approximation to ¢, in (2.6) is that value of ¢ for which

(2.8) 1—a=exp{—§ M},

j=1 J

where X, is a random variable having the chi-squared distribution with j
degrees of freedom. More precisely, if c, is taken to be the solution of (2.8),
then P(E=0) > 1—a as n - », at least under the conditions of Theorem
3.1. Equation (2.8) is a consequence of Theorem 3.1 and random walk theory
in Spitzer (1956). Approximate solutions of (2.8) for various choices of a are
given in Table 1. It is worth noting that when ¢, = 2, the asymptotic level of
test (2.7) is about 0.29. This is the level which results from using test (2.7),
rather than (2.5), with £ the minimizer of the estimated risk (2.3).

We conclude this section with two examples of settings where our test is
applicable.

ExampLE 1 (Testing for no effect). A simple case of (1.1) corresponds to
testing for no effect in nonparametric regression [Raz (1990)]. In this setting
the null hypothesis is g(-) =8 in (1.1), which is to be tested against the
alternative that g is nonconstant.

This model corresponds to p = 1, ¢#,(:) = 1 and, if the design points are
x,=(r—1/2)/n,r=1,...,n, we may choose u;,(x) = u;(x) = V2 cos(mrjx)
for all » and j > 1. Thus, in this case, the choice of % is tantamount to
selecting the order of a truncated Fourier series estimator for the regression
function.

ExampLE 2 (Testing linearity). Suppose now that we wish to assess the

goodness-of-fit of a linear model y, =' B, + B1x, + &,, r=1,...,n. We could
choose tl(x) = 1, ¢,(x) = x and select the u ;, by orthonormahzmg the polyno-
mials 1, x,x2% ... over the design points. The choice of £ would then corre-

spond to the selectlon of a polynomial regression estimator for g in (1.2). This
basic approach can also be extended to assess the goodness-of-fit of a general
polynomial model.

This example is an illustration of a case where we need not actually
compute the u;, or a;,. Equivalently, one can minimize (2.3) with 2 replaced
by ¢, and o by & and the residuals computed by regression using any
polynomial basis such as 1,¢,...,t*.
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3. Distribution theory. In this section we examine the distribution
theory for £ under the null model. We begin by dealing with the important
special case when the errors in (1.1) are normal.

Let go=1and p,=1,and, fors=1,...,n — p, set
s 1 1—P()(r2>car) ”
=X I ;{ }
,,...,00ec, \r=1 Y- r
and

I
Ny

Ps

r=1 Gr' r

Ro

P(x%> c,r) r'
64,..., 6,)€C, ’

where x? denotes a chi-squared random variable with r degrees of freedom
and C; is the set of all s-tuples (6,,...,6,) of integers such that 6, +
20, + -+ +s60, = s. We then have the following result.

ProposITION 3.1. Assume the ¢ ; are iid normal random variables in (1.1)
and that o® is known and used in place of &% in (2.6). Then

(3.1) P(k=Fk)=piq,_p s> k=0,1,...,n —p.

To appreciate how (3 1) is derived, define the random walk {S,: £ = 0,1, ...}
by So=0 and S, = *1(Y c,), k=1,2,..., where Y,,Y,,... are 11d
random variables with the X2 distribution. Then Proposition 3.1 follows
immediately from Spitzer (1956) upon observmg that, when ¢4, ..., ¢, are iid
N(@©,0? and & = o, nr(k)/o? k = 0,. — p, have the same distribution as
Sos-- -5 S,_p- As aresult of Propos1t10n 3 1 it is easy to determine the limiting

distributions of £ when the errors are normal and ¢ is known. The next
result, which assumes that o is estimated, says that this same large sample
distribution holds as long as the errors have four moments.

THEOREM 3.1.  Assume that & —, o, c, is the solution of (2.8), the g; in
(1.1) are iid with mean zero and finite fourth moments, and

max sup|u;,(x)| < C
l<j<n-p «x

for some constant C that is independent of n. Then,

lim P(k=%)=p,(1-a), k=0,1,2,....

n—ow

Proposition 3.1 and Theorem 3.1 bear similarities to Theorem 1 of Shibata
(1976). There are two essential differences. The first is the use of ¢, rather
than 2 in our criterion (2.6). The choice of c, is used to insure that the test
(2.7) has the desired level of significance. The other difference is that we do not
restrict maximization of r(%) to some bounded subset of the integers. Instead,
the maximization region is taken to be as large as possible and grows at the
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same rate as the sample size. This result contrasts not only with Shibata’s
work, but also with optimality results as in Rice (1984) which place artificial
bounds on data-driven smoothing parameters. In this regard Theorem 3.1 is
the strongest result of its kind of which we are aware.

Concerning the conditions of Theorem 3.1 we note that consistent estima-
tors of o2 are easy to construct [Gasser, Sroka and Jennen-Steinmetz (1986)
and Hall, Kay and Titterington (1990)]. The boundedness condition on the « ;,
is satisfied by the functions in Example 1 but not by those in Example 2.

4. Power of the proposed test. In this section we focus on the power of
our test against both fixed and local alternatives. Conditions are established
which guarantee the consistency of our test for a fixed alternative. In addition,
we show that our test can detect local alternatives of the form

g(x) = Jélﬁjtj(x) + —‘/%fo(x),

as n — «. Examples are also provided which demonstrate how the test can
adapt to the particular alternative at hand.

Concerning power of the test against fixed alternatives we have the follow-
ing theorem.

THEOREM 4.1. Define, forj=1,...,n —p, a,, =n"'L7_, fx)u;(x,) =
E(a;,). Assume that the &;s are iid with finite variance o, that
SUp; < < U, (%)l = o(Vn) for each fixed j and that there exists a j such that
either liminf, . «;, > 0 or limsup, . a;, <O0. Then the power of the test

(2.7) tends to 1 as n — x,

The conditions in the theorem appear to be the weakest that insure
consistency. They may be shown to hold under various conditions on f, the
design, and the u;,, as we now illustrate.

ExampPLE 1 (Continued). Assume that we are in the setting of Example 1
and that x; =x,, = (j — 1/2)/n. Then, a;, - a; = V2 [} f(x)cos(ar jx) dx, for
each j=1,2,..., if f is Riemann integrable. So the conditions of Theorem
4.1 are satisfied provided that 0 < [} f%(x) dx < .

ExamPLE 2 (Continued). Assume that the x; = x;, in Example 2 are the
n-tiles of a positive, continuous density % on [0, 1]. Let L,(k) be the set of
all functions g such that [jg%(#)h(¢)dt < » with the inner product
Jag(t)g(t)h(t)dt for g, g, € Ly(h). Now construct orthogonal polynomials
Uy, Uy, ... by orthonormalizing the power functions with respect to this inner
product.

Arguments similar to those in Jayasuriya (1990) can be used to show that, if
f is Riemann integrable, |a;, — a;| = O(n~"Y), for any fixed j, where a; =
fou ;x) f(x)h(x)dx. An induction argument can be employed to establish
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that, for each j, sup,lu,,(x)| = O(1) in this case. Thus the conditions of the
theorem are satisfied if f € L,(h).

The next result establishes that our test can detect alternatives which differ
from the null by the order 1/Vn .

THEOREM 4.2. Let the function f in (1.2) be of the form fo/ \/_ for some
fixed function f,, and define a;, = n"'L7_, folxJu (x,), j = ,n —p.
Assume that all the conditions of Theorem 3.1 are satisfied and also that the
following hold:

() There exist a;’s and ¢;’s such that, for all n and j =1,. -p,
la;, —a,l <db,, whereb —>Oasn—>oo
(ii) |a|<C<00VJ
(iii) Zf=1af~/k - 0ask — o,
(iv) £%_,0% /k > 0 asn, k —>

Define the random function 7 by #(0) = 0 and (k) = Zk (Z; + aj/a)2 -
ke,, k=1,2,..., where Z,,Z,,... are independent and identically distri-
buted standard normal random variables. Let k be the maximizer of 7, and
define y = 1 — P(k = 0). Under the above conditions the power of the test (2.7)
tends to y as n — ,

One consequence of Theorem 4.2 is that y > « if one of the a;’s is nonzero,
which proves our claim about detection of alternatives tending to the null at
rate 1/vVn .

Theorem 4.2 also provides us with a convenient way of comparing the power
of test (2.7) with that of other goodness-of-fit tests. One example of a compet-
ing test statistic is

- f 2(x) dx /52,

where
F(x) =/0 L oaj,u;,(t)de.
j=1

The statistic T,, is an analog of the Cramér-von Mises statistic. The latter
statistic is one of the more frequently used in testing the goodness-of-fit of a
probability distribution. Note that F(x) estimates the function F(x) =
[§ f(¢) dt, which is identically zero if and only if f vanishes on [0, 1]. Thus,
another test is to reject H, for large values of T,,. It is clear that this test will
be consistent under very general conditions on the alternative hypothesis.

To compare test (2.7) with the test based on T),, we will consider the setting
of Example 1. In this case, under the conditions of Theorem 4.2 one can show
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TABLE 2
Estimated limiting power of test (2.7) and test based on T, for local alternatives of form
f(x) = 5V2 cos(mjx)/Vn, j=1,...,5 (a = 0.05)

J
1 2 3 4 5
Estimated power of test (2.7) 0.998 0.984 0.957 0.890 0.807

Estimated power of test based on T, 0.998 0.875 0.388 0.152 0.103

Notes: Estimated power based on 1000 replications of the limiting distributions. The value of o
is 1.

that T, converges in distribution to

1 2 (Z. +a;/0)
( 4.]_) — 2 ﬂ_J_.QL)_,

e J
where the Z;’s are iid standard normal random variables. Using this fact along
with Theorem 4.2, we have computed the limiting power of the two tests,
with @ = 0.05 and o =1, for each of the five local alternatives f(x) =
5V2 cos(mjx)/Vn, j=1,...,5.

For the five alternatives of interest, simulation (using 1000 replications)
was used to approximate the limiting distribution of 7T, and of E (given in
Theorem 4.2). Our results also give very good approximations to the power in
finite sample cases in which the error terms are Gaussian with ¢ = 1, n > 10,
and the (fixed) alternative at a given n has the form 5v2 cos(mjx)/Vn .

The results of the power study are summarized in Table 2. The test based
on k does remarkably better than the one based on T, for all but the lowest
frequency alternative. The discrepancy between the two becomes more marked
as the alternative becomes higher frequency. The reason for the poor perfor-
mance of T, is evident from (4.1) in the downweighting of (Z, + a,/0)* by the
factor j 2. Because of this weighting scheme, 7, tends to have much better
power at low than at high frequency alternatives. The good performance of
test (2.7) is explained by Table 3, which shows the distribution of £ in the
various cases. The criterion r(%) tends to have its maximum at the value of %
where a, # 0. Only when the alternative becomes very high frequency does it
become difficult for £ to detect the presence of a nonzero Fourier coefficient.
This is to be expected since a very high frequency function sampled at a small
number of points will be hard to distinguish from noise.

We have also considered in detail the situation where the alternative is
f(x) = V2a cos(mx)/Vn, a low frequency case well-suited for the Cramér—
von Mises type statistic. Our finding here is that for values of a/o ranging
from 0.25 to 5 the power of T, and test (2.7) (at level 0.05) never differ by
more than 2.5%.

5. Proofs. In this final section we give the proofs for the major results in
our paper. We begin by establishing Theorem 3.1.
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TABLE 3
Estimates of limiting values of P(kE =Fk) under null hypothesis and local alternatives of
form f(x) = 5Y2 cos(mjx)/Vn, j=1,...,5 (a = 0.05)

k

Model 0 1 2 3 4 5 6 7 8 9
Null case 0.944 0.042 0.011 0.003 0 0 0 0 0 0
Jj=1 0.002 0932 0.054 0.009 0.003 0 0 0 0 0
Jj=2 0.016 0 0.932 0.038 0.013 0.001 0 0 0 0
j=3 0043 0 0 0.900 0.048 0.008 0 0.001 0 0
Jj=4 0.110 0.002 0 0 0.860 0.021 0.005 0.002 0 0
j=5 0.193 0.006 O 0 0 - 0.758 0.027 0.012 0.003 0.001

Note: The estimated probabilities are based on 1000 replications of the limiting distribution of k.
The value of o is 1.

Proor or THEOREM 3.1. We first prove the result assuming o is known.
Let Z,, = na®,/0% j=1,...,n — p, and set S,, =0,

Srn= Z(Zjn_c), r:1,2,...,
j=1

for some constant ¢ > 1. Write
P(k=k)=P(A,NB,),
where
A, ={8,,-8,,20,r=0,...,k-1;8,,-8,,<0,r=%k+1,...,m,},
B,={S,,-8,,<0,r=m,+1,...,n — p}

and m, is an unbounded sequence of integers to be defined subsequently. The
first part of the proof involves showing that

(5.1) P(k=Fk)—-P(A,) >0
as n — o, The second task is to show that
(5.2) P(A,) - P(A}) -0,

where A} ={S, -8,>20,r=0,...;k-1,S, -8, <0, r=k+1,...,m,}
for S =0,8, =L’ _(Y?-c¢), r=1,2,..., with the Y;’s iid standard normal
random variables. Having proven (5.1) and (5.2), Theorem 3.1 will follow from
the fact that P(A*) — p,(1 — a) as n — » [see Proposition 3.1 and Spitzer
(1956), formula 4.7].

To simplify notation, the proof will be given only for the case £ = 0. The
other cases follow in a completely analogous manner. To verify (5.1), it suffices
to show that P(B,) — 1. For this purpose define the subsequence of integers
n; =73 j=1,2,.... Let j, be the largest integer j such that j2 < m, and
let j, be the largest j such that j% < n — p. Define n;,+1=n—p, and for



1422 R. L. EUBANK AND J. D. HART

each n and j =j,,..., j, set
nj+i
¢, =  max Y (Z.,-1.
1515n1+17n1 r=n,+1

Note that if n; is such that jfsnj <n-p,andif n; <r<n;, ,, then
|er:1(ZZn_ 1)’ 'Z?h(zzn_ 1)’ fjn
< + —.

r TLJ nj

It follows that

B, > D é(c—l)}

J3 c—1 &n c—1
ng‘l N m{”—js 2 }

with j3 = j, if j3 <n — p, and j; = j, — 1 otherwise.
By Markov’s inequality

r

" {IZ?=1(Zzn -1

f (Zln - 1)

=1 n,;

Js (] (Z,,-1) (c—1) 4 Js g(nj;,n)
53) P - 7 < :
(59) jgl{ z§1 n; T }) = (c-1*Z J*
for
g(r,n) = Var| ¥ (2, 1)] —or+ (E(T) - 3)% > (Z uin(xi)) .
Li=1 g s \j=1

Assume without loss of generality that the uniform bound on the u;,’s is 1.
Then g(n;,n) < 2% + |Eet/a* — 3|j*/n, and hence the bound (5.3) is of the
order ©72 . j~%, which tends to 0 as m, — oo

To deal with the ¢ jn We use a result of Serfling (1970). For any set of jointly
distributed random variables Y, ..., Y, with joint distribution function F, let
L be the functional L(F)=YX!_,E(Y, + D) with D = (2 + |Eet/o* — 3|).
Defining F, ; to be the joint distribution of (Zyo1n—D),... (Zyi1 = 1 for
all a and /, it is clear that L(F, ,) = DI, L(F, ) + L(F,,, ) = L(F,,,,)

a’

and B9l (Z;,, — D)? < DI = L(F, ;). Now an application of Theorem A of

Serfling (1970) gives

1 2j +1
E&2 < Dllog(4) + 2)]2(J%2).
(log2)
Consequently,
Js . -1
j=i \ 2
Js3
>1- ). 4D[log(4j + 2)]*(2j + 1)j~*[(c — 1)log2] 2,
j:jl

which tends to 1 as n — o, Combining the preceding results yields P( B, - 1.
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To prove (5.2), we apply Theorem 13.3 of Bhattacharya and Ranga Rao
(1976) to the vectors v;, = (¢;/0 N u, x),...,u, (x)), i=1,...,n. We
note that Ev,, =0, n 'L"”  Varv, is the n-dimensional identity and
n~'L?_JEllv;, II4 <m?E(e,/0)*, where ||| is the Euclidean norm and we
have agaln assumed that the u;, are uniformly bounded by 1. Using these

facts it follows from Theorem 13.3 of Bhattacharya and Ranga Rao (1976) that

E (e1/0 )

‘/’7 )
where a(m) is a positive constant that depends only on m. Since one can
always choose m, to grow sufficiently slowly that m2a(m,)/Vn — 0, the
proof of (5.2) is complete.

To finish the proof of Theorem 3.1 we need to verify that ¢ may be replaced
by a consistent estlmator &. Let kB be argmin(R(k)), where R(0) =
and R(k)=1XL%_ — ke(62/0?) for k> 1. We wish to establish that
P(k=0)>1-a.

Given 8 > 0, it follows that

|P(A,) — P(A})] <a(m,)m

nﬂp Z Zj, <kc(1-96))| - P(C,)
k=1 \/=1

<P(k=0)<P + P(C,),

nr_]p{ Y Z;, <ke(l+ 8)}

k=1 \j=1

where C, = {|6 /0 — 1| > 8}. By assumption, P(C,) — 0 as n — ». The other
two probablhtles in the upper and lower bounds on P(k = 0) can be handled
as before for fixed § as n — ». Then let § —» 0 to obtain the desired result. O

ProoF oF THEOREM 4.1. Clearly

k a. + a. 2
o nla + ) k)

j=1 &

P(k>=1)>P

where @;, = n~'L7_ e,u;,(x,) and we assume that % is the smallest integer

r%jn
such that either liminf, _, «;, > 0 or limsup, _,, a;, < 0. Assume without
loss of generality that liminf, _,, «,, > 0. We have

. 2
P ﬁn(ajnﬁLajn) >kc)

j=1 &

- 2
na,, +
ZP( knAZakn) >kc)
Vna Vn
ZP akn F_ akn)
0' ag
Vna Vnay, 0
zP{ k”>\/iE(1+5)— k}m{gsl+6},
g ag
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where & > 0. Thus it suffices to show that P(Vnd,,/o > Vkc(1 + 8) —
Vna zn/0) = 1 as n — . Using the Lindeberg-Feller theorem and the condi-
tion sup; _; _ ,lu,,(x,)| = o(Yn), it is easy to check that Vn d,,/o converges in
distribution to a standard normal random variable. The result then follows
upon applying Polya’s theorem and the fact that liminf, ,, «,, > 0. O

Proor oF THEOREM 4.2. We will assume in our proof that o is known; the
extension to the case where o is replaced by a consistent estimator is handled
as in the proof of Theorem 3.1. We proceed as in the proof of Theorem 3.1
after noting that

2 2
na’ na’,

k k : k
5 f"—kc=z{—-2——1—a,2n}—k(c—1)+zagn.
Jj=1 Jj=1

2
o s\ o

Defining S,, = L’_\(na%, /0% — 1 — a2}, we have, for all m,n sufficiently
large,

n—p (8 -1 PSS, r ajz»n
(5.4) ﬂ{’"<(c2 )}Cﬂ{r <(c—1)—ZT},

r=m r r=m Jj=1

due to the fact that ¢ > 1 and X’_,a%,/r —» 0 as r — «. Using (5.4) and
condition (iv) in Theorem 4.2, one can argue as in the proof of Theorem 3.1
that

P(k=0)-P

m [ r pg?
N{Y —<ref|-0
r=1\j=1 9

as n — », where {m} is any unbounded sequence of positive integers. De-
fining p, = P(N2{X}_(Z; + a;,)* <rc}), we can use Theorem 13.3 of
Bhattacharya and Ranga Rao (1976) to verify that there exists an unbounded
sequence {m ,} such that

mn [ T na?,
P ﬂ{z 0_; <rc})—pn—>0
r=1|j=1

as n — o,

The next step is to argue that .p, —p¥ — 0 as n — o, where p; =
P(N (X7 _(Z; + a;)* < rc}). The proof of this result relies on conditions (i)
and (ii), but is very tedious and hence is omitted. Details are available from the
authors.

The final step is to show that p} — p = P(NT_{X}_(Z; + a;)* < rc}). To
do this, it is enough to verify that £5_,, P(L}_(Z; + a;)* > rc) — 0. This
quantity is bounded by

(5.5) T ereig

r=m

exp{tjél(zj + a,-)z}],

n
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where 0 < ¢ < (1 — ¢~ !)/4. The expectation in (5.5) is bounded by

exp{(t + 4t?) Zr a?}(l — 4",

Jj=1

Using condition (iii) and the fact that 0 < ¢ < (1 — ¢~ 1) /4, it is now easily
checked that for all m , bigger than some m* the summand in (5.5) is bounded
by exp(—dr) for a positive constant d, and the proof is complete. O
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