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SMOOTHING IN ADAPTIVE ESTIMATION'

By JuLiaN J. FARAWAY
University of Michigan

An adaptive maximum likelihood estimator based on the estimation of
the log-density by B-splines is introduced. A data-driven method of select-
ing the smoothing parameter involved in the consequent density estimation
is demonstrated. A Monte Carlo study is conducted to evaluate the small
sample performance of the estimator in a location and a regression prob-
lem. The adaptive estimator is seen to compare favorably to some standard
estimates. We show that the estimator is asymptotically efficient.

1. Introduction. The problem of adaptive estimation was introduced by
Stein (1956). One wishes to estimate a Euclidean parameter 6 in the presence
of an infinite-dimensional shape parameter G (usually the density). An adap-
tive estimate performs asymptotically as well (in the sense that the limiting
distributions are the same) with G unknown as any estimate which utilizes
knowledge of G. Note that the term adaptive estimation has been used
elsewhere in the literature in the lesser sense of adapting to the data in some
way. The estimates considered here are adaptive in a much stronger sense.

An adaptive estimator of the center of symmetry of an unknown distribu-
tion was constructed by Stone (1975). Bickel (1982) dealt with the multiple
regression problem and simplified Stein’s conditions for the circumstances
under which adaptive estimation is possible. However, all the aforementioned
work pertains to large sample behavior. Problems arise when one tries to apply
these procedures in a practical small sample situation. The adaptive estimates
proposed all depend on nonparametric density estimation and specifically the
use of kernel density estimation. Essentially, one replaces the true density
used in a one-step maximum likelihood estimate by an estimate of that
density. A problem which pervades nonparametric density estimation is the
choice of the smoothing parameters. Much work has been done on this subject
and various schemes for the optimal choice of smoothing parameters have
been proposed, mostly for the mean integrated square error criteria. Unfortu-
nately, this is of little help in selecting the optimal smoothing parameters for
the estimation of the parameters in the location or regression problem since
these methods may give a good estimate of the density, but that is secondary
to the problem at hand. We need to estimate the score, not the density, and
our criterion is to minimize the MSE, say, of the estimate of 6. In fact,
experimentation reveals that the optimal choice of smoothing parameters as
regards the estimation of the location parameter tends to produce an under-
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SMOOTHING IN ADAPTIVE ESTIMATION 415

smoothed density estimate. Theory in the aforementioned works gives re-
quired rates for the smoothing parameters, but is of no help given a specific
sample size.

One might think that an optimal choice of smoothing parameters for a fixed
sample size might be determined by empirical study. Unfortunately, experi-
mentation reveals that the performance of adaptive estimates is highly sensi-
tive to the choice of smoothing parameters, varying substantially from one
distribution to another.

Hsieh and Manski (1987) tackle the problem in the simple regression case.
Their approach is to bootstrap to estimate the MSE of the slope parameter for
a given choice of smoothing parameters. Their estimate has the smoothing
parameters that minimize the estimated MSE of the slope parameter. Their
numerical results illustrate the virtue of their approach.

In this paper we take a somewhat different approach, using a plug-in
method in which the theoretical MSE is replaced by its empirical value, rather
than the bootstrap. The MSE of the parameter of interest can then be
estimated directly. Furthermore, we use a different kind of density estimate.
Previously, kernel density estimation has been used. However, when kernel
estimates were used to estimate the MSE described above, the estimates were
unstable and rough as a function of the smoothing parameter. This prompted
the use of spline density estimation. The method is, however, different from
maximum penalized likelihood density estimates, which also use splines. The
reason that splines may work better in this situation is that we need estimates
of the score and derivatives of the score, and splines are better suited to this
purpose than kernel estimates. Of course, spline density estimation does not
eliminate the problem of the choice of smoothing parameters; it just gives a
different set of them to work with. Although spline density estimation is
computationally more expensive than kernel density estimation for one evalua-
tion, our method requires that the estimation be done only once, as opposed to
many times for a bootstrap method, so that, overall, the method is probably
faster. In Section 2, we consider the location problem and in Section 3 we
consider the regression problem. We shall see that the adaptive estimator we
propose produces estimates that compare favorably with the standard ones. In
Section 4 we show that the adaptive estimator considered is indeed asymptoti-
cally efficient.

2. The location case. Suppose we observe Xi,...,X, iid. random
variables from a distribution F(x — ), where F is symmetric and known. We
may construct the one-step maximum likelihood estimate of 6

@1 =0+ Y (og fY(X, - )/ ¥ (log Y (X - ),
, i=1 i=1

where @ is an initial estimate of 8. However, suppose that F is not known. We
propose to estimate it and use the resulting estimated density in (2.1).
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We can approximate f(x) by a density from an exponential family indexed
by % of the form

k
(2.2) log fi(x,a)= X a;Bi(x) +c(a),

i=1

where c(a) is the appropriate normalizing constant. The parameters
Gy .-, 0y, Mmay be estimated by maximum likelihood. B,, is a symmetric
quadratic B-spline, which is the sum of the B-spline defend on the positive
knotpoints and the B-spline defined on the corresponding negative knotpoints.
Let M be the largest knotpoint and let B,,(x) be linear if |x| > M, defined so
that there is continuity and continuity of the first derivative at M. So f, will
have exponential linear tails and exponential piecewise quadratic midsection.
Other bases will suffice, but B-splines were chosen because of the availability
of theory and software and specifically because their nonnegative and local
support makes proofs easier and computations more stable; see de Boor (1978)
for a detailed discussion of B-splines. In the special case of £ = 0, we set f, to
be normal. For £ = 1, we set B;1(x) = I[|x|] < M], so that f; has a Huber-type
density. M may be chosen beforehand or by some data based rule. We aim to
choose % to minimize the MSE of §. The method has three steps.

STEP 1. @y, ..., a,, are estimated by maximum likelihood. & satisfies ML
equations
(2.3) EéBlk=rl_‘l Z Blk(TT])’ l = 1,...,k,
=1

where E; is with respect to f,(-,4) =f, , and where T, = X, — 6.

The equations were solved numerically using a modification of the Powell
method; see Press, Flannery, Teukolsky and Vetterling (1988). Some care was
required for larger % to ensure convergence, it sometimes being necessary to
restart the algorithm from different starting values if convergence failed to
occur.

Step 2. Estimate the MSE of 6(k) for given k. Since the asymptotic
variance of 6(k) is

Ep(log f,)”
[EF(IOg fk)"]2 ’

where f, = f(-, a) and where a solves E, B = EpB. It is natural to estimate
this by its empirical version:

(2.4) M(k) =

(25)  M(k)=n"" é[éa (T)]/ Z Za,kB,k(T)
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STEP 3. Choose 6 = 8(E), where £ minimizes M(k) over k = 0,1,..., K.

We can offer no automatic method for selecting K, the largest number of
knotpoints we are prepared to consider. K = n does not work in practice, since
we find that M(£) tends to be an underestimate for large k. Furthermore, the
computational expense would be considerable. However, based on the empiri-
cal evidence, we can recommend a simple fixed choice of K = 2 for small
sample sizes (n < 400). Jin (1990) offers a data-dependent method of selecting
K, which gives similar results to this fixed choice of K.

Various schemes for positioning the knots seem reasonable, but we have
used knot points at iM/k, i = —k,...,0,...,k, and M = (T\g 95 — T(.05)/2.
An alternative might be to have all the knots spaced according to the per-
centiles of the data. In fact this was tried, but the results were very similar to
those below. Furthermore, this method requires more work in computing the
splines and so it was decided to stay with the above formulation. We use
0=X.

Note that, in any case, the choice of % is crucial, while the choice of K or
the position of the knots is not.

Monte Carlo results. X,..., X, were generated from these distributions:
normal, contaminated normal 0.9N(0,1/9) + 0.1N(0,9), double exponential,
bimodal mixture of normals 0.5N(3,1) + 0.5N(—3, 1), beta (2,2) and ¢ with
three degrees of freedom, using standard methods. All the distributions were
standardized to have mean 0 and variance 1 for the purpose of comparison.

We compared our estimate with the mean, the median, the midmean, the
10% trimmed mean, the Pitman estimate and the one-step m.l.e. The Pitman
estimate is the minimal risk invariant estimate of the parameter and is a
suitable benchmark. It may be computed by calculating the mean of the
normalized likelihood. The one-step m.l.e. is based on the true density which
we are assuming is not available in practice. Since our estimate seeks to
emulate the one-step m.le., it is a fair measure of the performance of our
estimate.

Confidence bands for # may be constructed. A 100(1 — @)% confidence
interval is proposed

(2.6) B(k) + o Y(a/2)[M(B)]"”,

where ®(-) is the standard normal distribution. Note that the method might
also be used to make hypothesis tests concerning 6.

We calculate our adaptive estimate for K = 2, 3,4 and n = 20, 40, 400.

See Table 1.

Discussion of results. K is the largest number of knots considered in the
selection of the adaptive estimate. No one choice seems uniformly superior for
any of the sample sizes considered here. RMSE performance does not appear
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TaBLE 1
Location case®

10% Mid- 1-Step Adaptive estimates Confidence intervals
Distribution Mean Median Trim inean mle. K=2 K=3 K=4 K=2 K=3 K=4

Normal 1.00 133 103 111 100 103 105 105 922 885 820
1.00 129 102 110 100 103 104 105 919 871 79.7
1.00 1.27 102 110 100 101 103 103 953 946 93.7

Contaminated 2.66 132 121 111 1.63 120 136 145 925 839 786

Normal 2.72 128 124 111 129 117 127 147 941 877 770
2.68 124 116 109 100 133 133 135 945 936 920
Double 1.25 115 110 1.01 1.03 118 116 116 902 841 739

Exponential = 1.31 1.09 117 1.04 1.06 118 . 115 115 924 882 814
1.39 1.01 126 108 1.02 116 108 1.07 951 946 939

Bimodal 3.06 8563 363 569 172 206 203 211 925 899 835
Normal 3.07 108 348 551 134 170 160 152 939 926 90.1

312 234 341 532 100 160 157 155 941 93.8 93.7
Beta(2, 2) 1.22 190 135 156 119 122 122 122 889 829 741

1.30 198 142 166 129 132 131 131 911 875 819
1.59 240 171 202 155 160 162 162 949 942 932

t with 1.39 1.19 104 101 120 115 117 120 90.1 836 734
3df’s 1.29 1.06 101 100 110 102 103 106 927 879 80.0
1.39 1.10 107 1.00 1.07 101 100 101 952 947 937

2For each estimator the ratio of its estimated RMSE to that of the Pitman estimate is given. Sample
sizes are 20, 40 and 400, respectively. The actual level of the nominally 95% confidence interval is
given in the last three columns. 10,000 trials were made. Estimated error is 2-3% of the given values.

to be very sensitive to this choice, but the confidence intervals are more
accurate with smaller K. Overall, K = 2 seems to be the best choice.

The adaptive estimates compare favorably with the mean, median and the
trimmed means. In the case of the Beta(2, 2) and the bimodal normal distribu-
tions, the adaptive estimator does well where the usually robust kind of
estimators fail. Although, of course, no uniform claims may be made, it does
seem that the adaptive estimator has the best overall performance.

Our estimator was conceived as an approximation to the one-step m.l.e.
Generally, the adaptive estimates (for appropriate K) are close to the one-step
m.l.e.

For sample sizes n = 20 and 40, the actual confidence levels fall short of the
nominal 95%, especially for larger K. Probability plots of the adaptive esti-
mates show some deviation from normality in the tails which is a partial
explanation. Also, the method used picks the smallest of the estimated RMSE’s
and this will cause some downward bias and hence the undersized confidence
intervals. For sample size n = 400, performance is a lot better. For suitable
sample sizes, the method may provide a powerful alternative to the standard
tests.
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The selection method was evaluated by ascertaining the percent of the
samples in which 6(£) actually minimized |6(£) — 6| over k. In cases such as
the contaminated or bimodal normal where choice of % is important to
performance, the selection method exhibits some discriminatory power. In
other cases such as the normal where choice of % makes little difference, the
selection method shows no distinction from random choice.

3. The regression case. We follow an approach similar to before. We
seek to estimate the slope parameter B8 of the model

l’l=a+BXl+£l, i=1,...,n,

where the ¢; are i.i.d. with mean zero with unknown density f. The X, are
generated according to P[X; = 1] = P[X; = 0] = 1/2. _

We aim to minimize the MSE of B. The method used is the obvious
generalization of the method used in the location case.

Note that our interest here rests solely on estimation 8. We could equally
well center our interest on «. In a multiple regression, where one might be
interested in estimating several parameters, it might be appropriate to mini-
mize some function of the estimated covariance matrix.

The Monte Carlo results. Certain aspects of this setup follow Hsieh and
Manski (1987) for the purposes of comparison. The distribution of the error F
was chosen as for the location problem, except that we replace the double
exponential by the lognormal.

We compare our estimate with least squares, least absolute deviations, a
Huber-type estimate, Pitman estimate, one-step m.l.e. and Hsieh and Manski’s
estimate where possible (n = 25, 50). The Pitman estimate is gotten by com-
puting the mean of the normalized likelihood function. The one-step m.lLe.
uses the true density which our method assumes to be tnknown. Some
problems were encountered in computing this for the lognormal distribution
because some of the residuals fall outside the support and it is not clear how
this should be handled. For this reason we give the m.l.e. itself which is
computed as a by-product of the Pitman estimate calculation. The initial
estimate was least squares.

Confidence bands for 8 may be constructed. A 100(1 — @)% confidence
interval is proposed:

B(k) = @~ (ay2)[B1(R)]"".
See Table 2.

Discussion of results. The adaptive estimates compare favorably with least
squares, least absolute deviations and the Huber estimate. Performance varies,
but K = 2 gives satisfactory overall performance and is cheapest to compute.

Again the adaptive estimates are comparable with the one-step m.l.e. Note
that we had to give m.l.e. itself in the lognormal case so comparison is not
reasonable here.
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TABLE 2
Regression case®

1-Step Hsieh- Adaptive estimates Confidence intervals
Distribution L2 L1 Huber mJie. Manski K=2 K=3 K=4 K=2 K=8 K=4

Normal 1.00 1.17 1.06 1.00 1.04 1.056 108 110 895 85.5 79.9
1.00 1.16 1.05 1.00 1.09 1.03 1.05 1.06 92.1 89.6  86.1
1.00 1.13 1.05 1.00 — 1.01 1.02 1.02 949 946 94.0
Contaminated 2.60 1.21 1.26 1.80 1.59 205 152 147 945 932 89.8
Normal 2.74 1.28 1.28 1.54 1.62 129 115 116 957 947 929
2.74 139 1.29 1.10 — 127 127 128 945 937 936
t with 1.37 1.07 1.03 1.05 1.15 122 120 122 921 88.5 83.5
3df’s 1.37 1.09 1.04 1.10 1.13 115 113 114 943 921 88.9
1.45 1.10 1.05 1.15 — 1.06 1.02 1.02 955 95.2  94.7
Bimodal 2.67 5.73 3.52 1.69 1.99 216 2.01 184 909 894 86.6
Normal 3.09 8.44 4.34 1.65 1.73 209 201 183 935 922 909
3.0814.8 4.59 1.20 — 1.58 155 153 946 940 93.6

Beta(2, 2) 1.15 1.52 1.34 1.17 1.19 114 114 112 883 85.0 80.8
1.22 1.63 145 121 1.23 120 118 117 916 89.0 865
1.51 1.95 1.80 1.50 — 150 148 145 946 940 933

Lognormal 3.09 2.03 1.70 1.06 2.02 217 196 196 935 913 86.4
2.77 1.83 1.54 1.01 1.66 1.75 166 172 960 939 895
2.12 147 1.20 1.01 — 1.04 103 1.04 973 940 905

“For each estimator the ratio of its estimated RMSE to that of the Pitman estimate is given. Sample
sizes are 25, 50 and 400, respectively. The actual level of the nominally 95% confidence internal is
given in the last three columns. 10,000 trials were made. Estimated error is 2-3% of the given values.

Results are roughly comparable to those of Hsieh and Manski. Their
estimator is subject to a somewhat arbitrary choice of trimming parameters
and ours to the choice of K. Since it is not clear how much the estimators have
been optimized with respect to these choices (and to what extent it would be
fair to do so), no closer comparison is reasonable. Comparison for larger
sample sizes would be interesting. Our method probably requires less compu-
tation which might be important when dealing with larger samples.

4. Adaptiveness of the estimator. We will show that the sequence of
estimates 6(k) as k — o are adaptive.

Let X;, X,,..., X, beiid. F(x — 0) and have density f which is symmet-
ric, but otherwise unknown. Without loss of generality we take 6 to be zero.
Let k& = k, be the number of knots and is a function of n and M = M, be the
largest knot point. Henceforth, we drop the subscript » on k£ and M. We state
the following conditions.

CoNDITIONS A. (i) There exist n'/?-consistent estimates of 6 such that
n'/%(6, — 6) = 0,(1).
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(ii) f has bounded Fisher information, I(F) = [f'(x)?/f(x)dx < c.

(iii) log f is three times continuous and differentiable and
(M/E)|(log f)"ll.i0, a1 > Oas n - .

(iv) k/Mn'/2 > 0, M/k —> 0 and. M - » as n > .

Condition A(iii) is somewhat artificial but not particularly restrictive. In
order to carry through our proof, we find it convenient to use discretized
estimates of 6. The construction is due to Le Cam (1969) and was employed by
Bickel (1982). We take 6,, a n!/%-consistent estimate of 6. Let R, = {n~ /2,
where i is an arbitrary integer} and then we define the discretized estimate 0,
as 0, equals the point of in R, closest to 6,,.

The estimator we will consider is 6(k), where

1) B(k) =G+ 3 log f4(X, —é,@)/f log £ (X, - 5,).
i=1 i1=1

THEOREM 4.1. Under Conditions A, (k) is adaptive, that is, for every
regular 6, F,

(4.2) L,{n'?(b(k,) - 6,)} = N(0,I7%(6, F))

whenever n'/?|0, — 6| stays bounded.

This result has been obtained by previous authors for kernel density
estimation, see Bickel (1982) for general results. Here we use a different
method of density estimation. We are also able to avoid the artifice of sample
splitting (half the data is used for density estimation, the other half is used for
the estimate itself) thanks to a lemma due to Schick (1987). The proof of this
theorem requires verification of the following two statements:

(S1)  n7V2 X (log f, 1) (X; - 6,) — X (log f)(X; - 6,)[ =0
j=1 j=1
whenever n'/2|g, — 6| is bounded and
(S2) n~tY log fi o(X; - 6) > 1(8, F).
j=1

We use a generalization of a lemma due to Schick to show (S1). See the
Appendix for the proofs.

There exist some differences between the estimator considered in the theo-
rem and the one actually used in the simulation studies.

1. M (the largest knot point) does not depend on the data, just on n.

2. k is a fixed sequence which depends only on n. Jin (1990) shows efficiency
using £. We have only a first order efficiency result here. It would be nice to
show that the method of selecting & used in the simulation studies was
optimal.

3. We set B,,(¢) = 0 for |t| > M to simplify some proofs.
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The result extends to regression in a straightforward manner.

5. Conclusion. Where the assumption of normality is considered inap-
propriate, the use of robust -estimators is often proposed. However, these
estimators are generally designed to tackle long-tailed deviations from normal-
ity. If the distribution is short-tailed or bimodal, say, they do not do so well.
The adaptive estimator described here deserves consideration when the form
of deviation from normality may not be known. More work on the implementa-
tion of this estimator might be desirable. Order of splines, knot placement and
C.I.’s all deserve further investigation. On a theoretical level, results concern-
ing the selection of 2 and K may be helpful.

APPENDIX

The proof of Theorem 4.1 depends on (S1) and (S2). (S1) may be verified
using Schick’s lemma which holds that the conditions sufficient to show that

n

n-1? Z (ﬁn(XJ) - hn(Xj)) =0,

Jj=1
where X,,..., X, are iid. r.v.’s with distribution F, h, is a measurable
function satisfying [k, dF = 0 and [|h,|>dF < = and h, is an estimate of
h,, that is, A, = H(:, X,,..., X,) for some measurable function H,, are

(dropping subscript n henceforth):

1. n*%h(x) dF(x) - 0 in probability,

2. Eflfz(x) — h(x))?> dF(x) > 0,

3. L] (A(X;) = R;(X;)* > 0 in probability,
4. " Eflh(x) - k() dF(x) - 0,

where le =HG,X,...,X; 1, X;,1,..., X,); see Schick (1987) for further
details. Set

k
h(z) = X G, Biy(x - 6,),
i=1
—_— k s
h(x) = (log f)(x—6,), hj(x)=Y 6;iBj(x—0,).
\ i=1
Lemmas 6.1-6.5 are sufficient to verify these conditions. Write

k k
og f, = — Z aikBik(Tj) —c(a), log fn = - Z dikBik(Tj) - c(c_i),
i=1

i=1
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ML equations give

a

n
E,B-E,B=E;B-n'Y B(T),
j=1
which may be expressed as
n
C(a-8) +rem=E;B-n"' L. B(T)
j=1

for matrix C. Lemma 6.1 investigates the LHS of this equation and Lemma
6.2 the RHS. From this we determine the closeness of & to a and hence of £,
to f,. All the following lemmas assume Conditions A.

LEMMA 6.1.

sup
ik

nty B,(T;) — EpBy;

Jj=1

= 0,(n"?).

Proor. Consider the stochastic processes
Eal(s) = n/(n Y TAI(T, <5) — [ £6(2) dt)
j=1 0
for @ = 0,1,2. So E,(s) =4 E(s) = U(F(s)), where U(-) is the Brownian

bridge. n'L"_, B,,(T;) — EpB,; may be expressed in terms of &, o, 1, B ,5-
Now given F(0) = 0,

f Bno() du =n1/2(n-11§1(s - T)I(T; < ) —fo[[o £(t) dt] du)
= nl/z(s(n_1 i I(T; <s) — fsf(t) dt) -n! Zn: T,I(T; <s)
Jj=1 0 j=1

+[:tf(t) dt + sfosf(t) dt — fostf(t) dt - f:[fotf(u) du] dt)

but by integrating [3[ /¢ f(u) duldt by parts we see that the last three terms
add up to zero.
Hence

f Bno() du = 55,0(8) = Epu(s).

So

A "B ,0(u) du

< 2ssup|E,o(s)| = s0,(1).
s

SuplE’ln(s)l < sup + suplsEnO(s)l
s s s

Similarly, [$2,(u)du = sE,(s) — E,o(s), hence sup,|Es,(s)| = s20,(1).
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Applying this to the quadratic B-splines we get

n

Slllf) n_l Z Blk(T]) - EFBlk = Op(n_l/z). O
l, J=1 =
LeMMma 6.2.
lé — allz = O,(k/Mn'/?).
Proor.
E(_lBik - E(_'iBik

=fBik

k
exp| — ;IajkBjk(x) - C(Q)]

k
—exp[— Y G;Bji(x) — c(@)”dx
j=1
dx + R,

=/Bik

k
_ EW — ) [Bu(%) Bjy(x) dx — (M/k)[c(a) — c(@)] + R,

k
- Zl(ajk - djk)Bjk(x) - [C(‘l) - C(@)]
j=

Now both R, and (M/k)c(a) — ¢(4)] may be shown to be o,(n~'/?) and
(k/M)[B;,(x)B,,(x) dx may be evaluated explicitly. It is a banded matrix, C,
where the entries are zero except close to the diagonal and its eigenvalues are
greater than or equal to 0.1 by Gercégorin’s theorem. [Gerégorin’s theorem
states that the eigenvalues of a symmetric matrix are contained within discs
centered on the diagonal entries with radii the sum of the absolute values of
the off-diagonal elements of the corresponding rows or columns; see Wilkinson
(1965).]

So by this and Lemma 6.1, the lemma is proven. O

LEMMA 6.3. Let G;; be the estimate of a;, when the lth observation is
omitted.

S‘;P lazt — aull, = 0,(k/Mn).
Proor. @&~ ' is the solution to

(n-1)"'Y B(t;) =E,B, Il=1,...,k.

i+l
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Now

B - E;B| =

n ' T B(T) - (n- 1) Y B(4)
i=1

i+l

=‘—(n(n 1) Zn: B(t;) + B(X, - 5)/'1
i+l

<(n-1)""+nL
The result follows as in Lemma 6.2. O

LEMMA 6.4. Under Conditions A
[(log £,)" = (log f)'|li.0,s1 >0 asn — .

Proor. Let log f,(¢) = £%_, log f(iM/k)B,,(¢). We show that (log f,)" is
close to (log )’ and then that (log f.)" is close to (log f,)".
First we show that

I(log £.)" — (log f)'[lz.i0,m1 > 0 asn — .
Suppose t* € [(i — 1) M /k,iM /k], then
(log £,)'(¢*) = [M/k) *(log f((i — 2)M/k)
—2log f((i — 1)M/k) + log f(iM/k)).
We expand twice to get
(log £,)"(¢*) = (log f)"(iM/k) + [M/2k](log f)"(&,)
+[M/k](log f)"(£&3) + [M/6k](log )" (1)
—[M/6k](log £)"(£2),
where ¢, €[(i — 2)M/k, (i — VM/E), &, €[ — DM/k,iM/R], 3,64 €
[(i — DM/E,iM/E).
So
|(log £.)"(¢*) — (log f)"(iM/k)| = O(M/k)|(log f)" llL.10,1)

which by assumption approaches 0.
Now we show that

(log £.)" — (10g f,)"||z.i0,s1 = O asn — o.

This will be true provided that max; ,la;, — (log f)iM/k)| — O.
From the maximum likelihood equations we know that

E.B-EB=E,B+EB= [B()(f.~f)ad.
From de Boor [(1978), pages 167-170] we know that

I(log £,) — (log )lL.t0. 1 < (M/E)°l(log f)"llz.c0,1 = O(M/E)*
and so || £, — fll is O(M/k)>.
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So

JBa(O)(f. — ) dt < (M/R)|| f, — F|| = O(M/k)’.

Now by expanding E,B - E/ B as in Lemma 6.2, we obtain that
max; ,la;, — (log f)GM/k)| — 0.
Hence the lemma is proved. O

LeEMMA 6.5.
||(log fy - (log fn)l”Lw[O,M] =O(M/k).

Proor. The ML equations are [B,,(¢)(f, — f)dt = 0fori = 1,..., k. Since
B,,(t) have bounded support we know that there is a zero of f, — f in each
interval [(i — 3)M/k,iM /k]. This is also a zero of log f, — log f. By Rolle’s
theorem, we know that there is zero of (log f.) — (log f) between each of
these zeros so

I(log £Y — (log £,.) Iz.0, a1
< (max. dist. between zeros) X (max. deriv. of (log f’) — (log f,,)")
< 6(M/Ek)||(log f)" — (log f, )"||L o, =O(M/E). O

Now the conditions of Schick’s lemma are easily verified. (i) is true by
symmetry and (ii) follows by application of Lemmas 6.2 and 6.5. (iii) and (iv)
hold by observing that

k 2

Y (a ( zk’)B r(x—0,)

i=1

(h(x) =% (x)) = [

k
=) [( )2 2(a’zk i_kj)(di,k—l - dz’_,Jk—l)]
i=1
XBiy(x - 0,)
k
<2L (- a{) Bi(x - 6,).

The equality follows from B;, B; , , = —B; 2 :7 and the inequality by application
of Cauchy—Schwarz. The result then follows by application of Lemma 6.3. O

LEMMA 6.6.

n~'Y log fi o(X; — 6) — Ex((log £)')* = 0 in probability.
i=1

Proor. Result follows from Lemma 6.4. O

Proor oF THEOREM 4.1. The two conditions (S1 and S2) have been met. S1
by the verification of Schick’s lemma and S2 by Lemma 6.4. O
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