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ASYMPTOTIC EXPANSIONS AND BOOTSTRAPPING
DISTRIBUTIONS FOR DEPENDENT VARIABLES:
A MARTINGALE APPROACH!

By PER ASLAK MYKLAND
University of Chicago and University of California, Berkeley

The paper develops a one-step triangular array asymptotic expansion
for continuous martingales which are asymptotically normal. Mixing condi-
tions are not required, but the quadratic variations of the martingales must
satisfy a law of large numbers and a central limit type condition. From this
result we derive expansions for the distributions of estimators in asymptot-
ically ergodic differential equatlon models, and also for the bootstrapping
estimators of these distributions.

1. Introduction. Edgeworth-expansions are a useful tool in inference.
Many methods are directly based on expansions, ranging from the conditional
and parametric [Barndorff-Nielsen (1980, 1983, 1984, 1986a, b, 1988), Cox
(1980), Hinkley (1980), McCullagh (1984, 1987), McCullagh and Cox (1986)] to
the unconditional or nonparametric [Hall (1983), Withers (1983), Abramovitch
and Singh (1985), Bhattacharya and Qumsiyeh (1989)]. Expansions are also
useful for procedures which originate from considerations other than
Edgeworth correction, such as bootstrapping [Singh (1981), Beran (1982, 1987,
1988a, b), Hall (1986a, b, 1988), Efron (1987), Liu and Singh (1987)]. The
references given here are, of course, only a small sample of the work done in
the areas concerned.

Until recently, however, asymptotic expansions were only known for estima-
tors based on independent observations [Bhattacharya and Ranga Rao (1976,
1986), Bhattacharya and Ghosh (1978)]. This situation is currently in the
process of changing. Research has been conducted on three different types of
inference situations:

1. Parametric models: Independence assumptions are often not required in the
papers on conditional inference cited above.

2. Models satisfying weak dependence/mixing assumptions [Goetze and Hipp
(1983), Bose (1986¢, 1987, 1988), Jensen (1986)].

3. Markov models [Malinovskii (1987), Jensen (1989)].
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624 P. A. MYKLAND

There are also some papers which are specific for ARMA-processes, such as
Taniguchi (1984) and Tanaka (1986).

The one technique which is conspicuously absent in the literature on
expansions for dependent variables is the use of martingales. Martingales have
been extremely powerful for proving central limit theorems for estimators [see
Hall and Heyde (1980), Rebolledo (1980), Helland (1982), Jeganathan (1982)
and many others] and one would expect this to carry over to expansions. The
program of this paper is to pursue this line of investigation.

We shall in the following present a one-step Edgeworth expansion for
continuous martingales which are asymptotically normal (Section 2). The
results will be for triangular arrays of such martingales. This generality is
useful, inter alia, for a second order analysis of estimators under local alterna-
tives and of bootstrapping (as in Section 3.2).

As an application, we investigate (in Section 3) how this expansion turns out
in the context of unconditional inference in a class of (2, 1) exponential family
models. We study both the Edgeworth expansion for the sampling distribution
and for the bootstrapping estimator of this distribution. The class of models to
be considered are described by having likelihoods of the form

dP, . 1
(1.1) ap, at time ¢ = exp{fQu, — 5021,},
where (u,, 1,) is a sufficient statistic for some process up to time ¢. We shall
impose the condition that the time variable ¢ is continuous, that (u,, I,) is
continuous in ¢ and that I, is nondecreasing. Inference situations covered by
this model include stochastic differential equations of the form

(12) X, =X, +60[a(X)ds+ [v(X)ds+ [v,(X)dB,, t20,
0 0 0

where (B,) is a Wiener process; see Section 4.

Comparing to the i.i.d. case, our results generalize the asymptotic expan-
sions in Goetze and Hipp (1978). The expansions do not hold pointwise—they
hold in a test function topology. This circumvents the problems which have
been connected to finding Berry-Esseen bounds for martingales with a rate of
convergence of n~1/2, This is a rate which is often achieved in our martingale
expansions (see Sections 3.3 and 4), but uniform bounds with such a rate have
only been found under very strong conditions or in special cases. Work in this
area includes Bolthausen (1982), Lipster and Shiryaev (1982), Mishra and
Prakasa Rao (1985), Bose (1986a, b) and Haeusler (1988).

2. Asymptotic expansions for martingales.

. 2.1. Main result: Nonrandom norming. Our purpose is to find an asymp-
totic expansion for a triangular array {7, 0 <¢ < T, T > 0, of continuous
martingales. (I{7,0 <t < T') is defined on a filtered probability space with
probability measure P™. This filtered space can vary with T. A key role
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will be played by the (total) quadratic variation of I{T’ up to time T, I, =
AMYyp =lim, o, ZU" - I{D)?, where the t’s define a partition of [0, T]
and A = max(¢;,, — ¢;). Note that this I, is not yet the same as the one in
(1.1). In Sections 3 and 4, however, they will be the same.

The reason why I, is such an important object can be seen from the central
limit theorem for continuous martingales. The Lindeberg condition being
automatic for continuous martingales, it has the following form [cf. Hall and
Heyde (1980), Theorem A (page 100) and Dambis (1965), Theorem 7]: If there
are nonrandom constants ¢, and b2 with b > 0 and ¢, - ® as T — o, so that

I
(2.1) N
Cr
then
(T)
(2.2) ;7 — N(0,5?) inlaw.
T

In other words, a law of large numbers for I, implies a CLT for l(TT). The
interesting thing is that a central limit condition for I, is the main assump-
tion needed for the asymptotic expansion. In each case, the martingale struc-
ture permits you to move one step further in asymptotic refinement from what
you can otherwise show.

To be precise, the conditions are the following:

THE CENTRAL LIMIT CONDITION FOR I. There are stochastic variables (Z, £)
so that

I 1 (1
(2.3) I =X -82|| > (2,¢ inlaw,asT — w
. bc;‘/zer cr ’ ’ ’

where r; is another normalizing constant, r; — 0.

THE INTEGRABILITY CONDITION FOR Ip. There are constants k& and k,
0 <k <b?<k<x, sothat

(2.4) r_lT (i—:— - b2) Xp, is uniformly integrable,
Xp, being the indicator function of the set Dy, and

(2.5) P™(Dy) = o(ry),

where ~ denotes complementation and

(2.6) Dy = {k < Iz < E}.
T

So far, we have said nothing about the joint distribution of (Z, ¢). In
general, it is only known that the marginal distribution of Z is N(0, 1); see
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(2.1)~(2.2). Further answering this question will be a prime concern later on in
the paper.
The main expansion result is as follows.

THEOREM 2.1. Suppose T is a subset of R* with sup T = «. Suppose that
U,0<t<T), TET,is a triangular array of zero mean martingales and
that the central limit and integrability conditions above are satisfied as T — o
through T.

Suppose that C is a collection of twice continuously differentiable functions
&: R — R satisfying: (i) there is an M > 0 such that |g(x)| <M, |g'(x)| <M
and |g"(x)| < M for all x and all g € C, and (ii) {g": g € C} is equicontinuous
almost everywhere with respect to Lebesgue measure. Then, uniformly in
g €C,as T - «through T, ’

A 1
(2.7) Eg(c—f/;) — Eg(N(0,5%) = ry E(¢8"(b2)) + o(rp).
T

Note that a.e. equicontinuity serves the same purpose here as in weak
convergence; see Pollard (1984), Example IV.19 (page 73).

2.2. Random norming, test function convergence and local martingales. It
is desirable to consider an expansion for the law of I’ /02/? where o, is a
random variable. For example, it could be an estimate of the variance of 1§
Theorem 2.1 extends easily to this case, subject to some conditions on o. In
this section, we shall state this extension and then discuss an alternative
representation for the expansion. Finally, we shall look at how this all works
for local martingales.

The conditions on o, which are needed for a result on random norming are
as follows:

THE CENTRAL LIMIT CONDITION FOR op. There is a b, > 0 and there are
random variables (Z, £*) so that

I 1 oy
(28) W’F—T(a—_bi) _)(Z,f*) inlaw,asT—mo,
T

where b2, ¢, and rp are the same as in (2.3).

THE INTEGRABILITY CONDITION FOR 0. There are measurable sets D} and
a 6 > 0 so that

1+8

(2.9) sup EM

XD?.J < oo,
TeT

Xps being the indicator function of the set D}, E™ being the expectation
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operator of the probability measure P™ and
(2.10) PM(D%) = o(ry).

We are now ready to state the éxtended expansion result.

THEOREM 2.2. Suppose T is a subset of R* with supT = ». Suppose that
(IM,0<t<T), TeT, is a triangular array of zero mean martingales and
that the central limit and integrability conditions for I and o; are satisfied
as T — o through T. Further assume that P™(a; > 0) > 0 forall T € T. Set

(T)
T
(2.11) Fr(x) =P(T)(g%/2 <x

O'T> 0).

Suppose that C is a collection of twice continuously differentiable functions g:
R — R satisfying conditions (i) and (ii) of Theorem 2.1.
Then, uniformly in g € C, as T — o through T,

| 8(x)dFr(x) ~ [ g(x)d®(B™'x)
= rr3E[b™%B%¢" (BZ) — by*%*BZg'(BZ)] + o(rr),
where B is the asymptotic standard deviation of I /03/?, that is,

(2.13) B = bb31.

® is the c.d.f. of the standard normal distribution. Furthermore, for all
ge€C,

(2.12)

1l =
l;; [ (=) d[ Fr(x) — o(87)]

1 1 (1,
< —ME®D|—|— — b2
= 2 rp ( cr )XDT
(2.14) 14571/ +8)
1 (op
+ Mk E(T) _('_ - bi)Xva
rp\Cp

1 _ 1 )
+ Mk;;Pm(DT) + 3Mr—TP<T>(D;),

where k depends on 8, k, k, b? and b2.

REMARK 2.3. To see that the result above is indeed an asymptotic expan-
sion in a test function topology, consider the following convergence type.

DerFiNiTION. If {G1, T € T} is a set of functions of finite variation, set
Gr(x) = o0y(ry) as T — othrough T
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if

sup —- 0 asT — othrough T

geC

for every set C satisfying the description in Theorem 2.1. If the G;’s are
random objects on some space with probability measure @, we write

1 =
— | _8(x) dGr(x)

rel—o

Gr(x) =0 3(rr) asT — xthrough T
if the convergence holds in @-probability. The phrase ‘“as T' — o through T”
will be suppressed when T = R*.
Now let ¢ and ¢, be Borel-measurable functions so that
(2.15) Y(Z)=b"2E(¢1Z) as.,
(2.16) U«(Z) =b2E(£*Z) as.

If we assume that ¢ is absolutely continuous, that ¢’ and ¢, are of
bounded variation on finite intervals and that ¢'(x)exp(—x2/2) — 0, x¢(x)
exp(—x2/2) > 0 and x¢,(x)exp(—x2/2) —» 0 as |x| - », the result of the
theorem can be written as

Fp(x) — (B~ 'x) — rraA(B™'x)$(B ')

(2.17)

=0y(ry) asT — othroughT,
where
(2.18) AMx) =¢'(x) + P(x)x + P (x)x,

¢ being the density of N(0,1).

To see that (2.12) is equivalent to (2.17) under the assumptions on ¢ and
¥4, one needs the fact that Z is N(0, 1). The result then follows by integration
by parts.

REMARK 2.4. It is sufficient for the result to hold that (I{™,0 < ¢ < T') be
an array of local martingales in the sense that for each T there is a sequence
of stopping times {7y}, 7y < T, so that lg‘&(,m n is a martingale for each N,
and so that if we set 7 = lim,_,, 7y and we define I, to be the quadratic
variation of (" on [0, 7), then either T' = 7 or I, = » (or both).

One then has to require that T be such that

(2.19) P(I;<wand op>0) >0 forall TeT,
and to replace (2.11) by

(T)
(2.20) Fp(x) = P<T>( T3 <%

gy

IT<ooandaT>0).

This extension is highly relevant in connection with inference problems; see
Sections 3 and 4. Our proof (in Section 5) of Theorems 2.1 and 2.2 is actually
the proof of this remark.
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2.3. Some initial examples. In the following, we illustrate Theorem 2.1
with some simple cases. Further illustration is provided by Sections 3 and 4.

ExaMpLE. Let (W,) be a Wiener process and let I, be a process which is
independent of (W,). Set I, = W;. If T'/*(I;/T — b®) — £, then Z and ¢ are
independent and ¢(z) = b~ 2E¢ for all 2.

ExaMpLE. Let (I,) = (I12Y) be the martingale which is the derivative of the
log likelihood when estimating 6 in the Ornstein—Uhlenbeck process dX, =
60X, dt + ydB,, where 8 < 0. From (4.13) below, it follows that 5% = 1/2|6|
and that £ = 2b3Z, so that here there is perfect dependence between Z and ¢.
In this case, ¢(z) = 2bz.

ExampLE. Let (I°Y) be as in the previous example and let I°UY be its
quadratic variation. By Dambis (1965) and Dubins and Schwartz (1965), there
is a Brownian motion (W) so that [PV = W,ou. Now set (for some constant A)

(2.21) 1, = max(I2Y, b% + b?AVt)
and
(2.22) l,= W,

I, is now the quadratic variation of (I/,) and the joint limit of
(/YT , YT (I;/T — b?) is, in view of the preceding example,
(Z, max(2b%Z, b?A)). Hence

(2.23) ¥(2) = max(2bz, A).

ExamMpLE. In the previous example, let A be random and independent of
the underlying Ornstein—-Uhlenbeck process. Also suppose that E|A| < c.
Then, from the above,

(2.24) ¥(z2) = 2bz + [2:°°P(A > x) dx.

3. Application to (2, 1) exponential family models: Sampling distri-
butions and bootstrapping distributions.

3.1. Introduction. For the (2,1) exponential families defined by (1.1), the
derivative of the log likelihood is given by

(3.1) 1,(8) = u, — 0I,.

(1(0)) is a (local) martingale under P, [in analogy to Chapter 6 of Hall and
Heyde (1980)]. I is the quantity from (1.1), but it is also the I, which is the
quadratic variation of (1,(9)) (this is seen by using It6’s formula on the log
likelihood and then using that a continuous martingale of finite total variation
is constant).
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The maximum likelihood estimator in this model is 6, = u ;,/I,. Hence

A L7(6
(3.2) (0?—0) = TI(T)

We shall analyze the approximate pivot (““root”) /s (6, — ), where sy can be
one of several normalizations:

nonrandom: s, = ¢,
(3.3) observed information: s; = I,

estimated expected information: sy = E;_I.

Both s; and I can take on unacceptable values, such as 0 and + . We shall
discuss this technical difficulty in Section 3.4. At this point, it suffices to
mention that we shall consider the distribution function

(34)  Fr(x;6) = P57 (67— 6) <0 < I < wand s; < ).

By the remarks at the beginning of Section 2.1, if
(3.5) I, b and T, b2,

CT Cr f
then Fr(x;0) converges weakly to the c.d.f. of N(0, 82), where B = b~ 1b,,.
It is also easy to see that this is also the limit of Fp(x;6;) provided
Ver (07 — 8) = 0Q1). Since Ver by —0) = Op(1), it further follows [cf. Pollard
(1984), Theorem IV.13 (page 71)] that FT(x 6,) converges in probability to
N(0, B?), whence the bootstrap distribution is a consistent estimator of the
underlying distribution.

Thus, both Fp(x;0;) and Fj(x;8;) are close to Fy(x;6) as T becomes
large. Turning to second order considerations, we can compare the Edgeworth
expansions for Fp(x;0), Fp(x;0;) and Fy(x;0;). These expansions are ob-
tained by using Theorem 2.2 or Remark 2.4 on the (local) martingale in (3.1).

We shall du this in two instalments. In the next section, we shall give a
discussion of the expansion terms for the various choices for sr. We begin,
however, by stating formally an expansion result for the root \/T; (07' — ). For
\/c_T_ (8 — 6), the conditions are the same, but the correction term is different
(see Section 3.2). For \ /E, op LT (67 — 0), the correction term is (usually) the
same, but stronger conditions have to be imposed (cf. Section 3.2 and the
derivation of Table 1 in Section 6.1).

All the conditions imposed will be under measure P,, so they do not involve
triangular arrays. We shall consider convergence through subsets T of R*
because this will be useful in Section 3.3.

ProposiTION 3.1. Assume that T is an unbounded subset of R* for which
there are constants b = b(6) > 0, ¢; and rp, cp >0 and rp >0 as T >
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through T, so that

1 (I, .
(3.6) £r(0) = —| — — b%(9)
Irr\cr
satisfies:
(i) Thereis a 6 > 0 such that
(3.7) sup E,|£7(6)]"" < w.
TeT

(ii) There is a Borel measurable function , 1(2) so that whenever

(lT(O)

(3.8) I_’}'/z_’fT(o)) = (Z,§),

in law under P, through some subset of T, then
(3.9) Vor(Z) = b"HO)E(¢Z) P, —a.s.
Then, if Fy is given by (3.4), with sp = Ir, and if by/c; (67 — 0) - a,

(3.10) [g(x) d[Fr(x;67) — ()] — rr5 [Yo,2(x + @) d[$(x)g'(x)]

=o(rr) asT — xthrough'T,

the convergence being uniform in sets of functions g described in Theorem 2.1.
If |g(x)l, 1g’'(x)| and |g"(x)| are all bounded by M, then for all T € T,

1 o
] 8@ dlFr(x;07) - o(x)]

3.11
( ) 1+ 26

<k exp{(m + n)bch(GT - 0)2}

for all n > 0, where k depends on 1, M, 8 and b=23*d sup,, E,|é4'*° only
(and in particular not on 8 or {01} < 1)

If , ¢ satisfies the differentiability and growth conditions described in
Remark 2.3, then the expansion in (3.10) reads

Fr(x;07) — ®(x) — regdy o(x + a)d(x)

(3.12)
= 0y(rr) asT — othroughT.

Note that the bound (3.11) is useful in deriving results on coverage probabil-
ities for bootstrap- and Edgeworth-based confidence intervals; see Part II of
Mykland (1989).

3.2. Expressions for the expansion term for different choices of sp. Let
0y =0+ ab ;2 + o(cz /%), where a is a local parameter in a contiguity
neighborhood of 8. Under conditions to be discussed below, the asymptotic
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TaBLE 1
Form of A for different roots

Form of A, ,(x) Fp(x;67) — Fp(x30)
Root B Lo under (3.16) =0p, 2(ry)?
‘/c_T(éT - 0) b1t R(OX1 — ax — x2) — k(8)x Typically no
VIr by -0 1 k(8) Yes

]/E;,TIT b7 -0 1 k(0) Yes

expansion for Fr(x;07) is
(3.13)  Fp(x;07) — B(B %) — rride o(B'%)$(B ) = 05(r7),

where A, , is given by Table 1. The expansion for Fr(x; 6,) is then immediate
[cf. Theorem IV.13 (page 71) of Pollard (1984)]. The last column in Table 1

answers the question of whether
(3.14) Fr(x;87) — Fr(x;68) = 0p, o(71),

which, when true, may suggest that the bootstrapping distribution asymptoti-
cally is a better estimator of Fr.(x;#6) than is the asymptotic distribution.

The two last roots in Table 1 have asymptotic distribution (i.e., B) indepen-
dent of 6, while this is not true for the first one. The relationship between
(3.14) and the independence between B and 6 is consistent with the conclu-
sions from the iid case, see, for example, Beran (1987) and Beran (1988b).
Since this is a parametric model, it is also intimately related to results on a.e.
automatic invariance, like those in Le Cam [(1986), Chapter 8]. We pursue this
further in the next section.

The condition for (3.13) to hold is, clearly, that I{’ = 1,(6;), I, and
oy = 12/s, satisfy the assumptions of Theorem 2.2 or Remark 2.4. For the
case sy = I, sufficient conditions are stated explicitly in Proposition 3.1.

The form of A, , can be related to that of A, o, since an argument akin to
Le Cam’s third lemma (see Section 6.1) yields (in similar notation) that

(3.15) Yp,a(%) = thyo(x + a).
Table 1 then follows if we assume that ¢, , has the form
(3.16) Yo, 0(x) = k(0)x + x(0).

This is, in fact, typical, as will be clear from Section 3.3 and Section 4. The
table, together with (3.15), is derived in Section 6.1.

3.3. The form of ¥, and ry: Uniformity conditions. It is usually the case
‘that one can take r; = ¢;'/? and

d
(3.17) o r(2) = 2b(8) ° =50%(6) + constant,
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where b% = b%(9) is the asymptotic variance of [;(6)/c3? under P,. This
explains our assumption (3.16). Also, it means that the convergence rate in
this expansion is of the usual n~/2 form: If ¢, = T (which it is in asymptoti-
cally ergodic situations), then r; = T~1/2, This rate has been very difficult to
obtain for martingale Berry-Esséen bounds (cf. the remarks at the end of
Section 1).

In the asymptotically ergodic case, therefore, the expansion has a very
standard appearance. For example, if F(x;0) is the distribution of I3/%(8, — 6)
under P, [as in (3.4)], then

(318)  Fp(x;07) = ®(x) + 3TV n(x) + 0p(T71/%).

It is not necessary that ¢, = T. In particular, ¢; can be anything that is
continuous and increases to infinity. Any such rate.c; can be obtained from
any other by a nonrandom time change. For a natural example of this kind of
time change, see Proposition 4.2. However, (3.18) remains true, with cz'/2
replacing T~ 1/2,

To back up the above statements with theorems, we shall do two things.
One is to show that they are true for specific differential equation models, as in
Section 4. The other is to impose some uniformity in 6 and use the kind of
argument that, for example, leads to the Hajek-Le Cam convolution theorem
or the a.e. automatic invariance of limits. See, for example, Le Cam [(1986),
Chapter 8]. That is what we shall do in this section.

We rely on the following assumption:

AssumpTioN H. (cr) and (r;) are independent of 6 € ® and there is a
& > 0 such that, for some T,

(3.19) sup E,|&0(0)|'"° < o
T>T,, 00

ProposITION 3.2. Let ©® be an open interval satisfying Assumption H.
Then, if liminf, rT‘/E < o, we have that b*(0) is Lipschitz (and hence
absolutely) continuous on O; if liminf, r,_,.‘/; = 0, then b%(0) is constant
on 0.

Further, assume that T is such that d =limy_,, rcq r,_,.\/t—:f_,._ exists (in
[0, D) and such that y, ¢ exists for all 6 € ©. Then, for almost all 6 € ®
(under Lebesgue measure), there is a version of i, y satisfying

(3.20) Yo, 1(2) = d7'k(8)z + Eyy x(N(0,1)),

where » - 0 = 0 and

s d s
(3‘.21) k(6) = b(6)~® %b2(0), if hTr'n_)lgf rpyfep < o,
0, otherwise,

whenever the right-hand side is well defined. If W, y(N(0, 1)) is continuous in



634 P. A. MYKLAND

law as a function of 0, then (3.20) holds for all 6 € ® for which k(8) is well
defined. ‘

It is, of course, unfortunate that Proposition 3.2 does not give any informa-
tion about the pointwise form’ of ¢, ;. For this we need some uniform
convergence.

ProPOSITION 3.3. Let ® be an open interval around 0 satisfying Assump-
tion H and suppose that k(6) is well defined ( for this specific ). Assume that

(3.22) lim [Ey £r(6r) — Egér(6)] = 0

whenever \Jcz (67 — ) = O(1). Then, whenever T is such that ¢,y and
d=limy ., rerrp/cr exist, Y, ¢ has the form (3:20).

If Assumption H and the conclusion of Proposition 3.3 hold, then Proposi-
tion 3.1 yields that

(3.23) Fr(x;07) = ®(x) + 3¢7'2k(8)$(x) + 05(r7).

Note that the assumptions of this section can be weakened somewhat
(particularly in Proposition 3.3), at the expense of greater technical complica-
tion.

3.4. Some technical issues: Describing the CL(2,1)EF. The 6’s for which
(8.24) E,exp{0ur — 36%I;) =1

(E, being the expectation operator at § = 0), may not be the entire real line.
Hence (1.1) may not define the family {P,}, g. This is a somewhat complicat-
ing factor, both when carrying out maximum likelihood estimation and when
trying to say something about local alternatives or bootstrapping distributions.
It raises the question of whether a natural extension of the family (1.1) exists
even when (3.24) does not hold.

Such an extension should, at least, provide the correct probability distribu-
tion for the solution of the stochastic differential equation

(3.25) X,=X,+0[a,(X)ds+ [v(X)ds+ [(X)dB,, t>0,
0 0 0

irrespective of whether (3.24) is true or not. [If (3.24) is satisfied, P, is given by
(1.1), with u, and I, given by (4.2)-(4.3) below; cf. Chapter 7 of Liptser and
Shiryayev (1977) and alsc our discussion in Section 7.1.]

Such an extension does exist, and we shall call such models continuous local
(2, 1) exponential families—CL(2, 1)EF for short. A similar approach has been -
used by Sgrensen (1983).

DerFINITION. A CL(2, DEF is a family {P,}, . g of probability distributions
(on a filtered probability space) which are mutially absolutely continuous up to
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(stopping) times 7y, N = 1,2,...,s0 that
ap, .. 1,
(3.26) 2130— at time min(¢, 7y ) = €XP{0U min, ) — 50 Lningt, ) [ 2
with (u,, I,) continuous on [0, 7y] for all N and u, = I, = 0. It is required of
Ty to satisfy that if 7 = limy_,, 7y, then either 7 = « or I_ = o (or both).

For 7 one can, for example, take
(3.27) ry = inf{t: I, > N, |l,| = N}.

Families of the type (1.1) are a special case by taking 7y = « for all N. The
CL(2, 1)EF, however, extends to all stochastic differential equation models
(3.25) satisfying a unique solution condition, see Section 4.1.

The distribution under P, of 6, given I > 0.is now defined for all 8
provided Py(I; > 0) # 0, see (3.28) below. The condition P(I;>0)+#0is
natural because otherwise, for all 8, dP,/dP, =1 a.s. at time T [since then
(2)o < < is a martingale with quadratic variation zero, and hence is zero].

The distribution of 8, conditional on I > 0 is obtained by using the
following:

P,(b; € Aand I > 0)
=P(bpcAand I;>0and7<T)
+ Py(dpcAand I; > 0and 7> T)
=x{6 €A}P,(r<T)
+ lim P(dy€Aand I;>O0and 7y > T)

N-oow
— x(6 € A}P(r < T)

(3.28)

+ lim E, x{or € Aand Iy > Oand 7y > T}

« %o ot time min(T
ap, at time min(T, 7y) |-
Note that 6, = § when 7 < T because [7(6)/Ir — 0 as I > «. This follows
from Lepingle (1978), see also Sgrensen (1983).
Finally, note that for a CL(2, DEF, (1(67),0 <t <T ) is always an array of
P, -local martingales (in the sense of Remark 2.4), with quadratic variation Ir,
(still using the convention that I, = © when 7 < T).

4. The case of stochastic differential equations.

4.1. Introduction. In the following, we shall consider the differential equa-
tion

(4.1) X,=X,+0[a,(X)ds+ [v,(X)ds + [+(X)dB,, =0,
0 0 0
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where (B,) is a Wiener process. a (), v(x) and y(x) are measurable function-
als on the space of continuous functions x on [0, ), satisfying that a,(x), vt(x)
and y,(x) only depend on (x,,0 < s < ¢). For simplicity we shall write a, =
a(X), v, = v(X) and vy, = y(X).

For references on the application of such models, see, for example, Malliaris
and Brock (1982) (economics /finance) and Viterbi (1966) and Kushner [(1984),
Chapters 8-10] (engineering).

The relationship to (2,1) exponentlal families is that (4.1) is a CL(2,1)EF
provided there is a unique solution, in a sense to be defined below. The
connection is that

(4.2) Up= [o a, v 2(dX, — v, ds)

[the integral is the stochastic integral over an Ito-process; see Liptser and
Shiryayev (1977), Chapter 4] and

(4.3) I = [‘a¥y;?ds
0

The exact definitions of existence and uniqueness (weak uniqueness) of
solution of (4.1) are relegated to Section 7.1. The essential content of the
concept is that (X,) is a solution if (4.1) is satisfied from time 0 until
termination time, which is either time + or the time when I, becomes +,
whichever comes first (we do not, for example, permit processes which run off
to infinity in finite time and leave behind finite information). The solution is
weakly unique if the probability law of the solution (X,) is unique (up to
termination time).

Existence and uniqueness of solution of (4.1) can be proved under Lipschitz
and /or integrability assumptions on the coefficients; see Liptser and Shiryayev
(1977) or the references mentioned at the beginning of Section 7.1. A formal
statement of the CL(2, 1)EF-ness of the differential equation is as follows.

LemMA. If (4.1) has a solution for one 0, it has a solution for all § € R. If
the solution is weakly unique for one 0, it is weakly unique for all € R. In
this case, the family of processes defined by (4.1) is a CL(2,1)EF, with uy and
I, given by (4.2)-(4.3).

The above lemma generalizes similar results (where termination time =
+); see, for example, Liptser and Shiryayev (1977, 1978), Basawa and
Prakasa Rao {(1980), Chapter 9.5, Elliot (1982) or Kutoyants (1984) and also
the results of Sgrensen (1983).

An important problem when dealing with stochastic differential equations is
that it is very hard to get at u, and I, both when observing the process and

‘when simulating it. Usually they can, however, be approximated arbitrarily
well by observing/simulating on a grid. This is usually consistent as the grid
gets finer, see, for example, Stroock and Varadhan [(1979), chapter 11.2, page
266-272] and Jacod and Shiryaev [(1987), Chapter IX.4b, pages 516-523].
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In the following we shall verify existence /uniqueness and the conditions for
Proposition 3.1 and find ¢, ¢ for first order stochastic differential equations.
The conditions can also be satisfied for higher order linear differential equa-
tions, see Mykland (1989), Section I1-4.3.

In both examples we have used Markov methods. One can also use mixing
conditions to check the assumptions of Proposition 3.1, since these also give
central limit theorems. Mixing has previously been shown to yield good
expansion results directly [see Goetze and Hipp (1983)].

4.2. First order differential equations. Consider the equation
(44) dX, = 6a(X,) dt + v(X,)dt + y(X,) dB,,
and assume that y is continuous and positive and that a, v, y and y~! are
locally bounded. We shall state conditions under which ¢, 1 is affine and on

the form given in Section 3.3.
Also assume that

X 22 . 0 - (e ]
(4.5) fo exP{"fo (Oa(i'()y;-zv(y)) dy} dz - {“_Loo: s iw:

and that
® _2 22(0a(y) + v(y))
(4.6) | @ exp{ A )

Under these conditions (see the beginning of Section 7.2), (4.4) has a unique
solution and the process is strong Markov and asymptotically ergodic with
limiting distribution given by

dy} dz < o,

22(08a(y) + v(y))
dy} dz,
fo y(y)* y} i

where D, is a constant which normalizes m to a probability measure. If we
further impose the condition that

(4.8) b(0)” = | a(2)*v(2) " dm,(2) < =,

then I;/T — b(6)? in probability [see Rogers and Williams (1987), Theorem
(53.1), page 300] and hence /T (87 — 6) is asymptotically N(0, 1) under P,. As
far as expansions are concerned, we have the following result:

(4.7) dm(2) = Dyy(2) " exp{

PROPOSITION 4.1. Assume the above conditions. Set

hy(x) = Dy exp _fox2(6’a(y) +2v(y)) i

ijm2[a(z)2y(z)—2 — 5(0)?] dm,(2),
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and assume that for some § > 1,

(4.10) [ Iho(=) (@) dmy(2) <o
and
(4.11) N foxho(z) dz +6alm,,(x) <o,

Also assume that X, is nonrandom. Then the conditions of Proposition 3.1 are
satisfied in the following way: T = [1,©), ¢; = T, rp = 1/ VT and
1+6

(4.12) sup Eg|é0(0)] 7° < 4o,
T=1

Further, (17(8)/b(OWT , £4(8)) converge jointly in law under P, to a normal
distribution with mean 0 and covariance matrix
1

0}

oy Ak dmy(x) [ k() ()" dm(x)

1 [ a(x)ho(x) dmo(x)

(4.13)

In particular, Y, = ¥, ¢ is well defined and we can take

(4.14) Uo(2) = —2b(0) * [~ a(x)ho(x) dmy(x).

A small bit of algebra shows that ,(z) = zk(6), where % is given by (3.21).

4.3. Some remarks on nonhomogeneous equations. To illustrate the fact
that (c;) can have any form so long as it is continuous and increasing and
tends to +x, we shall study time changes in the model

(4.15) dX, = 8a(X,,t) dt + v(X,,t) dt + y(X,,t) dB,.

Assume that (X,) follows (4.15) and that Y, = X,,,, where A(¢) is a nonran-
dom, increasing and differentiable function. It is easy to see that Y, satisfies

(4.16) dY, = 06(Y,,t) dt + i(Y,,t) dt + 7(Y,,t) dB,,
where (B,) is a Brownian motion and where

(4.17)  a(x,t) =a(x,A(2))A(2), O(x,t) =v(x, A(t))A(t)
and

(4.18) F(x,t) = y(x, A(t))VA(2) .

If I and I, are the informations for (4.15) and (4.16), respectively, then
Iy = 1,,. This immediately yields:
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PROPOSITION 4.2. Assume that the model (4.15) has a weakly unique
solution and satisfies condition (i) of Proposition 3.1 with some choice of T,
(cg) and (ry). Then (4.16) satisfies the same conditions with the choices
AT, (cay) and (raq). If W, q exists for the model (4.15), then W, ,-ipy
exists for the model (4.16) and they are the same.

We have not investigated when processes of the type (4.15) satisfy the
conditions of Proposition 3.1. It seems, however, that if sufficiently many
conditions are imposed, the asymptotically homogeneous case can presumably
be tackled by methods akin to those used in Takeyama (1985).

5. Proof of Theorems 2.1 and 2.2.

5.1. Reformulation and truncation. This is actually the proof of the more
general version described in Remark 2.4. Assume for simplicity that b = 1.
The proof is similar in the general case. For now we assume that o = ¢,. We
derive the case o, # cp in Section 5.4. It is assumed that T € T.

Truncation will be done with constants k¢ and % from the statements of the
theorems. Truncated processes are given by

(5.1) I,= max(min( I, ker), ker)
and

. 1[I,
(5.2) §T=;;(;;—1).

By the Dambis-Dubins-Schwartz theorem [see Dambis (1965), Theorem 7 or
Dubins and Schwartz (1965)], there is a filtration (G{"’), possibly on an
extension of the space (Q™,F™, P(M) so that there is a (G, P™)-Wiener
process (W) so that W™ = I{™ for 0 <¢ < T on {I; < »}.

If g is as specified by Theorem 2.1,

J&(x) dFp(x) — [g(x) do(x)

(5.3)
- o s{er o) - s(cr )] +
where
Ry = EO[g(c WD) — g{es W1y < ]
(5.4) - {E<T>[g(c;1/2WISTT>)|1T - «|

~E®|g(cz 2 W) |17 < oo]}P(IT = x).
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Now,

|Rp| < 2MPT (I # I|I; < ) + 2MPD(I = )
< 4MP™(D;) = o(ry)

by (2.5). Furthermore, we have:

(5.5)

LEMMA 5.1. Assume that g is twice continuously differentiable and that |g|,
|g'| and |1g"| are bounded by M. Then

1
(5.6) ;;E‘T’[g(CE 12WD) - g(ezV/ 2Wc‘f’)] =EDME(g),
where )

1
(5.7) Br(g) = P g"(crV2W™) ds.

ProoF oF LEMMaA 5.1.  Since (W ™) is a (G{T?)-Wiener process, It6’s lemma
[see, e.g., Theorem 4.4 (page 122) of Liptser and Shiryayey, (1977)] applied to

&(- / yJer) yields
o{er WD) - a(c W)
(5'8) — Ir,—1/2 0 ( .—1/27(T) (T)
="Tf:T(g)+j; °r g(cT v, )dWS ’
T

Taking expectations (under P™), the second term on the right-hand side of
(5.8) vanishes. This follows from the optional stopping theorem [see, e.g.,
Theorem V.11 (page 8) of Dellacherie and Meyer (1980)] since I, is a (G,)-
stopping time and since

(5.9) ED j 1[(c71/2)g (c7/2W™)]|* ds < M? [ ezt ds <.

CTk

Hence Lemma 5.1 is proved. O
5.2. Limit for ETE,. Define the measure M;: on R by
Er. T
1
(5.10) M;#(B) =E™— jm“‘cf ’T’ X(c‘1/2W(T) € B) ds,

where y is the indicator function. If MT is defined analogously and M, =
M7} — Mz, then

(5.11) ETE.(g) = [~ g'(x) dMp(x).

For an arbitrary continuous and bounded 4, set
(5.12) XD = Lerth(czV2W D).
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Note that
1
(5.13) [h(x) dM(x) = —E [m=CrIxD g,
-« Frp cr
On the set {1} > ¢y}, define w, by
(5.14) a)T = inf{t > CT: (iT - CT)A(tT) = fiTA(g‘) ds} .
cr
By the mean value theorem, w, exists,
(5.15) wr € int[cp, I
and

1 1. 1. (WD
(5.16) ;—[“‘““"’T’if’xpds = (I —ep) XD = Ef;h( z )

T “cr rr

Furthermore, by the continuity of A7, w, is a random variable (but it is not,
in general, a stopping time). W,,ff) is then also a random variable (since the
Wiener process is continuous). Thus, the equality in (5.16) is also true for the -
expected values of each side.

Expressions (5.13) and (5.16) will then give us the needed limit in view of

the following result.

LEMMA 5.2. Let wy be a random variable, oy € intlcg, I;] P™-a.s. Then,
whenever the convergence in (2.3) holds,

wao
(5.17) ==, &r
Ver
in law under P, where £, is defined by (5.2) and Z and ¢ are defined in
Section 2.1.

- (Z,¢) asT — othrough T,

ProoF OF LEMMA 5.2. In view of the Burkholder-Davis—Gundy inequality
[see, e.g., Theorem (2.34) in Jacod (1979)],

2 ~
W, - W, 1
(5.18) ED|  sup (—T) < kED| L _ 1],
seint{cy, I] \/a Cr

where k is some constant. In view of condition (2.4), this yields that

W, - W,
(5.19) sup —

seintley, I7] Ver

in probability. The result now follows from w; € int[cy, I], the representa-
tion /{7’ = W, and from (2.3). O

-0 asT - x
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If we define the finite signed measure M by M(B) = E¢x(Z € B)/2, then
(2.4), (5.13), (5.16) and Lemma 5.2 yield that M; converges weakly to M *.
Similarly, M; converges weakly to M~. Since M is absolutely continuous
w.r.t. Lebesgue measure (the dénsity being ¢ /2 in the notation of Remark
2.3), the following result follows from Example IV.19 (page 73) in Pollard
(1984).

Lemma 5.3. Let T, -  as n — » and let h, be a sequence of bounded
functions which converges to h pointwise and which is equicontinuous a.e.
under Lebesgue measure. Then

(5.20) [hu(x) dMp, > [h(x) aMm.

5.3. Tying the case op = cp together. The statement (2.14) with the sec-
ond and fourth terms equal to zero follows from (5.3), (5.5) and (5.6).

As also follows from (5.3), (5.5) and (5.6), to see (2.12) it is enough to show
that, uniformly in g € C, as T — » through T,

(5.21) EMEL(g) > Ez¢8"(2).

To prove (5.21), it is obviously enough to show that for every sequence
{T,,g,), T, > » through T as n >» and g,€C for all n, there is a
subsequence (T, , g,,,} so that

(5.22) ETWEy, (8,,) — E3¢8,(Z) > 0 as k> o,

In view of {g"} being bounded, there is a subsequence {7}, , g,,) and a g so that
g, — &' pointwise and so that {7, J} € T. This will be our choice of subse-

quence.
First, note that

(5.23) EDitgl(Z) » Ebeg'(Z) sk — .
This is because the conditions of the theorem imply that ¢ is integrable, so
(5.23) follows from dominated convergence.

Second, (5.11) and Lemma 5.3 show that if {g; } is equicontinuous a.e.
(Lebesgue), then as k& — o,

(5.24) ETwWEr (&,,) — :B68"(2).
Hence the result is proved for the case ¢y = o7.

5.4. The case oy # c¢p. We assume that b, = 1. The general case follows
from altering ¢, and &*.
A one-step Taylor expansion yields

15 bk 1(or 15
— | = T - = = —3/2 _T__ (%
(5.25) g(a%/z) ‘g(c;‘/z 9 (CT l)zT ‘—c;‘/zg (ZT),
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where

ox P
(5.26) z2p € mt[;, 1] and zF €int vl c;/z .

Set, for some &, € (0, 1),

or
(5.27) D%* = Dy N —zk*}.
Cr
Using the Hélder inequality on (5.25), for r > 1, we get, where p~' +
g7 ' =1,
l‘TT) l(TT)
|:g(0_11‘/2 - c;‘/z XDy D§* )
1 UT _ l(TT)
rp T rq
Y [ k382C, k
< E ; - X D% o * rq

since D3* C D% and by the Burkholder-Davis-Gundy inequality [see Jacod
(1979), Theorem (2.34)]. [If & = », make it less than « by the reasoning used
in (5.29) below.] C,, is an absolute constant. Also,

P(Df*) = P({2 < k*} nD;) + P(D%)

Cr
(5.29)
T
( Cr )XD”T‘

<(1 _k*)_l

+ P(D3),
1

by Chebyshev’s inequality.

At this point, (5.28)-(5.29) yield, in view of (2.5), (2.9) and (2.10), that (2.14)
holds. This is because it holds when o = ¢, with the second and fourth terms
equal to zero (see beginning of Section 5.3). Also, we can conclude that (5.25) is
uniformly integrable. The result then follows from (2.8) in the same way as we
proved the result in Section 5.3.

6. Proofs for Section 3.
6.1. Proofs of Proposition 3.1, Table 1 and (3.15).

PROOF OF PROPOSITION 3.1. In the conditions for Theorem 2.2, let o7 = I
and D} = Dy. Assume that k and % are chosen so that 0 <k <b® <k < .
Let 0 < £ < 6. Let I, W™ be as in Section 5.
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We need bounds on the quantities in (2.14).

1+¢ 1/(1+8)
E Ir —~ b2
[ . re\cp XDy

1+e¢

1 1/(L+e)
Xexp{ (07 — )W, — = (67 — 0)*I;
2

(in view of the form of dP,_/dP,)

I
_( T bz)XDT

rp\Cr

1+¢

< |E,

1 1/(1+€)
XeXP{(OT - 0)Wg., — E(OT - 0)2501'}]
(by the martingale property of exp{(8, — )W, — (8, — 6)%t/2})

I
ey =)o

rp\cCr

<

Ip(1+¢)
1/(1+¢)

1 -
X exp{(GT - 0)Wg., — 5(0’-" - 0)2ch} \

I(IT b2)

rp\Cr

Xexp{ — ! ———2 ! cT(GT—ﬂ)2
q(1+¢) ’

since Wy, is N(0, kcy), where p™' +q~' = 1and |- ll, = (Bl - PyL/P,
On the other hand, by the same reasoning as in (6.1),

(6.1)

<
Pr p(1+s)(q -1

q )1/(1+s)

1
r_TPoT(DT) = "_T( - POT(DT))

1 1 -
= (1 = Eoxp, exP{(OT = 0)Wge, — E(OT - 0)2ch})
T
1(1 1 —
=m —( d b2)XDT eXP{(oT - G)Wk'cT - 5(01' - o)"ch}
rp\Cr p q
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[by Chebyshev’s inequality, with m ~! = min(k — b2, b2 — k)]

1[I, q 1_qg%2-1
2 |2 _p2 - iy S —9)2}.
(6.2) <m "T (CT b )leT ( )exp{zk p cr(0p — 9)

qg-—-1

Now choose some 1 > 0. It is easy to see that there are ¢, 0 <¢ < §, p, q
(p~'+q '=1)and & > b2 so that

.o

_q?2-1 1+26 .
(6.3) k p =(6(1+6)+2n)b
and
(6.4) p(l+e)=1+34.

Thus, with ¢ replacing 8 in the conditions of Theorem 2.2, the integrability
assumptions of this theorem are satisfied and (2.14) implies (3.11). Proposition
3.1 then follows from Theorem 2.2 and Remark 2.4 in view of (6.5)-(6.6)
below. O

Proor oF FormuLA (38.15). It follows from the joint limit law of

1o 1 (I dP,
(6.5) T(T),——T—b2, 9T,
byep rpl\er dP,
under P,, which is that of
1
(6.6) (Z — a,§,exp{aZ — —2-a2}). O

Proor oF TABLE 1. The cases sy = Iy and s; = ¢y follow from (2.18) in
view of (3.15). As far as the case sy = E; I is concerned, we need slightly
stronger conditions than in Proposition 3.1 to satisfy the integrability condi-
tions. It is clear from Propositions 3.2 and 3.3 that Assumption H in Section
3.3 is sufficient, since then
(6.7) Py(lér - 6] > €) = o(ry)

(using Proposition 3.1 with ¢ instead of I;). Under (3.15), if ¢ has the form
(3.16) and if by/c; (67 — 6) > a,
1/(E, Iy
6.8 — | ==
co |5
as T — . Thus, by Theorem IV.13 (page 71) in Pollard (1984),

1 /(s A

(6.9) r—(C—T - b2) = b2[k(8)by/cy (B — 8) + K(8)] + 0,(1),
T\ Cr

whence, in terms of Section 2.2, ¢* = k(8)Z + «(8). The statement in the table

then follows from (2.18). O

- b2) - b2E,y o(Z) = b2[k(0)a + x(0)]
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6.2. Proofs for Section 3.3. Suppose Assumption H. _
() Let I, have the same meaning as in (5.1), with k=0 and k>
sup, < o ()% Set

; -1 (T
(6.10) £r(0) = ;(i - b2(0))-

Also do the same construction as in Section 5 to let (W,(6)) be the Brownian
motion satisfying W;(6) = [,(6). Analogously to the derivation of Table 1 in the
previous section, if ¢, y exists and T — « through T,

(6.11)  Ey £7(6) — b%(0) Egiyy 1(Z )exp{ab(6)Z — 1ab(6)’}

if ez (87 — 6) > a and

- Wi (9) 3
(6.12) Ey¢r(0) \/c_ - b(0) Eo%,'r(z)z’
T

with the left-hand sides bounded by a constant which only depends on
Supgc o 1 Elé7(0)'*® and 5.
If 6,0, € O, then by the form of dP,_/dP, and by Fubini,

o I, o _ Ip 1 25
39505 = 9B ex@| (6 = 0)Wi(00) = 30 -~ 00
I~T -~
= Eo,(Wi(60) = (6 = 65)I)
(6.13) T

1 -
Xexp{(O - ao)WiT(oo) - 5‘(0 - 00)217'}
. Wi(8)
= rpyep Egép(0) ——.
TVCr £oST \/Z
In other words, if 6,,0, € 0,
I I 6, 2 .. Wi (0)
— —Ey— =rp/ 'E, 0) —=
ep ¢y rrp CTI;O of7(0) ‘/a

If lim inf rp/c; < , there is a sequence {T,} such that d = lim, _,, rr.y/cr, is
finite and such that ¢, (r,) exists for all § € ® (by Tychonoff’s product
compactness theorem). Since the Lh.s. of (6.14) converges to b%8,) — b%(8,),
(6.12) and (6.14) yield

(6.15) b%(8,) — b2(6,) = d [0 "b(0)° Eyt, z. (Z) Z 6.

dé.

(6.14) E,

This is because the convergence in (6.12) is dominated. As it is, in fact,
dominated by a function of # which is constant on 0, it also follows that 52(-)
is Lipschitz continuous. If d = 0 (which can be arranged for some subsequence
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if lim inf rﬂ/; = 0), b*(-) is constant. Hence the first part of Proposition 3.2
is proved.
(ii) Now

sup E,|¢7(0) = &£(9)]
(6.16) < sup E,|¢7(0) |x{|£r(0)| = r7 - constant)
(=10

-0 asT - o,

since uniform integrability follows from Assumption H. Combining (6.16) with
(6.11) yields that if \/c7.(8; — ) > a for some § € ® and some a € R and if
Yy, 1 exists, then

li E —E ¢.(6
(6.17) T-»oglql'e'r o, $7(0) o€ ( )]

= b%(0) Eo05, 1(Z) [exp{ab(6) Z — 3a2b%(6)) - 1].

On the other hand, if k(6) is well defined and d = limg_,, reyrpy/er exists,
then

(6.18)

d
b2(0T)r; b%(6) R {ad*%bz(o), if lim inf rpy/ep <,

0, otherwise,

still with the convention that 0 - © = 0. Hence, under the conditions which
lead to (6.17) and (6.18),

(6.19) plm (B, £0(6r) — Eyér(0)] = £(6, ),

where
f(8, @) = b%(8) Eyyy x(Z) [exp{ab () Z — 2a?b2(6)} — 1] — ad~'b%(8) k(6)
(6.20) =0b%(6)Ey[v5,1(Z) — Egp,1(2) — d~k(6)Z]

Xexp{ab(0)Z — }a?b%(0)},

since EZ exp(abZ — (ab)?/2) = ab. Obviously, if f(0, a) = 0 for almost all a
(under Legesgue measure), then ¥y, v has the form (3.20).

(i) If T is as described in the statement of Proposition 3.2, then (6.19)
holds whenever f(6, a) is defined, that is, almost everywhere [in view of (ii)].
On the other hand, Assumption H yields that, by dominated convergence,

(6.21) [9 [ Egpaeirnér(0 + acgi/?) — E,£7(6)] d6 > 0
(]

as T — o through T, for 6,, 0, € ©. Combining this with (6.19) gives that, for
all a,

(6.22) [ f(6,a)do =o0.
0o
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From this, (6, @) = 0 for almost all « € R for almost all § € ©, whence (3.20)
follows for almost all 8 € ©. Since

[ £(8,) do
0o

61
= —aB(6)) + ["6%(0) By, x(2) [exp{ab(6)Z ~ 3a*b*(0)) - 1],
]
with
b%(8,) — b%(6,), if lim inf rpy/er < e,

B(6,) = x
0, otherwise,

continuity in law of ¢, r(Z) and Assumption H combine with (6.22) to yield
f(8,a) =0 for all « € R for all § € ® for which k(6) is well defined, whence
the last statement of Proposition 3.2 is proved.

(iv) If T is as described in Proposition 3.3, (3.22) combined with (6.19) shows
that (3.20) is satisfied whenever k(9) is defined. O

7. Proofs concerning stochastic differential equations.

7.1. Comments and proof for Section 4.1. The most convenient way of
looking at (4.1) is to consider it as a martingale problem on a canonical space,
see, for example, Jacod (1979), Stroock and Varadhan (1979), Jacod and
Mémin (1981), Lebedev (1983). In this setup, Q is taken to be the set of
functions x from subsets of [0, ) into R for which there is an S € (0, «] so
that (i) x is continuous on [0, S); and (ii) S = +x, or lim, _, 5- x, either does
not exist or is infinite.

Since there can be only one such S for each x, set S = S(x). (F,) is the
smallest right continuous filtration with respect to which the identity process
(x,) is adapted for x € Q and F, = V,F,, the smallest o-field containing all the
F,. Nothing is lost by this assumption, for there is a one-to-one correspondence
between this canonical system and the relevant part of any other filtered
measurable space [see, e.g., Jacod (1979), Chapter IV-4-a]. For all x € Q, set,
for 0 <t < S(x),

(7.1) mé(x) = x, — ofo‘as(x) ds — fotvs(x) ds,
(7.2) ol(x) = /O‘ys(xfds,

(73) I(x) = [a,(x)"r(x) " ds
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[where a (x)2y,(x)~2 is set to 0 if both @ and vy are 0 and to + if y is 0 and
a is not]. Also set (inf of empty set being equal to «)

(7.4) 7(x) = inf{s < S(x): I,(x) = =},
(7.5) A(x) = inf(s < S(x): L(x) > £},
(7.6) G,=F,

and

(7.7) G.=F,_.

S, A, and 7 are stopping times; see Dellacherie [(1972), Chapter II1.3 (pages
52-57)] or Rogers and Williams [(1987), Chapter VI.17 (pages 343-346)] for
the definition of (7.6)-(7.7). Note that the definitions above are made without
any reference to any probability, and that, except for m®, the objects are
always well defined. Also note that

(18) 7(x) = lim A(%),

whence [see Theorem T35 (page 55) of Dellacherie (1972) or Lemma 17.9 (page
345) of Rogers and Williams (1987)]

(7.9) F,_= V,F,.

The equation (4.1) is defined by 6, the functionals a,, v, and y, and by a
distribution for X,,. A solution (weak solution) of this equation under 6 is a
probability measure P, on F,_ (or, equivalently, on F,) which satisfies that (i)
S(x) = 7(x) Psas.; (ii) x, has the prespecified distribution under P,; and (iii)
(m®) exists and is a local martingale under P, with quadratic variation o, for
0 <t < 7. The solution is weakly unique if two solutions P, and P, must
coincide on F, _.

Proor oF LEMMA: EXISTENCE. Let (4.1) have a solution P, for 6. We shall
show that it has one for 6.
Let 1 ,(0) = u, — 61,. Set, for all T € R*,

(7.10) UT = Lo, ap(9)
and
~ 1,7 2
(7.11) Fr = exp{(6 — )14, (8) = 3(6 - 0) 'L, }.
Since I, < T (since I does not jump), E, fy = 1, and we can define on F, ,
(7.12) dQr = fr dP,.

By Theorem 1.1.9 (page 17) in Stroock and Varadhan (1979) [condition (1.1.9)
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in that book is verified in roughly the same fashion as in the first half of the
proof of Stroock and Varadhan’s Theorem 1.3.5 (page 34)], there is a unique
probability measure @ on F._ so that

(7.13) Q(E) = Qr(E)

forall E€F,, .

Since P, and @ are equivalent on F, , S(x) > A;(x) Q-as., and hence
S(x) = 7(x) Q-a.s. Also, the generalized Girsanov’s theorem [see Jacod and
Mémin (1976) or Chapter IV.38 (pages 79-83) of Rogers and Williams (1987)]
yields that m? is a local martingale under @, for 0 < ¢ < A, with quadratic
variation ;. By (7.8), this also holds for 0 < ¢ < 7. Since P, and Q coincide on
F,, this proves that @ is a solution for 6. O

Proor oF LEMMA: UNIQUENESS. Assume that the @ above is the unique
solution for 6. By the construction of €, any solution P, for 6 is mutually
absolutely continuous with @ on F, , with

aqQ

14 e —
(7.14) P

= f T on FA r

Hence if Py and P, are two solutions for 6, they must coincide on F, . Since
this holds for all T € R*, they must coincide on F,_ by (7.9) and the
uniqueness part of Caratheodory’s extension theorem. This proves weak
uniqueness. O

7.2. Comments and proof for Section 4.2. The solution to (4.4) exists and
is unique and asymptotically ergodic for the following reason. Set G,, = [0, +«)
X (—n, n) and use the construction in (10.1.5)-(10.1.6) (page 250) in Stroock
and Varadhan (1979) along with Theorem 7.2.1 (page 187) and Corollary
10.1.2 (page 250) in the same work to establish that the solution of (4.4) is
unique provided it exists (in the more usual sense of Stroock and Varadhan
(1979), which includes not running off to infinity). On the other hand, Theo-
rem 1.16 (page 46) of Skorokhod (1989) shows that the process does indeed
exist (in this sense) and that it is asymptotically ergodic. By Theorem 10.1.1
(page 249) of Stroock and Varadhan (1979), the solution is also strong Markov
in view of its uniqueness in law.

ProOF OF PROPOSITION 4.1. Set V(x) = [§h,(2)dz. In view of It6’s for-
mula,

V(X,) - V(Xo)

(115) [f(fa(Xsfv(Xs)”ds - tb(0)2] + [ho(X,)v(X,) dB,

- t(% - b(o)z) + /:ho(Xs)y(Xs) dB,.
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Hence, since § > 1 and by the Burkholder-Davis—Gundy inequality,
1+5
Ey, x,-x£(8) "

1+8 1+8

V(X))

< constant X ||[V(%,)| " + E, x,

=xq

(7.16)
1.
+Eo, xpmxy7 [ 1 ho(X) (X[ ds

for ¢t > 1. In view of (4.10)-(4.11) and Fatou’s lemma, the integrands in the
last two terms on the r.h.s. of (7.16) are uniformly integrable for m ,-almost all
(and hence Lebesgue-almost all) x,. Hence the last two terms are bounded for
almost all x,. However, the local boundedness of V and 4,y implies [in view of
lemma (46.1), page 273, of Rogers and Williams (1987)] that this extends
to all x, € R. This yields the desired result (4.12). Furthermore, since
Jho(x)?y(x)?> dm (x) < =, and in view of (4.8),

1 ¢ -1 1 t
(7.17) [ﬁ [(X)y(X,)7 By, —= [(ho( X.)7(X,) dB,

converge jointly in law [combining Theorem (53.1) of Rogers and Williams
(1987) and Appendix 2.2 of Basawa and Prakasa Rao (1980)] to a normal
distribution with mean 0 and covariance matrix

b(0)’ " a(x)ho(x) dmy(x)
(7.18) . 7 .
| a(@)ho(x) dmo(x) [ ho(x)’y(x)’ dmy(x)

Since I,/t — b(6)?, the result (4.13) follows. (4.14) is then immediate. O
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