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1. Introduction. Approaches to hypothesis testing have usually treated
the problem of testing as one of decision-making rather than estimation. More
precisely, a formal hypothesis test will result in a conclusion as to whether a
hypothesis is true, and not provide a measure of evidence to associate with
that conclusion. In this paper we consider hypothesis testing as an estimation
problem within a decision-theoretic framework and are able to arrive at some
interesting conclusions. In particular, reasonable loss functions result in deci-
sion rules that can be regarded as measures of evidence and, under these loss
functions, some interesting properties of p-values emerge.

1.1. Standard approaches. Classical hypothesis testing is built around the
Neyman-Pearson Lemma [Lehmann (1986)] and results in decision rules that
are 0-1 rules (except for randomized tests). These formal tests, although
optimal in a strict frequentist sense, have been criticized from many different
directions. First, there have been many Bayesian criticisms [e.g., DeGroot,
(1973); Dickey, (1977); Berger, (1985a, b)] which point out the drawbacks of
the stringent conclusion of the Neyman-Pearson approach. Namely, the exper-
imenter is locked into a two-point action space. Secondly, the assessment of
accuracy of the test is typically a predata assessment, most often the size of
the test. This estimate can be quite unreasonable when viewed postdata, a
criticism which has also been leveled at Neyman-Pearson theory by condition-
alists [Kiefer, (1977); Robinson (1979a, b)]. Alternatives considered by Kiefer
include using p-values as an assessment of the likelihood of the null hypothe-
sis. These ideas are in the direction of those proposed here, that the hypothesis
test should result in a postdata assessment of evidence. (In fairness to
Neyman-Pearson theory, measures of size and power were proposed as pre-
data operating characteristics, not postdata assessments of accuracy, of a
testing procedure.)
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Perhaps the most serious criticism of Neyman-Pearson testing arises from
the actions of practitioners. That is, formal Neyman-Pearson theory is not
widely used in practice. Subject matter journals are flooded with p-values, but
not with the outcomes of an a-level test. Furthermore, the p-value is implic-
itly used as a measure of evidence -for a hypothesis. One of the reasons for
undertaking the research presented here was to answer whether there are
reasonable scenarios in testing for which the p-value is a reasonable answer.
The fact that it is used extensively by experimenters is given; we, as statisti-
cians, should decide whether the p-value has acceptable properties.

1.2. Criticisms of p-values. Most criticisms leveled at p-values have come
from the Bayesian school, although there have been others. Even though
p-values can be similar to Bayesian posterior probabilities, there are many
seeming defects to criticize. Since the p-value is, in many cases, of the form
p(x) = P(T(X) > T(x)), where T(x) is the observed value of the random
variable T(X), there is the problem of averaging over unlikely sample values
(which have not occurred). Moreover, this is in violation of the likelihood
principle [Berger and Wolpert (1984)], which states that inference must be
based only on the observed data.

Even though p-values can fall within the range of Bayes solutions [Casella
and Berger (1987a)], they are fundamentally different. This, in itself, is not a
cause for concern, as good frequentist and Bayesian procedures may be
different, but there have been many criticisms involving paradoxes [e.g.,
Lindley (1957); Berger and Sellke (1987); Berger and Delampady (1987)].
These paradoxes are all based on the fact that, at the tails, the p-value may be
much smaller than Bayesian posterior probabilities in the two-sided testing
problem. In the one-sided problem, however, this paradox does not appear
[Casella and Berger (1987a)], as the p-value is a limit of Bayes rules [see also
Schaarfsma, Tobloom and Van der Menlen (1989)]. This observation may seem
to be at odds with the previous paragraph, where we noted that the p-value
violates the likelihood principle, something not done by a Bayes rule. The
agreement of p-values and Bayesian posterior probabilities, however, is a
mathematical identity specifying the agreement of two different integrals.
Foundationally, the calculations are different.

The different behavior of the p-value in the one-sided and two-sided prob-
lem is one reason for the present investigation. This different behavior sug-
gests that the formulation of the problems themselves may be to blame. For
example, difficulties arise in the Bayesian formulation of the two-sided point
null testing problem, or the classical two-sided composite null problem. A
decision-theoretic formulation of testing may answer our concerns in these
cases and possibly clear doubts about p-values.

Other than Bayesian criticisms, problems with p-values can arise within
classical statistics. (A strict Neyman-Pearson frequentist despises p-values
with even more fervor than a Bayesian, as p-values have no real roots in
frequentist theory. However, through their widespread use, they are closely
associated with classical, rather than Bayesian, statistics. It is thus the job of
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the frequentist to deal conclusively with p-values.) In some cases, p-values
may be difficult to define [see the binomial example in Berger and Delampady
(1987), page 324], but if the p-value is defined in a straightforward way, it is
usually from some Neyman-Pearson optimal test. The problem here is that
many users implicitly and wrongly assume that any optimality derived from
the Neyman-Pearson lemma can be transferred to data-dependent measures
of accuracy. Although there have been some investigations about the behavior
of p-values using loss functions [Gutmann (1984); Schaarfsma, Tobloom and
Van der Menlen (1989); Thompson (1989)], there has not been any systematic
evaluation of postdata frequentist measures. There is a need for such an
evaluation and decision theory provides a natural mechanism for this task.

1.3. A decision-theoretic approach. In a hypothesis testing problem we
observe a value x of a random vector X with density (for convenience) f(x|6)
and desire a conclusion about the hypotheses

(1.1) H,:0 € ©, versus H,:0 < 05,

where 0, is a specified subset of the parameter space 0. (We will not directly
deal with the case of H,; of the form H;: § € ©;, where 0, # ©¢, although
many results can be extended to this case.) We view our task as that of
estimating the viability of the set specified by H,, that is, of estimating the
function I (6) [where [,(-) denotes the indicator of a set A]. The performance
of a decision rule ¢(x) is evaluated with respect to a loss function

(1.2) L(6,4) = d(le,(0) — &(x)),

where the function d(¢) is minimum at ¢ = 0, nondecreasing for ¢ > 0 and
nonincreasing for ¢ < 0.

An important point to note is that we are considering this problem as one of
estimation, not of deciding between H, and H,. Thus, we are making an
assessment of H, rather than drawing a conclusion about H,. To assess H,,
we try to estimate lg (6) with ¢(x), where we consider the parameter lo (0) to
measure the accuracy of the test (hence the title of the paper). The rule &(x)
has the interpretation that large values support H, and small values support
H,, much like a p-value or a posterior probability of H, and thus ¢(x) can be
used by an experimenter in a similar way. Note however that ¢(x) does not
measure evidence in a formal sense, as that can only be done through the
likelihood ratio [Birnbaum (1962); Royall (1986)]. Thus, we make the impor-
tant distinction of referring to ¢(x) as a measure of accuracy, not evidence.

Although (1.1) and (1.2) define the general problem of estimation in testing
hypotheses, we will only consider some special cases in what follows, using
losses of the form

(1.3) Li(6,4) =|le(0) — d(x)[, k=1,2,
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with associated risk functions

(1.4) R.(6,9) = Ejllo(0) — ()|, k=1,2.

Note that standard Neyman—-Pearson type results may be viewed as decision-
theoretic results using a loss of the form (1.3) with 2 = 1. In particular, the
Bayes rules with respect to (1.3), with 2 =1, are Neyman-Pearson-type
solutions. [Recall that our estimators ¢(x) estimate []@,0(0) and are not a
rejection probability. Thus, a Neyman-Pearson critical function would be
equivalent to 1 — ¢(x).]

Although there is a technical connection between the decision-theoretic
approach with absolute error loss and Neyman-Pearson theory, the answers
are not the same. In Neyman-Pearson theory, the goal is to maximize power
for a fixed a-level, while here the goal is to estimate 5 (6) using the loss (1.3),
with no concern for a preexperimental a-level. An example of the difference is
the Neyman-Pearson need to consider randomized tests in discrete distribu-
tions. The estimator ¢(x) is only equivalent to a randomized test if £ = 1 in
(1.3). Furthermore, there is no correspondence between decision-theoretic
testing /estimation and confidence set estimation unless an a-level is reintro-
duced. (This is as it should be, as the two problems address different questions.)

In hypothesis testing we are assessing ¢(x) as an estimator of l¢ (6), while
in set estimation we are concerned with the coverage of a set C(x). This can be
expressed as assessing an estimator y(x) of I (0). Decision theoretic ap-
proaches to set estimation are the major concern of Casella, Hwang and Robert
(1989, 1990) and Bayesian solutions are treated by Berger [(1985a, b); (1986)].
Other papers dealing with estimation of accuracy in set estimation include
Robinson (1979a, b), Brown and Hwang (1989), Hwang and Brown (1991),
George and Casella (1989), Lu and Berger (1989) and Robert and Casella
(1990).

1.4. Summary of results. The two hypothesis testing problems we will be
concerned with are the one-sided testing problem

(1.5) H,:0 <60, versus H;:6 > 0,,
where 6, is specified, and the two-sided testing problem
(1.6) Hy,:0 €[0,,0,] versus H,:0 € [6,,0,],

where 6, and 6, are specified. In either case we observe X = x, where X is a
random vector with density f(x|0) and we base our inference on the statistic
T(X) with density f,(¢]6).

In some cases, particularly in the two-sided testing problem, there are
difficulties in defining a p-value. To eliminate these difficulties, we follow
Lehmann (1986) and define it as follows. If R is the rejection region of an
a-level test (most often UMPU) on which the p-value, p(x), is to be based, we
define
(1.7) p(x) =infla: x € R},
which eliminates ambiguities (as long as R, is specified for each a).
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In Section 2 we examine the loss functions of (1.3) in more detail. We argue
that absolute error loss (on which Neyman-Pearson testing is based) may not
be the most reasonable loss function and show that squared error loss emerges
as an attractive alternative. Throughout the remainder of the paper, we
concentrate on squared error loss: In Section 3, we develop the decision theory
using squared error loss. We provide an example, then investigate minimaxity
and admissibility and are able to characterize the admissible rules in both
one-sided and two-sided testing. Application of these results is in Section 4,
which also contains a rather startling set of conclusions about p-values. Under
certain assumptions, the p-value is admissible in the one-sided problem and
inadmissible in the two-sided problem. However, it cannot be uniformly domi-
nated by a proper Bayes rule in the two-sided problem. Section 5 contains a
discussion and there is an Appendix containing the proofs of the theorems in
Section 3. )

2. Consideration of loss functions. For the hypothesis testing problem
(1.1), we now investigate reasonable forms for a loss function L(0, ¢), to assess
the worth of the estimator ¢(x) of lg (6). Since our parameter of interest has
only two values, the loss function is of the form

L(17¢’(x)), ifoe®0,
2.1 L(e6 =
(2.1) (6, 6(x)) L(0,é(x)), if 6 ¢ @©,.

A minimal property for a loss function to have is that it be proper [Lindley
(1985)]. A proper loss function is one for which a Bayesian’s best strategy is to
tell the truth. (Whether one is a Bayesian, such a property is reasonable.)

Thus, consider a prior distribution of 7(8) on ®. The posterior expected loss of
the loss function (2.1) given X = x is

E(L(8,¢(X))|X = x)
(2.2) = [[L(0, 6(x))m(0lx) 40
=L(1,¢(x))P(0 € Oylx) + L(0,¢(x))P(6 € Of|x),
where 7(6lx) = f(x16)7(0)/ [ f(x16)7(0) d6 is the posterior distribution and

(2.3) P(0 € Olx) = j@ w(6|x) db.

To say that the Bayesian’s best strategy is to tell the truth is to say that the
best estimator of I (6) is the Bayesian’s best assessment of the probability of
its occurrence. Thus, L(0, ¢(x)) is proper if

(2.4) g}ir)lE(L(G, ¢(x))|X =x) = E(L(0, P(6 € Oylx))|X = x).
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Many common loss functions are proper, perhaps the most notable being
squared error loss, corresponding to 2 = 2 in (1.3), that is,

2
(2.5) Ly(8,0) = (Ie(6) — ¢(x))
Another, less common, proper loss is logarithmic loss, given by
(26) L(6,$) = log| Io,(6) + ¢(x) — 1].

This loss also has the interesting property of yielding an infinite penalty if
¢(x) is as wrong as possible. Surprisingly, absolute error loss, corresponding to
k=1in(1.3) or

(2.7) Ly(6,9) =|Is,(6) — ¢(x)|

is not a proper loss. [See Schervish (1989) for a complete characterization of
proper losses.] Thus, if consideration is restricted to proper losses, absolute
error loss, which corresponds to classical Neyman-Pearson theory, would be
eliminated.

The loss L, thus suffers from a foundational view, but its shortcomings
have been known (perhaps informally) to many. For example, there is risk
equivalence between (dreaded) randomized tests and estimators of I, (0). This
fact partially explains why L, leads to 0-1 Bayes solutions. This equivalence is
easy to see if we write the risk of the decision rule ¢(x) as

R(8,9) = [ [lo,(6) — d(x)|f(xl6) dx

= lo5(0) [ #(x) F(x10) dx + 1o (6) [~ (1= ¢(x)) f(xl6) d,

which is the risk of the randomized test ¢(x) [or, in Neyman-Pearson terms,
the risk of the critical function 1 — ¢(x) under 0-1 loss]. It is also possible,
under suitable regularity conditions, to establish a converse. That is, the loss
L, is the only loss under which there is a direct correspondence between
estimators of I (8) and randomized tests.

The fact that the loss L, is so closely related to Neyman—Pearson 0-1 loss
leads to estimators that will not be smooth and, as such, may have problems
(especially conditional ones). For example, suppose we have one observation
~ from a n(6, 1) density. A Bayes rule is ¢™(x) = bo, ci(xD), which corresponds to
the Neyman-Pearson UMPU test. The problem with this rule is that the same
inference is made whether x = 0 or |x| = c.

If we turn to a straightforward decision-theoretic evaluation, similar an-
swers would be found. Consider the following theorem, which is easy to
establish.
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THEOREM 2.1. (a) The decision-theoretic Bayes rule with respect to the loss
L, minimizes E™(L(0, ¢)|x) and is given by

0, ifP(6€08yx)< 1
1, otherwise.

(2.8) o7(x) = {

(b) The decision-theoretic Bayes rule with respect to the loss L, minimizes
E™ (L8, $)|x) and is given by

(2.9) $5(x) = P(0 € Ogl).

We therefore see that the absolute error loss L, leads to a 0-1 Bayes
solution and can yield the usual Neyman-Pearson test in some cases (using
point-mass priors). For the smoother loss L,, we.get a smoother Bayes rule,
which is, of course, the Bayesian estimate of the indicator function I, (). As
we shall see, in some cases the p-value is a limit of rules of the form (2.9), an
impossibility in other cases.

The decision-theoretic derivation leads to the same place that the proper
loss argument led. If we consider choosing between L; and L,, the fact that
for L, the Bayes rules are posterior probabilities is overwhelming. Since our
goal of assessing accuracy is well served by estimates that are probabilities, it
is reassuring that the class of Bayes rules are exactly what we want. This
observation is also of interest to non-Bayesians, since the class of Bayes rules
is a subset of all admissible rules. Thus the loss L, not only provides a smooth
alternative to L, it provides an alternative that produces sensible rules.

Whether we argue based on decision theory or proper loss functions, L,
emerges as an extremely reasonable alternative to L. Since classical testing
theory is equivalent to decision theory based on L, examination of decision
theory based on L, is in order.

Of course, most of our arguments for preferring L, loss over L, loss could
just as well support the use of any proper loss over L,. [Any proper loss will
result in the Bayes estimator of I () being P(6 € 0,lx).] Seen in this light, it
might be argued that we should investigate the decision theory of other proper
losses.

There are a number of reasons for not doing this. First, the fact that all
proper losses lead to the same Bayes estimator will result in similar decision-
theoretic answers. Second, Hwang and Pemantle (1990) have found that L,
plays a special role among proper losses. In investigating admissibility for a
class of proper losses, they found that admissibility with respect to L, implied
admissibility in virtually the entire class.

Third, there is a correspondence between admissibility with respect to L,
and the nonexistence of relevant betting procedures, as described by Robinson
(1979a). This means that admissibility with respect to L, will guarantee
‘acceptable conditional performance.

Combining all of the arguments in this section, we arrive at two conclu-
sions. First, the loss L, has inherent problems and thus alternative losses
should be considered. Second, among reasonable alternative losses, L, emerges
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F16. 1. Risks for testing Hy: 6 < 0 versus Hy: 0 > 0, based on one observation x from a n(6,1)
distribution. The solid line is the risk of the p-value, P(Z > x), where Z is a standard normal
random variable. Bayes risks are given for the estimator ¢_(x) = P(Z > (2/72 + 1)Y/2x) for two
n(0, 72) priors, 72 = 0.01 (short dashes) and 72 = 0.1 (close dots). The risk of the Neyman—
Pearson rules are also given for « = 0.05 (long dashes) and a = 0.25 (dots). Finally, the constant
risk = 0.25 is the risk of the minimax estimator ¢y, = 1/2.

as an eminent choice. Thus, for the remainder of this paper, we concentrate on
decision-theoretic hypothesis testing using L, loss.

3. Decision-theoretic results. Under the loss L,, we now examine
some decision-theoretic consequences. To get a better idea of the situation, we
first look at an example showing the behavior of some common rules. We then
examine the criterion of minimaxity which, surprisingly, turns out to be a dead
end. Then, admissibility is considered and we are able to describe complete
classes for both the one-sided and two-sided testing problem.

3.1. An example. To illustrate the risk behavior of some typical rules, we
consider the simple situation of testing H,: 8 < 0 versus H,;: § > 0, based on
one observation x from a normal distribution with mean 6 and variance 1.
Two obvious estimators of I(® < 0) are the p-value, P(Z > x), where Z is a
standard normal random variable and the Neyman-Pearson rule ¢ (x) =
I(x < ¢), where c is a constant chosen according to the size of the test.

The risk of these rules is shown in Figure 1 along with the risk of two
proper Bayes rules, using a n(0, 72) prior and the minimax rule ¢, = 1/2. The
Bayes rules dominate the p-value for 6 near zero, since the Bayes estimator
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¢.(x), for x > 0, is

1/2
7'2 /
X

However, as 6 moves away from zero, the p-value becomes dominant. (For 7
bigger than 1, the risk of the Bayes rule is extremely close to that of the
p-value.) The risk of the Neyman-Pearson rules, however, is quite high and is
dominated by the p-value. [A more complete comparison of p-values versus
Neyman-Pearson rules is given in Casella and Wells (1990).] Finally, the risk
of the constant risk minimax estimator ¢, = 1/2 is shown. We see that this
rule is easily dominated for moderate values of 8, but performs well for 6 near
H,,. The next section shows that ¢, is admissible. .

Z>

¢.(x) =P > P(Z > x) = p-value.

3.2. Minimaxity. Deriving a minimax rule is similar under either L, or L,
loss, so we state the result in one theorem.

THEOREM 3.1. For the hypothesis testing problem of (1.1) with density
f(x10) continuous in 0 and loss L,(6, ) of (1.3), suppose that ®, and O, have
a common limit point. If 0 < ¢ < 1 is any decision rule, then

meaxE'oLk(O, ¢) = maxE,L,(6, ),
0
where ¢o(x) =1/2. If k > 1, then ¢, is unique minimax, hence admissible.

Proor. The proof uses standard applications of the bounded convergence
theorem and Liaponov’s inequality and is valid for all 2 > 1. The uniqueness
of ¢, follows from the strict convexity of the loss if 2 > 1. O

It is interesting to note that the p-value is a minimax rule under L;. Thus,
although minimaxity does not prove an interesting property for L,, it does
provide an optimality property for the p-value under L,.

3.3. Complete class theorems under L, loss. We next characterize com-
plete classes of decision rules for both the one-sided (1.5) and two-sided (1.6)
testing problem. The proofs of the main theorems become quite technical, and
are placed in the Appendix.

For the complete class theorems, we only consider the exponential family.
We observe X = x, where X has a density in the one-parameter exponential
family. Since estimators which are functions of the sufficient statistic 7'(x) are
complete class, we confine attention to density functions defined on R, the
range of T,

(3.1) f(¢)6) =%~ ¥® ¢ e interior of O,

where e¥® = [pe% du(t). Because the results are valid in discrete as well as
continuous problems, the integrating measure has been left vague.
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The rules in the complete class are essentially generalized Bayes estimators,
after modification of the parameter space (see the Appendix) and allowance for
truncation, which we now define. In the one-sided problem (1.5), an interval
[¢1,t,] is a truncation set for the estimator ¢ if ¢ < ¢; implies ¢(¢) = 1 and
t > t, implies ¢(¢) = 0. In the two-sided problem (1.6), an interval [¢,,¢,] is a
truncation set for the estimator ¢ if ¢ € [z, ¢,]° implies ¢(z) = 0. [The idea of
a truncation set originated in Farrell (1968).]

THEOREM 3.2. In the two-sided problem (1.6) the estimator ¢ with trunca-
tion set [t,,t,] is admissible under L,-loss if there exists a probability measure
m, supported on [0,,0,] and a o-finite measure w, supported on (—x,0,] U
[0,, ®) such that, for almost all t; < t < t,,

(32) [F(t10)m(dB) < o
and
(3.3) (1) Jf(t18)o(d0)

 JF(#0)mo(d8) + [f(¢l6)m(do)

Conversely, if ¢ is admissible, then there exist a truncation set [t,,t,], a
probability measure i, supported on [0,,0,] and a o-finite measure
supported on (—x,0,] U [0,,°) such that (3.2) and (3.3) hold for almost all
t e (ty,t,).

THEOREM 3.3. In the one-sided problem (1.5), let ¢ be an admissible
estimator under Lg-loss. Then there is a nonincreasing function ¢' equivalent
to ¢. Assume without loss of generality that ¢ is nonincreasing and that
€ = [t}, t,] is a truncation set for ¢ such that if t|) < t < ty, then 0 < ¢(¢) < 1.
Let t| < ty < ty. There exist o-finite measures m, on (—,0,] and 7, on [0, )
such that

(3.4) 1= jeto"—m[wo(do) + m,(d6)],
and ¢ is given by (3.3) for t € (¢,,t,), both integrals of (3.3) being finite.

As mentioned before, the essential point of Theorems 3.2 and 3.3 is that the
complete class is given by the generalized Bayes rules (almost). Thus, to
establish admissibility, one would first check to see if a rule is generalized
Bayes. In the next section we apply this strategy to the p-value.

4. Admissibility considerations under L, loss. We now return to
exploration of the behavior of the p-value, and find that under L, loss, the
results are quite interesting. There is a dichotomy occurring in the fate of the
p-value, one that, perhaps, is reflected in the dissenting views of Berger and
Sellke (1987) and Casella and Berger (1987a). In the one-sided testing problem,
the p-value is, in many cases, admissible against the loss L, of (2.5), showing
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that the p-value is a reasonable measure of accuracy, a notion that agrees with
Casella and Berger (1987a).

In the two-sided case, however, the answers are a bit more involved, in that
the p-value is inadmissible but difficult to dominate. We are able to show that
the usual p-value is not in the complete class of Theorem 3.2 (the two-sided
problem), demonstrating its inadmissibility. This fact is consonant with the
results of Berger and Sellke (1987) and Berger and Delampady (1987) concern-
ing the failings of the p-value in the two-sided problem. However, there is an
interesting occurrence in the two-sided point null normal case: Although the
p-value is inadmissible, it cannot be dominated by any proper Bayes estimator.

4.1.1. Examples of admissibility in the one-sided problem. We present a
number of examples in which the p-value is generalized Bayes, hence admissi-
ble. This property probably carries over to other distributions, but in the
following cases the admissibility of the p-value can be easily established.

THEOREM 4.1. For the one-sided hypothesis testing problem of (1.5),
with loss function L, of (2.5), let X, ..., X, beiid n(6,1). The p-value p(X) =
P,(X>%)=1-®(n (% —0y) is admissible, where X is the mean of
X,,..., X, with observed value x.

Proor. Using sufficiency, we can assume n = 1. Note that the p-value is
generalized Bayes with respect to the Lebesgue measure prior [it is also a limit
of Bayes rules against the sequence of n(6,, r) priors, as r — «]. Furthermore,
the (generalized) Bayes risk of the p-value is finite. Therefore the p-value is
admissible. O

We now establish the admissibility of the p-value for some discrete distribu-
tions using a similar method. We summarize these results in the following
theorem.

THEOREM 4.2. For the one-sided hypothesis testing problem of (1.5), with
loss function Ly of (2.5): (a) If f(x16) is binomial (n,0), the p-value p(x) =
P,(X > x) = T5_(7)64(1 — 60"~ is admissible. (b) If f(x16) is Poisson(6),
the p-value p(x) = P, (X > x) = L5_,e %05 /k! is admissible.

Proor. For (a), consider the generalized prior density 1/6, which has
corresponding generalized Bayes estimator p(x). The fact that this estimator
has finite generalized Bayes risk follows from the fact that the estimator

_[1, ifx=0,
8(x) = {0, otherwise,

"has finite generalized Bayes risk. Thus p(x) is admissible. Part (b) can be
established similarly by again considering the generalized prior density 1/6.
O
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We also note that in both the binomial and Poisson cases, generalization to
an iid sample is immediate. Therefore, in a number of cases in the one-sided
testing problem, the p-value is admissible as an estimator of | _., 4 ,(6).

4.1.2. Admissibility in the two-sided problem. The complete class theorem
(Theorem 3.2) gives us a powerful tool for exploring admissibility of the
p-value in the two-sided problem. The following theorem, which is a corollary
of Theorem 3.2, allows us to reach some decisive conclusions about inadmissi-
bility of the p-value.

THEOREM 4.3. For the hypothesis testing problem of (1.6) with loss func-
tion L, of (2.5), suppose the estimator ¢(T(x)) > 0 is continuous, nonconstant
and, for some value xy, o(T(x,)) = 1. Then ¢ is inadmissible.

Proor. If ¢ were admissible, then almost surely (3.3) holds. Since ¢ > 0
for all x, [f(x|8)m(d6) < » for almost all x. Thus, both sides of (3.3) are
continuous in x and hence equal for all x in the support of X. Since
f(x16) > 0, (T(x,)) = 1 implies 7, is the zero measure and ¢(T'(x)) = 1 for
all x, a contradiction. O

The result of Theorem 4.3 now allows us to answer the question of the
admissibility of the p-value.

THEOREM 4.4. For the hypothesis testing problem of (1.6), with loss func-
tion L, of (2.5) and T(x) continuous, the p-value is inadmissible.

ProOF. The proof proceeds by showing that the p-value given in (1.7)
takes the value 1. For the hypothesis of (1.6), the p-value is based on a UMPU
test of the form

41 0, if T(x) <cqor T(x) >cy,

(4.1) $(x) = 1, ifcyg<T(x) <cy,
where ¢(x) is the probability of accepting H,. The constants ¢, and ¢, are
functions of a, the level of the test, that is, ¢, = co(a) and ¢; = c¢(a).

We first deal with the case 8, # 6,. By Lehmann [(1986), page 135], co(a)
and c(a) satisfy

(4.2) Py(co(a) <T(X) <ci(@)) = Pyfco(a) < T(X) < c(a))=1-a.
Define
c* = inf{T(x): f(x]6,) = f(x|6,) and x in the support of X}.
By the continuity of T'(x), c¢* is in the support of T(x). Also define
L (o) — ¥ (0y)
0, — 0,
for ¥(-) as in (3.1). Note that f(x|6,) > f(x|6,) if and only if T(x) > ¢/, from
which it follows that ¢* > ¢'.

)
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We claim that for every @, 0 < a < 1, ¢* € [¢y(a), cy(@)]. This then implies
that p(T'(x)) = 1 when T(x) = c¢*, and thus, by Theorem 4.3, the p-value is
inadmissible. To establish the claim, suppose to the contrary that c* ¢
[co(a), c(a)] for some a > 0, that is, ¢* < cy(a). [It cannot happen that
c* > c¢(a).] Thus, for T(x) € [co(a), c(a)], f(x16,) = f(x|6y). From (4.2) it
follows that

l(co(@) < T(X) <cy(a))(f(x]6,) —f(x6,)) =0 as.,

which implies that whenever cy(a) < T(X) < ¢(a), T(x) = ¢’. However, ¢’ <

c* < cg(a), so Py(co(a) < T(X) < c(a)) = 0 implying a = 0 which is a con-

tradiction. Thus the claim is established and the p-value is inadmissible if
If 6, = 6,, instead of f(x|6,) and f(x|6,), we consider

f(x]6*) = (E,,T (X)) f(x16,)
and
f(x]6**) = T(X) f(x[6,).

Arguments similar to those above, along with (5) and (6) of Lehmann [(1986),
page 136], can be used to establish the inadmissibility of the p-value in this
case. O

REMARK. For the case of testing a point null hypothesis, where 6, = 6, and
¢y = —¢;, Theorem 4.4 immediately applies. In fact, it might be made to apply
to a k-parameter exponential family.

Although Theorem 4.4 is negative in its assessment of p-values, we will see
that it is, perhaps, not as negative as it might first appear. We now look at the
special case of testing a point null hypothesis about a normal mean, and find
that the p-value cannot be dominated by any proper Bayes procedure. Thus,
even though the p-value is inadmissible for testing a point null hypothesis, it
is quite difficult to exhibit a better estimator. As before, sufficiency allows us to
consider the case of one observation.

THEOREM 4.5. For testing the hypothesis
H,:0 =10, versus H;:0 + 0,
based on one observation X from a n(0,1) density, and using loss function L,

of (2.5), the p-value cannot be dominated by any Bayes rule.

Proor. Assume, without loss of generality, that 6, = 0. The Bayes rules
for this problem are of the form

#7(x) = mo (1)
7o F(0) + (1= o) [ (H0)8(0)u(d0)
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where f(x]0)is a n(6, 1) density and [~ _g(8)u(d6) = 1 (see Section 2) and the
p-value is given by

(4.3) p(x) =P(X| =x) = 2(1 - ®(x)).
We consider three cases. .o

Case 1. m,= 1. In this case ¢™(x) = 1. As 6 - », R(8, p(x)) — 0 but
R(6,¢™(x)) = 1for 8 +# 0, so ¢"(x) cannot dominate p(x).

CaseE 2. = 0. In this case ¢™(x) = 0so R(0,¢™) =1 > R(0, p(x)) =1/3
and ¢™(x) cannot dominate p(x).

CasE 3. 0 <my, <1. We will show that as 6 —» «, R(6, p(x)) becomes
smaller than R(#, ™). First note that for sufficiently large |x| > a > 0,
¢™(x) > p(x). This follows from the fact that

7o f(%]6,)
mo f(x180) + (1 — o) f(x18)
for sufficiently large |x|, where 6 = x is the maximum likelihood estimator
of 6.
For 6 # 6,, the difference in risks is given by
2 2
(4.5) Eo(u(oo)(o) - ¢#(X)) - Eo("(oo)(o) _P(X)) = Eo(d’"(X)z _P(X)z),
and from (4.4), by continuity, there exists an & > 0 such that ¢"(x)? —
p(x)? > ¢ for all a < |x| < a + &. Hence

(4.6) Ey(¢7(X)* - p(X)*) 2 ePy(a < |X| <a +¢) — Py(IX| < a).
This lower bound is positive for large 6 since
Py(a < |X| <a+e¢)
P(IX| <a)

by L’Hopital’s rule. Therefore the difference in risks is strictly positive for
large 6 and ¢™(x) cannot dominate p(x). O

(4.4) o"(x) = > p(x)

—> 0 asfh o x»

Thus, we are left with an interesting situation. We have an inadmissible
rule p(x) that cannot be dominated by any obvious competitor based on a
Bayes argument. Using a generalized Bayes estimator based on a complicated
prior, Hwang and Pemantle (1990) constructed an estimator that dominates
the p-value. That estimator was only constructed for that purpose, however,
and will probably not gain widespread use in practice. Thus, the p-value will,
no doubt, remain as an often used estimator of accuracy, and although
inadmissible in the two-sided problem, may not be too bad.

5. Discussion. The formulation of hypothesis testing as a decision-theo-
retic problem leads to results, that is, estimators, that are more satisfying than
the conclusions from Neyman-Pearson theory. These estimators, which may
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be considered measures of evidence possess formal optimality properties.
Viewing the testing problem as one of estimating an indicator of H, and
separating it from the set estimation problem, leads to estimators that are
more desirable in practice. )

The failure of minimaxity to provide any interesting results for the loss L,
of (1.3), with %2 > 1, is surprising, and we are unsure how to interpret this.
The fact that ¢, = 1/2 is minimax was anticipated, but the fact that it is
unique minimax was not. Therefore, we have to accept the fact that for strictly
convex loss functions, if we use a data-dependent measure of evidence, we will
sometimes do worse than the no-data rule ¢, = 1/2. Minimaxity may prove to
be a useful criterion, however, in any further decision-theoretic study using
absolute error loss.

The dichotomy between the (rather straightforward) one-sided problem and
the (more involved) two-sided problem is illustrated by the fate of the p-value.
It is generally admissible in the one-sided case (being a limit of Bayes rules)
but inadmissible in the two-sided case (not corresponding to any generalized
Bayes rule). These conclusions are in line with, and partially explain, the
opposing arguments of Berger and Sellke (1987) and Berger and Delampady
(1987), who contended that the p-value is unreasonable in two-sided problems,
and Casella and Berger (1987a), who contended that the p-value can be
reasonable in one-sided problems.

What is even more startling, however, is the inability of any Bayes rule to
dominate the p-value in the two-sided point null problem. Unless we can find a
practical dominating estimator, this gives the p-value a position enjoyed by
few estimators (the positive-part James—Stein estimator comes to mind), an
inadmissible estimator for which it is difficult to exhibit a dominating estima-
tor. Thus, even in the two-sided case, the p-value could be a viable measure of
evidence against H,,.

These conclusions about the p-value are tied to the use of squared error
loss, the loss L, of (2.5). This may be a cause for criticism, for we are
somewhat unsure of what the conclusions will be if other losses are used.
However, this is a loss that results in the Bayes rules being given by the
posterior probabilities, a perfectly natural situation shared by other proper
losses. This leads us to believe that, for any proper loss, the results presented
here would continue to be valid.

APPENDIX

Proofs of Theorems 3.2 and 3.3. We first establish some preliminary
notation and lemmas.

LEmMmA A.1. For L, loss, if ¢' is as good as ¢ and ¢ has truncation set
[t,,t,), then ¢(t) = ¢'(2) fort <t, ort>t,.

Proor. The standard argument for this result is to use Stein (1956). O
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In order to prove the best possible result, it is necessary to modify the
parameter space. We discuss this for the two-sided problem. Let

I, = {(0,0): 0, < 6 < 6,

and
I, ={(1,0):6 < 6,0r 6 > 6,}.
Define
R.(6,9) = Ee(u[eo,el](e) - d’(X))z,
R,[(i,6), 6] = Ey(1,(0,0) - 6(X))’,  (i,0) €1,
and

Ry[(i,0), ] = Eo(1 - 1,(1,0) — &(X))’,  (i,0) €1,.

Because R,(-, ) can be obtained as a limit of R (-, ¢) the following lemma is
easy to verify.

LEMMA A.2. ¢ is admissible for risk R, if and only if ¢ is admissible for
risk R,.

ReMARK. In the two-sided problem with modified parameter space, when
m, and 7, are finite measures, the Bayes estimators are given by equation
(3.3). In particular, the constant valued estimators ¢(¢) = a are Bayes estima-
tors in the modified problem, hence are admissible.

In the following proofs we write 6 rather than (i, 6) and use (3.3).

Proor oF THEOREM 3.2. Assume ¢(X) is any admissible rule. From Brown
[(1986), Proposition 4A.7 and Theorem 4 A.12], there exists a sequence of finite
priors (u;, 41;) concentrated on finite subsets such that the Bayes estimators
¢*i(t) converge to ¢(¢) almost surely. The special case ¢ = 0 is obvious and we
assume E,¢[T(X)] > 0. By the dominated convergence theorem,
lim; . E,¢*[T(X)] = E;¢[T(X)] so that for all large j, o*i(t) > 0 with
positive measure. Hence w;([6,,6,]) > 0 and by renormalization, we assume
1o, (8, 0,D = 1.

The convex set

(A.1) € = {t: limsupfet""”(")plj(d()) < oo}
Jjo>

is an interval. Clearly from (8.3) for almost all ¢ not in ¢”, ¢(¢) = 0. Let
€ = [¢,,t,] be the closure of ¢’ and use ¢ as a truncation set.
"From (3.3), for almost all ¢, <t <,

0 < lim ¢p*i(t) = $(2).
J—o®
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If necessary by choice of subsequence, we may assume u, ; converges to a
probability measure u, weakly so that

Tim [£(£16)no,(d9) = [F(210)o(d0).

It then follows, for almost all ¢, < ¢ < ¢,, that lim ., [f(¢|0)u,;(d6) exists and
is finite.

Thus, if ¢, < t,, then standard arguments may be used to show there exists
a limiting o-finite measure u, (and a subsequence if necessary), such that
My — py and if ¢, <t <t,, then

(A.2) lim [~ ¥®u,;(dg) = fe‘”“"“”p.i(de), i=1,2.
J—)w .

Thus for almost all ¢, <t < t,, ¢(¢) can be expressed as in (3.3), establishing
the second part of Theorem 3.2. The first part of Theorem 3.2 follows from
Lemma A.2 and the uniqueness of the generalized Bayes estimator as minimiz-
ing the generalized Bayes risk. O

Proor oF THEOREM 3.3. In the one-sided problem of (1.5), for density
functions (3.1), by modification of the functions & and ¥, we can assume
without loss that 6, = 0 since we can write

b(x)efTO YO — (p(x)eloT(®))e® =0T~ VIO—00)+00]

Assume ¢(¢) is admissible. Bayes rules are given for the modified parameter
space by

J2.£(20)o(dB)
[2.f(t0)mo(dO) + [5f(]0)7(d0)

It follows at once that in the exponential case ¢™(¢) is nonincreasing. ¢ as an
almost sure limit of Bayes estimators is thus equal almost surely to a nonin-
creasing function. Without loss of generality assume ¢ is nonincreasing.

Let €= {t: 0 < ¢(¢t) < 1}. Then ¥ is an interval. We assume ¢ contains
two distinct points, hence has nonvoid interior. Define y™(¢) by

[5F(210)m(d0)
J2af(tl0)mo(d0)
Thus ¢" =1/1 + y™(¢). If t € €, then 0 < y"(¢) < .
Let {m,,,m,} be a sequence of finite measures such that m,,(—x,0) +

m.,(0,0) = 1 with corresponding Bayes estimators ¢7™(x) — ¢(x) almost
surely. Define y™» as above, and let

o7(t) =

y7(t) =

T(A) = To(A) + T, (A) and A, (4) = [ TV Om (db),

where ¢, is in the interior of ¢ by hypothesis. Renormalize so that
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A, (—o,0) = 1. Then the sequence {A,} is tight. To show this, let ¢ > 0 and
a, — « such that A, [(a,,*)] > ¢. Take ¢t € €, ¢t > t,. Then

sup fo e~t¥) (df) <1
n —oo?
and

lim supf e %P (df) > elimsupe? !0 = 4o,

n— o 0 n—>o

Hence lim sup,, _,,, y"*(¢) = +, which is a contradiction.
Ifa, > —wand A,[(—x,a,)] > ¢, take t € €, t — t, < 0. Then

. 0 - . -
lim supf e~%P) (df) = limsupee 0% = +oo
—

n—ow n—oo

and
supf e\ (df) < 1.
n J0

Thus lim inf,, _,,, y"#(¢) = 0, which is again a contradiction.

Define A, (A) = [,e’® VYOq, (d6). The sequences {A;,} are tight and
Xon = Ags Ay, = Aq Gf necessary by taking subsequences). Thus A, + A, is a
probability measure.

The assumption 0 < y(#) <  implies that if ¢ € interior ¢, then (as shown

above)
sup fe("‘o)"/\in(d()) <w, 1=0,1.
It then follows that if ¢, ¢, € interior € and ¢, < ¢,, then the sequences
Rin(A) = [ (710 + ea=0%)2,,(d0)

are tight. This follows since, by the preceding argument, ¢, is an arbitrary
interior point of €.
Thus assume A;, > A, i = 0,1. If £, <¢ <, and & is a bounded continu-
ous function, then
e(t—to)b‘

,}T},of 21100 1 o(ta—t0)d

h(8)A;,(d0)

lim [e“~*h(8)A;,(db)
n—o
e(t—to)e

= fe(”l_t°)9 + et2—t0)0

h(6)A;(d0).

For A with compact support, it then follows that
' e(t—t0)

- fe(tl—to)e + ea—to)

=R (6)A,(d0) R(6)A,(d0)
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and thus A; = (e®17%? + ¢(2=%%))\ . When h = 1, then

n—o

lim [e“0%,,(d8) = [e“~0%),(db)
or ’
Jge®e ), (d0)

2y =) = o e (o) °

RemaRk. This argument is still correct for the discrete exponential fami-
lies. Here the interesting points of the truncation set ¢ are atoms of the
integrating measure. For each atom ¢ € ¢, 0 < lim ¢"~(¢) < 1 and the above
argument goes through. :
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