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SEMIPARAMETRIC ESTIMATION OF NORMAL
MIXTURE DENSITIES!

By KATHRYN ROEDER

Yale University

A semiparametric method for estimating densities of normal mean
mixtures is presented. This consistent data-driven method of estimation is
based on probability spacings. The estimation technique involves iteratively
fixing the standard deviation of the normal kernel that serves as a smooth-
ing parameter, and then maximizing a function of the probability spacings
over all mixing distributions. Based on the distribution of uniform spac-
ings, a distribution free goodness-of-fit criterion is developed to guide the
selection of the smoothing parameter. The result is a set of consistent
estimators indexed by a range of smoothing parameters. Empirical process
results are used to prove consistency.

1. Introduction. In this article we will be concerned with estimating
densities of normal mean mixtures of the form

(1.1)  fo(%) = f(%;Qo, ko) = [(27h3) ™" exp(—(x — 6)°/2h3)Qy(d0).

Assume that both the mixing distribution @, and the structural parameter 4,
are unknown. Because the model is not identifiable, we focus attention on
estimating the marginal density f,,. Nevertheless, to estimate f,, one might
consider maximizing the likelihood IT f(x;; @, k) over @ and h. The maxi-
mum, however, cannot be achieved: The likelihood approaches infinity when
Q@ =F, and h — 0 (F, denotes the empirical distribution function). Conse-
quently, in order to estimate f,, the parameter space must be restricted. The
class of distributions can be restricted by either forcing @ to be discrete with a
restricted number of support points or by bounding A from below.

A subset of (1.1) is the class of finite mixture models. Let 2, be the set of
probability measures supported by r or fewer points. If @, happens to lie in
2, for a specified r, then consistent estimators can be obtained for @, and
hgo. For regularity conditions that lead to consistent asymptotically normal
estimators for this model, see Peters and Walker (1978) and Redner and
Walker (1984). No satisfactory data-based technique exists, however, by which
to choose r [for discussion see Titterington, Smith and Makov (1985), Chapter
5, or McLachlan and Basford (1988), Section 1.10]. Another disadvantage to
this approach is that the likelihood may be multimodal, making it impossible
to identify the consistent sequence of roots.
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To circumvent the problem of a possibly incorrect choice of r, Geman and
Hwang (1982) applied Grenander’s method of sieves by constraining @ to lie in
a family 9, , with r, tending to infinity with n. If r, = O(n®) for some
& < 1/5, the estimator is consistent provided, the unknown density is bounded
with compact support. In practice the method suffers from the defect that the
estimator depends strongly on the particular choice of r,.

Alternatively, one could restrict k. This approach is more appealing be-
cause, for a given A, there is a unique mixing distribution which maximizes
the likelihood (Lindsay, 1983a, b). Changing h changes the mixing distribu-
tion needed to provide the ‘“best fit”” to the data. A sieve can also be
constructed based on the size of & (Geman and Hwang, 1982). Let %, =
{f(-;Q, h): Q is a probability measure}. If &, < h,, any normal mixture with
variance h% can be constructed from a normal mixture of variance A% con-
volved with a N(0, h3 — h%). Therefore, &, C &, and this sieve increases in
size as h, decreases. Again, the method of sieves leads to a consistent
estimator of f, under certain conditions, provided %, — 0 at the appropriate
rate; however, no data-based method exists by which to choose h,.

Our approach is similar to Geman and Hwang’s in that we will choose a
normal mixture from the second type of sieve. Our sieve size, however, will be
determined by a data-based selection of £ ,,. In addition, although our density
estimate is consistent under certain conditions when h, — 0, because our goal
is to estimate normal mixtures with A, > 0 it is not necessary that A, — 0.
By taking this approach we lose flexibility, but it is hoped that our estimator
will converge faster within the class of normal mixtures than a nonparametric
estimator such as Geman and Hwang’s.

Previous treatments of finite mixture models usually allow both the mean
and variance of the components of the mixture to vary. For our method, the
componentwise variance is taken to be constant for two reasons. First, this
assumption is useful for mathematical tractibility. Second, because the num-
ber of components in the mixture is not prespecified, a mixture with differing
variances can be approximated by a mixture with constant variance provided
h? is selected to be less than or equal to the minimum variance in the true
mixture.

The method, which we dub the method of spacings, is defined as follows. Let
I, denote the interval between the kth and (% + 1)st order statistics. For a
given continuous distribution function F, let F(I,) denote the probability
measure of this interval. Let F(-;@, k) be the distribution with density
f(;Q, k) and let

n—1 . _
(12) Lps(Q,h) = 3 B FUiiQ. k) b,

k=1 o

denote the log product spacings function evaluated at F(-;@Q, k), where
| w, = —(log(n + 1) +v), o?=(7%/6) -1
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and y is Euler’s constant. Rather than maximize the likelihood, maximize
LPS(Q, h) over @ for a fixed h. [For results concerning estimation of finite
dimensional parameters using spacings, see Cheng and Amin (1983) and
Ranneby (1984).] Clearly the maximization is not affected by u, and o;
however, these constants will be important in choosing 4 ,.

The set of probability spacings {F(I,; @, ho)}i-1 has the same distribution
as a set of uniform spacings. The normalizing constants u, and o are chosen
so that n~'/2LPS(Q,, k) is asymptotically distributed as a standard normal
(Darling, 1953). Consequently, the spacings functional can serve as both an
objective function for maximization and as a goodness-of-fit test. [For results
concerning goodness-of-fit tests, see Cressie (1976).] It is in this sense only
that the method of spacings offers advantages over the likelihood approach.

We utilize the sum of the log of the probability spacings rather than some
other function of the spacings because it yields results asymptotically
equivalent to those obtained from maximizing the likelihood. In addition, the
spacings functional is convex in @, as is the likelihood, which facilitates
computation of the maximum (Lindsay, 1983a; Roeder, 1988).

For a fixed h, let Qh denote the probability measure that maximizes
LPS(Q, k). As with the likelihood approach, joint maximization over @ and A
will lead to an inconsistent estimator. Instead, the final mixture density
estimate f(-; Q,;, k) can be based on the distribution of LPS(Q,, k) (i.e., the
distribution of the log spacings of a sample of uniform spacings). For example,
h can always be selected so that LPS(Q;, A) = 0

As a first step in motivating the goodness-of-fit component of the estimation
scheme, we construct a nonparametric confidence set of continuous distribu-
tion functions. For any continuous distribution F, define the log product
spacings function of an arbitrary distribution function as LPS*(F) =
Y (og F(I,) — p,)/o. Assuming that {X;}} is a random sample from the
continuous distribution F,,, the following probability statement holds for n
large: P[ln~'/?LPS*(F,)| < 2, ;] = 1 — « where 2, ,, denotes the upper («/2)
100 percentile of the normal distribution. Based on this result, we can con-
struct a test that rejects F if [n~'/2LPS*(F)| > z, ,,. The inverse of this test
yields an asymptotically nonparametric (1 — @)100% confidence set for contin-
uous distribution functions {F: |n~1/2LPS*(F)| < 2z, ,5}. If Fy = F(-;Q,, h
then the set of densities {f(-; @, k): |n~1/2LPS(Q, h;l < 2,9 forms a conﬁ-
dence set of densities with asymptotic coverage probability of at least 1 — a. As
an aid in describing this set of densities, consider a graphical presentation of a
smooth subset:

€(a) = {£(3@u, b): |n"2LPS(Qn, h)| < 2 2)-

This subset of the confidence set, which we dub the profile confidence set, is
.easy to obtain. Call LPS(Qh, h) the profile function, as it represents the fit of
the model as a function of ~ after we have maximized over @. This is a
decreasing function because normal mixture models are nested: &, C &,
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Fic. 1. Profile confidence set {f(-;Q, h): h € £(0.20)}. The data are the velocity at which each of
82 galaxies is moving away from our galaxy. For further analysis, see Roeder (1990).

provided A, < h,. The monotonicity property of the profile function can be
exploited to find the range of & corresponding to €(a). Let “#(a) = [h,, h,],
where h; and h, solve n~'/2LPS(Q,,k) =2,,, and n~ 2LPS(Q,, k) =
—2, /9, respectively. It follows that €(a) = {(fC;Qy, h): b € Z(a)).

To illustrate the method of spacings, we find the profile confidence set of
densities for a data set of some practical interest [see Roeder (1990) for a more
detailed analysis]. The data consist of the estimated velocity at which each of
82 galaxies in the Corona Borealis region is moving away from our galaxy.
Clusters correspond to large scale structures in the pattern of expansion. In
Figure 1, we present £(0.20). With each A*, we associate the value p*, such
that n~1/2LPS(Q,+,h*) = z,+. The density f( *; Q4x, B*) has the largest win-
dow width of any density in the one-sided profile confidence set {f(:; @), 2):
n~YV2LPS(Q,, h) > z,+}. When F(-; @+, h*) is viewed as the null hypothesis,
p* is the p value of the data. Estimates in the foreground of the figure
correspond to density estimates with smaller 4. Typically, density estimates
with p values near 0 overfit the data, while estimates with p values near 1
underfit the data. In this example, the confidence set suggests that there are
between three and seven clusters of galaxies in the Corona Borealis region.
Notice that, contrary to the behavior exhibited by nonadaptive, nonparametric
density estimators, this semiparametric estimator maintains a smooth esti-
mate of the tail of the density while still fitting the pronounced modes in the
center of the data.

The subject of this article is how to construct a data-based selection
procedure for choosing 4, that leads to a consistent density estimator. We
show that consistent results can be obtained if %, is selected based on the size
of LPS(Q, , %,). In Section 2, we state a general theorem showing that if
h,(n/loglog n)/* - » and n‘lLPS(Q,;n, h,) - 0 with probability 1, then
fC; Qs » k) is a consistent estimator of f, (a.s. in L,). In Section 3, we prove
a uniform law of the iterated logarithm for normal mixture likelihoods using
results from empirical processes. In Section 4, consistency is proved. We also
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derive in Section 4 a method by which ﬁn can be selected so that asymptoti-
cally, with probability 1, ﬁn is bounded below by ph,, 0 <p < 1, and still
results in a consistent estimator. Simulations, which are presented in Section
2, suggest that substantial improvements in the density estimate can be gained
if A, does not go to zero. '

2. Major results. We first state a general theorem concerning consis-
tency and then discuss simulations supporting the conjecture that these
estimators have improved rates of convergence relative to a nonparametric
estimator. Define %, as the set of probability measures with support in the
interval [—a, a].

THEOREM 2.1. Suppose f, = f(-; o, h() is a normal mixture density such
that hy > 0 and Q, € B, for some a < ». Let h, be a bounded sequence in
R* (possibly random). If

(i) h,[n/loglogn]’* - = a.s.,
(ii) n 'LPS(Q;,,h,) >0 aus.,
then

flf(.;éﬁn’ﬁn) _fo|—>0 a.s.

The proof of this theorem is presented in the following sections. In Section
4.2 we show that a data-based criterion can be constructed such that /4, meets
these two conditions.

Before embarking upon the proof of consistency, we present some prelimi-
nary results concerning the performance of the estimator. Because our goal is
to estimate the density, and since the class of normal mixtures is very rich, a
natural approach would be to use nonparametric density estimation. Neverthe-
less, the preliminary simulations are intriguing because they suggest we can
attain improved rates of convergence. We generated 50 samples of size n = 200
from a bimodal normal mixture [0.67N(0, 1) + 0.33N(3, 1)]. For each sample
we calculated the integrated squared error [ISE(f, f,) = [(f — f,)?] of the
density estimate f(-;Q,, k) for h € [0.10,1.75]. In Figure 2, the average ISE
from the 50 samples is presented. We also calculated the ISE for normal kernel
estimates for the same data sets. On the average, the best method of spacings
estimate (best %) is twice as good as the best kernel estimate. Moreover, the
spacings estimator is better than the best kernel estimate for a broad range of
h. Hence, when the unknown density is a normal mixture, there is an interval
of smoothing parameters ([, 2, + €], 8 > 0, £ > 0) that usually provides an
improved fit relative to the kernel estimator. Unfortunately, the method of
spacings is presently computationally intensive and large scale simulations are
not feasible.
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Fic. 2. Plot of average ISE = [(f(:;Q, h) — f,)? versus h. Fifty sample of size 200 were
generated from the density 0.67N(0,1) + 0.33N(8, 1). The smooth line is the ISE for the normal
kernel estimator and the broken line is the ISE for the method of spacings estimate.

3. Behavior of the profile function. In this section we prove a uniform
law of the iterated logarithm (LIL) for normal mixture likelihoods. This result
will be necessary in the proof of consistency.

Throughout the paper, we use linear functional notation whenever it can be
used unambiguously. Thus we write Pg for [g(x)P(dx). With a slight abuse of
notation, we spell out simple functions; thus P(x — 8) = [(x — 6)?P(dx). We
use curly brackets to denote indicator sets, so P{x > ¢} = [1, . ,P(dx). When
the function has two arguments, the convention is to indicate which one is to
be averaged over in the following way: Pf(-,t) = [f(x,¢)P(dx). In the case of
the simple functions above, unless otherwise specified, one can assume that x
is to be averaged over, which allows us to avoid unappealing notation such as

P{- < t}. We also use the convention that @ averages over ¢.

Suppose X;, X,, ..., X, are independent and identically distributed random
variables from the distribution P on the real line. Let P, denote the corre-
sponding empirical measure, which puts mass n~! at each of the realizations
X1, Xgy ..., %,, and let F () = n " 'Li{x; <t} = P{x < ¢} be the corresponding
distribution function. In the proof of Theorem 3.2, we will use the following
lemma concerning weighted empirical processes. Let », = n'/?(P, — P) denote
the rescaled empirical process. For a fixed £, 0 <& < 1/2, let

w(s) = { s - §)] V2, foro<s<1,
0, elsewhere

and let b, = (2loglog n)'/2.

.LEMMA 8.1. There exists a universal constant M such that

limsup b, ! sup|v{x < t}y(P{x <t})| <M a.s.
n t
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Proor. This result is a consequence of a theorem due to James (1975). O

We now present the main result of this section: Uniform convergence of the
log likelihood function over all mixing distributions with @ € &, and & in a
bounded interval.

THEOREM 3.2. Suppose X, X,,..., X, are independent, identically dis-
tributed random variables from a normal mixture f(-;Q,, ho) where hy> 0
and Q, € #,. Then the corresponding empirical process satisfies

limsup sup A%|v,log f(-;@Q,h)|=0(b,) a.s.

n Qe %,
0<h<K

Proor. In the proof it will be understood that @ is restricted to %, and h
to (0, K). Define 6, as the mean of Q. Let f(-;¢, k) be the N(¢, h?) density,
which corresponds to f(-; @, k) with @ degenerate at ¢. Now

suph?|v, log f(-;Q, h)|
Q.h

f(-;Q,h)
= suph?|v, log| ———= | + v, log f(-;600,h
Q.h (f(';oQ’h) (3% %)
f(-;Q,h)
< suph?lv, log(— sup h?|v,log f(-;¢,h)|.
Q.h f(+50q,k) $el-a,al,h

We will deal separately with the two terms after the inequality. The second
term equals
3osuwp [(x-e)[=3 sup Ix® - 24w,al.
é¢€[-a,al del-a,a]

Both X2 and X have finite means since @, has bounded support. From the
LIL for independent identically distributed random variables, we conclude that

(3.1) limsup sup A%y, log f(-;é,h)| =0(b,) as.
n psl-a,al,h
To handle the first term we will first show that A2 log(f(x; @, k) /f(x; 0g, h)
is convex in x, bounded below by —@Q(¢é — 4':’Q)2 and bounded above by
(x — 6¢)?/2. For convexity in x, notice that ~~2 times the second derivative
with respect to x equals

@ o[ LR | _ Q¥ (x:6,h) [Q¢f(x;¢>, 218
which is the variance of the conditional distribution of ¢ given x. Without loss
of generality we can assume strict convexity because otherwise f(-;Q, k) =

f(-;6q, k) (in this case the desired result is obviously true). Next, let a =
supg Qo — BQ)Z. Because @ has compact support, a < «. To obtain a lower
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bound of —a, apply Jensen’s inequality

h*[log f(x;Q, k) — log f(x;6q, k)] > h*[Qlog f(x;:,h) — log f(x;64,h)]
L =1 — )+ H(x - 09)’= —a

for all @. The upper bound is easily established.
Let g 4(x) = log(f(x; @, h)/f(x;84, k) + a. Note that lg #(x) is a posi-
tive, strictly convex function. Consequently

(32)  nlgs=nf “[Pien(x) > £) - Pllg 4(x) > t}] dt.
By strict convexity and continuity, there exists an Rg, ,(¢) > L, ,(¢) such that
{lo.n(%) >t} = {x <Lg 4(t)} U {x > Rg 4(2)}.
The right-hand side of equality (3.2) becomes
f:[vn{x < Lga(t)} + vfx > Rg 4(t)}] dt.

We consider only the first integral; treatment of the second integral is similar.
It is bounded in absolute value by

[0°°|V,,{x < Lo s(t)W(P{x < Lo (1)) |[#(Plx < Lo 4(t)})] " dt.
From Lemma 3.1 it follows that
(3.3) g |vafx < Lo, u(s)}0(P{x < Lg i(5)})| = 0(b,) as.
It remains only to show that
2 (7 -1 o
(3.4) Zl’li)h [0 [0(P{x < Lo u(t)})] ™ dt < .

By definition,
{x < Lo x(s)} c {lQ,h(x) > s}
Furthermore,
1 2
{lQ’h(x) > s} c {a + 2—h2(x —6g)" > s}.

When s > 2a, the last set is contained in {|x| > —[6,| + hs'/2}. The left-hand
side of (3.4) is therefore less than

K2 Plx <L
Sup fo {x <Lgu(s)}

1/2-¢

ds

< sup2ah?® + suph? [ P{lxl > —a + hs'/%"/* ™" ds.
h h 2a
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The change of variable z = h2s gives the bound
fwP{IxI > —a + 22 gz
0

The tail probabilities of the P distribution are bounded by the sum of tail
probabilities for the N(a, k%) and N(-—a, h?%) distributions. Exponential de-
crease of normal tails therefore ensures finiteness of the last integral. Then
the assertion of the theorem follows directly. O

CoroLLARY 3.3. If ﬁ is a sequence of (possible random) bandwidths for
which eventually b, < Ka. s., and h (n/loglog n)/* - « a.s., then

sup (P, — P)log f(~;Q,iin) -0 a.s.
Qe %, .

Proor. Use the fact that n'/2A2 /b, — « a.s. and, from the theorem,
n'/2h2% sup I(P,, - P)log f(;Q, ﬁn)l =0(b,) as. O
Qe %,

a

4. Consistency proofs.

4.1 General consistency results. To prove consistency, we wish to show
fC; Q4 ﬁn) - f, as., in a suitable metric. By expanding the log product
spacings function (1.2), we obtain a relationship between it and the log
likelihood function. This reveals a natural metric for establishing consistency.
Notice

(4.1) log F(I,) = logfl f(x)/fo(x) dFy(x),
k
which by the mean value theorem, for some X;* € I, equals
X,
log F(I,) = log L t). 4 1og Fy(1,) = log - Xw) | 1og Fy(1,).

fo( X,;") fo( X))

It follows that

h
f(f—Q)) + — 2. log Fo(1) -
0

Let KL(fy, fo) = [fo log(f,/f,) denote the Kullback-Leibler information
and KL(f(-;Q, h), f,) denote the first term on the right-hand side of (4.2),
which is an emplrlca.l estimate of KL(f(+; @, k), f,). It is apparent from (4.2)
that Kullback-Leibler information generates a natural measure of fit. From
Jensen’s inequality, it follows that KL(f(-;@Q, k), f,) <0 for all f(-;Q,h)
with equality if and only if f(-;@, k) = f, with probability 1. By choosmg h,
such that n‘lLPS(Qh , h,) = 0, we hope to obtain a consistent estimator. We
will formalize this heurlstlc argument in this section. Details pertaining to
remainder terms will be relegated to the Appendix.

(4.2) %LPS(Q,h) ~ P, log (
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As an aside, note that if we choose A* to maximize LPS(Q,,%), then
KL(f(-; Qh*, k%), f,) will converge to a positive constant; hence, the corre-
spondlng den31ty G Qh*, h*) cannot converge to a dens1ty without contra-
dicting Jensen’s lnequahty The distribution maximizing LPS places equal
probability in each interval.

Although the Kullback-Leibler information provides a natural measure of
fit, we would like to establish that f(-;@ 5 ﬁn) converges in a standard metric
such as the L; norm. From Kemperman’s (1969) inequality,

[0 108 fo/1) = 5 [If—fol)z,

it is sufficient to establish convergence of the Kullback-Leibler information.
We can now prove consistency quite easily.

Proor oF THEOREM 2.1. Clearly
| P1og( fo/f(+3@s,0 B2 )| <|(P. — PY10g £(-5@5,, B

+|Pog £, - P, log f(-; Qs k)|

The first term on the right-hand side in (4.3) goes to zero a.s. by uniform
convergence provided 4 ,[n/log log n]'/* > « a.s. (Corollary 3.8). Assumption
(ii) means that n~ 'L log F(Ik,Qﬁ , ﬁ — p, = 0. The second term in (4.3)
goes to zero provided

limn™" 3 log F(Ik;Qﬁ"’ ﬁn) — iy,

(4.3)

— Plog f, + P, log f(-;Q,;",ﬁn) =0 as,

but this holds by Theorem A.4 provided ﬁnn2 /log n > « a.s. (see Appendix).
O

4.2. Using the profile function to adjust h. In this subsection we show how
the profile function can be used to select the bandwidth. In particular, the
bandwidth is selected so that, with probability 1, ﬁ is eventually greater than
ph, for any preselected p, 0 <p < 1. In add1t10n this sequence of random
bandwidths meets the conditions of Theorem 2.1. Consequently, this result is
substantially stronger than the asymptotic requirement for consistency of
Theorem 2.1. (In Section 2 it was suggested that, as h, — 0, the ISE of the
estimator tends to increase substantially. Hence it is useful to ensure h does
not go to zero.)

As a preliminary step, we explore the behavior of the profile function. It is
established that this function is nonincreasing for all 4, and strictly decreasing
for h > b, when n is sufficiently large. This result provides a method for
ensuring the randomly selected bandwidth ﬁ is asymptotically bounded
below. We can do this by ensuring that LPS(Qﬁ ﬁ ») is not too large.
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TueoreMm 4.1. LPS(Q,, k) is nonincreasing in h; moreover, if LPS(Q, o ko)
is less than the global maximum, then LPS(Q,, , ky) > LPS(@;,, hy) for hy >
h,. In addition, provided Q, € %,,

lin}linfn‘l[LPS(th,ho) ~LPS(Q,, 1y)] >0 a.s.
for any hy > hy.
Proor. Let @* be the convolution of @, and a N(0, h] — h3). Clearly
LPS(Q),, h1) = LPS(Q*, k) < LPS(Q, fo )-

Relying on the geometric results of Lindsay (1983a, b), we know that Q, is
unique and has a discrete number of support points provided LPS(Q hy Po) has
not achieved the global maximum (ny /o). From this we conclude that the
second inequality is strict, provided n~'LPS(Q , ko) < v/0. Clearly,

n~1LPS(Qu,, ho) < Y| LPS(@4,, ko) — LPS(Qo, ho)| + n~HLPS(Qq, ho) |-

The second term converges to 0 a.s. (Lemma A.3, see Appendix). The first term
converges to zero a.s. because (i) @, converges weakly to @, a.s. (Roeder,
1988), (i) supg < (P, — Plog f(+;@, ko) — 0 a.s. (Corollary 3.3) and (iii) the
remainder relating log likelihood to log spacings goes to zero a.s. (Theorem
A4). O

Consider a selection procedure where A, is chosen such that LPS(Q,, k) =
d,. The maximum LPS can always be achieved by taking h, small enough
that the probability spacings are equal. By continuity, for any d, less than the
maximum, there exists a solution F(-; th, h ) satisfying this requirement. In
the following theorem, we use a selection procedure to choose ﬁn so that it is
eventually bounded below by h, as. The remark following the theorem
explains the practical implications of the result.

THEOREM 4.2. Let h, solve LPS(Q,,k) = —c(nlog n)2, ¢ > 0. Then
eventually h,, > h, a.s.

Proor. By definition,
LPS(Q,: ko) = LPS(Qo, ho)-
Hence, by Lemma A.3,
(4.4) n"ILPS(Qs,, ho) > —c(n™" log n)"?,
with probability 1, for n large. If ﬁn is selected such that
n‘lLPS(Q;,n, ftn) = —c(n"'log n)l/z,
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it follows that
LPS(Qy,» ho) > LPS(Q5,, 5,

a.s. for n large. By Theorem :1.1, LPS(Q,, ) is a decreasing function in &
when k > h; it follows that for n large, A, < h,as. O

Remark. Note that although £, is asymptotically bounded below by A, it
will generally provide an overly smooth estimate according to the spacings
functional (A too large; see Section 4.4). To remedy this problem, consider the
following correction factor: For any p, 0 < p < 1, the sequence of smoothing
parameters ph , is eventually bounded below by ph,. Any sequence h,> phn,
selected so that n~'LPS(Q; » h,) — 0, satisfies thé conditions of Theorem 2.1.
In practice, it is desirable to obtam a selection of plausible estimates (e.g., the
profile confidence set) as well as a point estimate of the density. Every
h € #(a) meets condition (ii) of Theorem 2.1. A modest number of simula-
tions [based on a preliminary estimate of f,, say fC; Qpx, H**), where h**
was chosen so that LPS(Q;««, A**) = 0] could be used to determine a sensible
choice of the arbitrary constant p. For example, because simulations suggest
that good estimates can be obtained whenever h € [0.5h, k], one could use
simulations to choose p so that a lower bound of approximately 0.5k, was
obtained. Finally, any estimates in €(a) with A greater than the lower bound
could be considered plausible. A point estimate could be based on a cross-vali-
dation procedure with A restricted to the interval just obtained [see Roeder
(1990)].

APPENDIX

In this Appendix we address a recurrent technical nuisance. The spacings
are not independently distributed; therefore, we cannot apply any of the
standard theory for sums of independent, identically distributed random vari-
ables to the problem. Through a series of lemmas we establish that the
difference between average log likelihood and log spacings functions (properly
centered),

Pn IOg f(’Q,ﬁn) _Plog fO_n_IEIOgF(Ik;Q’ﬁn) +#’n’

converges to zero uniformly in @ in the limit, provided ﬁin /logn — o,
Consider a random sample from a normal mixture for which the mixing

distribution has a bounded range. In Lemma A.1, we prove the number of

observations outside an interval increasing in n is zero for n sufficiently large.

LEMMA A.1. Suppose {X,}" | is a random sample from a normal mixture
f(:;Q, h), where @ has support on a compact set A C[—a,al, a > 0. Let
y2 = (2 + e)log n. With probability 1, all observations eventually lie in
[-a — hy,,a + hy,l
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ProoF. Let Py(dx) = f(x; Q, h) dx, where @ has support on [—a, a]. As in
the proof of Theorem 3.2, we use the fact that the upper tail probability
Py{x > B} is uniformly bounded (in @) by the upper tail probability of a
N(a, h?). Choose B =a + v,. The result now follows from the first
Borel-Cantelli lemma. O

Lemma A2, Suppose that X ;) < X5y < -+ < X,,, are order statistics from
fo- Let y be a nonnegative integer and let X} be any point between X ;, and
X1y Then

sup n_zl—ylog( f(Xz*’Q’ h) ) _ log( f(Xi;Q’ h) )
(Al) @egz, fo( Xi) fo(X;)

y+1
= [a + max({| X, )|, |X(,,_y)]}](X(,,_y) - Xyip)h 2

Proor. This result is based on a Taylor series expansion of each summand
about x;,. O

Before completing our discussion of the relationship between log spacings
and log likelihood, we need to state a LIL for spacings.

LEmmA A3. Let {Z)' , be a random sample of n uniform random vari-
ables, and let Zy < Zy < -+ < Z,, be the set of order statistics. Let {D; =
Zy — Z;_ 1), be the set of uniform spacings. Then, for any ¢ > 0,

limsup|n‘1/2 Y (log D, — p,)| = 0(b,) a.s.

Proor. The proof is arduous, but familiar, as it borrows the arguments
usually applied to sums of independent random variables. First apply the usual
spacings trick by noting that the distribution of a set of n uniform spacings is
equivalent to the distribution of {Y,/XY,,...,Y,/LY;}, where Y,,...,Y, area
set of n exponential random variables. We can use the distribution of these
independent, identically distributed random variables to get an exponential
bound on a subsequence of probabilities. Finally we are able to apply the usual
proof to get the LIL. O

In Theorem A.4 we establish that the remainder term encountered in the
proof of Theorem 2.1 goes to zero a.s.

THEOREM A4. Let X,y <Xy < -+ <X, be order statistics from
F(';Qo, ho) = Fo. Let

1r-1
Rn(@ k) = X 1og F(1;; @ k) — , = P, log f(+Q,h) + Plog fo.
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Provided 0 < ﬁn < K eventually, a.s. and ﬁin/log n - xa.s.,

lim sup R,,(Q,ﬁn) =0 a.s.
n Qe

Proor. By the usual LIL, eventually, on a set of probability 1,
(A.2) |P, log fo — Plog fo| = o(n 'log n)">.
Similarly, by the spacings LIL (Lemma A.3), eventually,

n—1

(A.3) ~ Y log Fo(I) — p,|=o(n tlogn)” as.
1
Define
ln—l
R*(Q,h) =~ Y [log Fy(I,) — log F(I,;Q,
(A.4) 2(Q,h) nzll[go(k) g F(1,;Q,h)

—log fo(x;) + log f(x,; @, )]
From (A.2) and (A.3), it is sufficient to show lim, supg . 54 R7(@, h,)=0as.
From (4.1) we have
(A5)  log F(I);Q, h) = log(f(Xi; @, h)/fo(X})) + log Fo(1)

for Xj* €I,. Let Y, be the number of observations outside the interval
[-a — hy,,a + hy,]. Substituting (A.5) into (A.4) and dividing the sum into
two parts we get

. I Lt f(X(,-);Q,h))_ (f(X,-*;Q,h))
B@m =k [bg( o) | B\ TRED

Y, n—1
+1{2 + X }[IOgFO(Ii)_IOgF(Ii;Q’h)
ni, n-Y,

f(Xi;Q, h)
“°g( Fo(X)) )]

By Lemma A.l, eventually Y, = 0 a.s.,, so we can ignore the second term.
Apply Lemma A.2 to the first sum to obtain an upper bound of

72" Xy, — Xy, + 1))[“ + max{ Xy, ., |X(n—Yn)}|]~

Thus A? times the first term is eventually bounded by 2n~(a + Kv,)[2a +
Kv,] uniformly in 2 and Q. Conclude that provided ﬁin /logn —» = as.,
supgc g, R5(Q, h,)—0as. O
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