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HIGHLY EFFICIENT ESTIMATORS OF MULTIVARIATE
LOCATION WITH HIGH BREAKDOWN POINT"

By HENDRIK P. LoPUHAA

Delft University of Technology

We propose an affine equivariant estimator of multivariate location
that combines a high breakdown point and a bounded influence function
with high asymptotic efficiency. This proposal is basically a location M-
estimator based on the observations obtained after scaling with an affine
equivariant high breakdown covariance estimator. The resulting location
estimator will inherit the breakdown point of the initial covariance estima-
tor and within the location-covariance model only the M-estimator will
determine the type of influence function and the asymptotic behaviour. We
prove consistency and asymptotic normality and obtain the breakdown
point and the influence function.

1. Introduction. Consider the standard location-covariance model, that

is, one observes p-dimensional x,,X,,...,x, and assumes these are realiza-
tions of independent random vectors X, X,, ..., X,, with an elliptical distri-
bution P, 5 which has a density

(1.1) f.s(x) = BITf(IB~*(x — w)),

where p € R? and ¥ = BB is a positive definite symmetric p X p-matrix and
where f:[0,») — [0, ») is a known function.

A well-known estimator for the location parameter u is the least squares
estimator, defined as the vector t, € R? that minimizes ¥ 7_,|Ix; — t||%, which
results in the sample mean. In case P, 5 is a normal distribution, this
estimator corresponds to the maximum likelihood estimator for pw and is
therefore asymptotically efficient at P, 5. However, it is not robust at all, as
only one single outlier already has a large effect on the estimator.

Hampel (1968) introduced the breakdown point ¢* and the influence func-
tion IF to measure the global and local sensitivity of an estimator. Donoho and
Huber (1983) proposed a finite-sample version & of the breakdown point,
which may be interpreted as the minimum fraction of outliers that can make
the estimate arbitrarily large. The influence function IF(x; t, P) describes the
effect of one single outlier x on the estimator [see Hampel (1974) and Hampel,
Ronchetti, Rousseeuw and Stahel (1986) for a discussion]. The poor robustness
of the sample mean, for instance, is illustrated by its breakdown point ¢¥ = 1/n

Received April 1989; revised April 1991.

'Research is part of author’s Ph.D. thesis and is financially supported by NWO under Grant
10-62-10. .

AMS 1980 subject classifications. 62F35, 62H12.

Key words and phrases. Multivariate location, high breakdown point, bounded influence, high
efficiency.

398

Y
3l
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z
The Annals of Statistics. MIKOIRE ®

i

WWWw.jstor.org



HIGHLY EFFICIENT ROBUST ESTIMATORS 399

and unbounded influence function IF(x;t, P) = x at any distribution P with
mean zero.

Only a few multivariate location estimators have been proposed that com-
bine good global and local robustness with another desirable property for
multivariate estimators, namely, equivariance under affine transformations of
the observations. Unfortunately, all these estimators exhibit relatively poor
asymptotic behaviour. The rate of convergence is generally slower than the
usval Vn rate, the limiting distribution may not be normal or the asymptotic
efficiency is disappointingly low.

The proposal in this paper is basically a location M-estimator based upon
the observations obtained after scaling with an affine equivariant covariance
estimator. The resulting location estimator will be affine equivariant and if we
estimate within the location-covariance model, only the M-estimator deter-
mines the rate of convergence as well as the asymptotic efficiency, indepen-
dently of the initial covariance estimator as long as it is consistent. Concerning
the robustness properties, the type of influence function at an elliptically
contoured distribution is the same as that of the location M-functional inde-
pendently of the initial covariance functional as long as it is continuous. The
breakdown point of the initial covariance estimator is inherited by the result-
ing location estimator. Using a high breakdown covariance estimator and a
suitable highly efficient location M-estimator will provide an affine equivariant
multivariate location estimator that combines a high finite-sample breakdown
point and a bounded influence function with high asymptotic efficiency. Other
work in this direction has been developed by Yohai (1987) and Yohai and
Zamar (1988) for regression estimators, and recently by Davies (1990) and
Lopuhai (1990) for simultaneous estimators of location and covariance.

In Section 2 we define the estimator and give sufficient conditions for the
corresponding functional to exist. In Section 3 we prove consistency and show
that the estimator is asymptotically normal. The robustness of the estimator is
treated in Section 4.

2. Definition. Location M-estimators are a well-known robustification of
the least squares method. Similar to Huber (1964), one may define an M-
estimator of multivariate location as the vector of m, € R? that minimizes

(2.1) ilp(llxi —-m|).

Typically, p(y) is a symmetric function which is quadratic in the middle and
which increases slower than y2 as y — «. An example is the function

3% ly| <&,

2.2 y; k) =
(2.2) Pl k) = ke v klyl, lyl sk,

whose derivative ¢y is a bounded monotone function known as Huber’s
y-function. In general, an unbounded function p in (2.1) which does not
increase too fast may lead to location M-estimators with breakdown point
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|(n + 1)/2]/n [Huber (1984)], with a bounded influence function, and with
good asymptotic efficiency relative to the maximum likelihood estimator at
several spherically symmetric distributions [Maronna (1976)]. Unfortunately,
these location M-estimators are not equivariant with respect to affine trans-
formations of the x;. Maronna (1976) solves this by defining M-estimators
simultaneously for locatlon and covariance, but these estimators become more
sensitive to outliers as the dimension p increases: ¢ < 1/(p + 1), due to
breakdown of the covariance M-estimator [Tyler (1986)]. To obtain affine
equivariance and to retain the good breakdown properties of m,, we propose
the following alternative.

DeFiNiTION 2.1. Let C, = C,(xy,...,x,) be a pos1t1ve definite symmetrlc
covariance estimator which is affine equlvarlant that is, C,(Ax; + v,
Ax, +v)=AC,(x,,...,x,)AT for all nonsingular matrices A and vectors v
Deﬁne t, as the vector that minimizes

(28) () = X {o{Vx, - 070 x,— ) - o[yxTC; %))

The corresponding location functional t(-) is defined at a distribution P as
the vector t(P) that minimizes the function

Re(t) = [{p(Vx - 97C(P) '(x- 1))
-p(Vx"C(P) x )} dP(x),

where C(-) is the affine equivariant covariance functional corresponding with
C,, that is, C(P, x,,) = AC(Pyx)AT, where Py denotes the distribution of a
random vector X.

Throughout the paper we will assume that p: R — [0, ) satisfies:

(2.4)

p is symmetric, p(0) =0 and p(y) > » as y —» . The

(R) functions ¢ = p’ and u(y) = ¢(y)/y are continuous, ¢ > 0
on [0,) and there exists a y, > 0 such that ¢ is nonde-
creasing on (0, y,) and nonincreasing on (y,, ).

Conditions (R) are sufficient for m, to have a high breakdown point and they
will guarantee that t, inherits the breakdown point of C,,. They are somewhat
weaker than in Huber (1984) to include the function py of (2.2). These
conditions are also sufficient for the existence of at least one vector t(P) that
minimizes R p(t).

There are several candidates for a robust covariance estimator. Examples of
covariance estimators with a high breakdown point are the Stahel-Donoho
[Stahel (1981), Donoho (1982)] estimator, the minimum volume ellipsoid
(MVE) estimator and the minimum covariance determinant (MCD) estimator
[Rousseeuw (1985)] or smoothed versions of the MVE estimator called S-
estimators [Davies (1987), Lopuhai (1989)]. And of course there are alternative
choices of the covariance estimator, such as a distribution-free M-estimator
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[Tyler (1987)], which have a lower breakdown point but which may have other
robustness properties that are better. For instance, Yohai and Maronna (1990)
have shown that despite its high breakdown point the maximum asymptotic
bias of the MVE can be much larger than that of the distribution-free
M-estimator for amounts of contamination smaller than 1/p.

Denote by A,(A) < --- < A(A) the eigenvalues of a positive definite sym-
metric matrix A and recall the property

2 2
v v
lIvll < VTA-ly < lIvll
A(A) Ap(A)

(2.5)

for such matrices. Let

(2.6) M(t) = sup|p(lix + tll) — p(IxI)|.

LEMMA 2.1. The difference n(t) = M(t) — p(|lt]) is bounded: 0 < n(t) <
Yo¥(yo)-

ProOF. By symmetry, we may rotate the vectors x and x + t in (2.6) and
consider them as multiples of the vector t. Since p is increasing on [0, ®), we
may then write M(t) = sup,, . o{p((1 + &)IIt]) — p(allt]D}. Clearly n(t) > 0. For
t # 0 fixed, the conditions on the function ¢ imply that the function a —
p( + a)lItl) — p(allt]) attains its maximum at some a*, where 0 < a* <
vo/lItll. By the mean value theorem, it follows that n(t) = p((1 + a®)IItI) —
pUItD — pla*lItl) < ¥(yp)a*litll < ¥(yg)y,. O

THEOREM 2.1. Suppose p: R — [0, ©) satisfies (R).

(i) There is at least one vector t(P) that minimizes Rp(t). When p is also
strictly convex, then t(P) is uniquely defined.

(ii) When P is an elliptical distribution with parameters p and X and if
C(P) =X, then Rp(t) > Rp(p). When f in (1.1) is strictly decreasing, then
R p(t) is minimized uniquely by t(P) = p.

Proor. (i) Denote by A, and A, the largest and smallest eigenvalue of
C(P) and let L = supy < ». Note that Rp(t) - = as [[t|| = «. This means
that there exists a constant M > 0 such that

(2.7) Rp(t) > 0=Rp(0) forall [t]> M.

Therefore, for minimizing Rp(t) we may restrict to the set K = {t € R?:
It < M}. By Lemma 2.1 and dominated convergence it follows that Rp(t) is
continuous and therefore it must attain at least one minimum on the compact
set K. It is easily seen that strict convexity of p implies strict convexity of Rp,
which rules out more than one minimum.

(ii) Because C(-) is affine equivariant, we may assume that (p,X) =
(0,I). For s >0, define p~(s) =inf{y > 0: p(y) > s} and for r > 0, let
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B(t,r) = {x: [x — t|| < r}. Let t # 0, then by Fubini’s theorem we have that

Re(t) = [ [({0 <5 5 p(lx — )} = {0 < s < p(IxI)}) £(Ixl) ds dx

(2.8)
N f(‘[B(O,p‘l(s))f(|IXIl) dx - ‘[B(t

It follows from Anderson’s theorem [see, for instance, Tong (1980)] that for
every r > 0,

f(lxl) dx| ds.
~1s)

P

(2.9) fB(o,r)f(||X|l) dx 2 fB(o, r)+tf(“*”) ax

with equality if and only if [(B(0,r) + t) N D,]=[(B(0,r) N D,) + t] for
every level set D, = {x: f(IxI) > u}, u > 0. This immediately gives Rp(t) >
R (0).

When f is strictly decreasing, for every r > 0, we can find a u > 0
such that D, = B(0,r). As t + 0, it follows that [(B(0,r) + t) N B(0, r)] #
B(0,r) + t. We conclude that inequality (2.9) is strict for r > 0 and hence
from (2.8) we have that R (t) > 0 = R(0). O

As a consequence of Theorem 2.1(i), under the conditions (R), there exists at
least one vector t, = t(P,) that minimizes R (t), where P, is the empirical
distribution. Although it may not be uniquely defined, the robustness proper-
ties and the asymptotic behaviour of each t, will be the same. Since C,, is
affine equivariant, t, will be affine equivariant in the following sense. Denote
by V(x,,...,x,) the set of vectors that minimize R ,(t), then V(Ax, +
v,...,Ax, +v) = AV(x,,...,x,) + v for all nonsingular matrices A and vec-
tors v, where AV + v denotes the set {Ax + v: x € V}.

That t, inherits the breakdown point of C, is suggested by the following
argument. Suppose that we start with a covariance estimator C, = A, AZ and
suppose that C, does not break down. Since for unbounded functions p, the
breakdown point of the unscaled M-estimator m, at any collection is [(n +
1)/2|/n, independent of the structure of the collection, we can expect the
M-estimate 1, = m (A} 'x,,...,A,'x,) to stay bounded and hence t,,, which
is nothing else but A, 1 ,, will stay bounded. This argument will be made
rigorous in Section 4.

For C, one may use any affine equivariant covariance estimator. A choice
for the function p in (2.3) may be the function py of (2.2). The location
M-estimator defined with py turned out to be Huber’s (1964) robust minimax
solution. It has good asymptotic efficiency relative to the maximum likelihood
estimator at several spherically symmetric distributions [Maronna (1976)] and
a bounded influence function as well. The idea is that t, will inherit the affine
equivariance and the breakdown point from C,, and that the asymptotic
behaviour of t, will be similar to that of the corresponding M-estimator. The
latter will be shown in the next section.
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3. Asymptotic normality. Let X;, X,,... be a sequence of independent
identically distributed random vectors X; = (X, --- X, )" with a distribution
P on RP. Denote by P, the empirical distribution corresponding with the
sample X,,..., X,. To prove consistency for t,, we will need that the initial
covariance estimator C,, in (2.3) is consistent for the value of its corresponding
functional C(-) at P, that is,

(3.1) lim C, = C(P)

with probability 1. Examples of such estimators are S-estimators, including
the MVE estimator [Davies (1987), Lopuhai (1989)], the MCD estimator
[Butler and Jhun (1990)] and M-estimators, including the distribution-free
M-estimator [Tyler (1987)].

To prove consistency, we will apply a unlform strong law for empirical
processes (P, — P)¢, indexed by functions ¢ in a class &, as is given in
Pollard (1984). This involves concepts like polynomial discrimination and
permissibility for which we refer to Pollard (1984). By the envelope F of . is
meant a function F for which |¢| < F for every ¢ € %. For the sake of
brevity, we will sometimes write Pg(-) = [g(x) dP(x) or simply Pg. Let ® =
RP x PDS(p), where PDS(p) denotes the class of all positive definite symmet-
ric matrices.

THEOREM 3.1 (Consistency). Let p: R — [0, ©) satisfy conditions (R). Sup-
pose that t(P) is uniquely defined. When C,, satisfies (3.1), then lim, _,t, =
t(P) with probability 1.

Proor. For 6 = (t,C) € O, write &(x,0) = p(/(x — t)7C~1(x — t)),
hy(x,0) = p(VxTC!x), h(x,0) = h(x,0) — hy(x,0), H(0) = Ph(-;0) and
H,(0) = P,h(-;0). Because C, is affine equivariant, we can restrict ourselves
to the case (t(P) C(P)) = (0, I) In that case C, — I, so that with probability
1, all eigenvalues of C,, are between 1/4 and 4, say, for n sufficiently large. By
law of large numbers we have that for every t,

R,(t) - Rp(t)

with probability 1 as n — «. Choose M > 0 as in (2.7). Then it must hold that
eventually ||t,|| < M with probability 1, since otherwise R, (t,) > 0 = R (0).
Let T = {0: lItll < M, 1/4 < A (C) < A,(C) < 4}. Let ¢ > 0 and choose K > 0
such that P{|X||> K} <e. Consider the classes of functions % x =
{h(x,0)xll <K} 6T} for i =1,2. It is easily seen [see, for instance,
Lemma 22 in Nolan and Pollard (1987)] that the class of graphs of functions
h(x, 0) has polynomial discrimination [Pollard (1984), page 17]. The graph of a
function in 2%, x is the intersection of the graph of h(x,8) and the cylinder
{(x, s): lIx]l < K, s € R}. Since the class of cylinders has polynomial discrimina-
tion, it follows from Lemma II.15 in Pollard (1984) that the class of graphs of
functions in J#, x has polynomial discrimination. Similarly, the class of
graphs of functions in &#, ; also has polynomial discrimination. Moreover,
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since the functions are restricted to [x|| < K, both classes have bounded
envelopes. Finally, since T' can be seen as a subset of RP*(1/2r(r+1 g ig
permissible in the sense of Pollard [(1984), Appendix C]. Then, according to
Theorem II.24 and Lemma I1.25 in Pollard (1984),

sup|(P, — P)h,(+,0)(lxll < K}| - 0,
(3.2) <t |
gtell;l(Pn — P)hy(-,0){lxll < K}| - 0,

with probability 1.

Next, consider the difference (% (x, 8) — h,(x, 0))|[x|| > K}. Then by Lemma
2.1, for 0 € T this difference is bounded by some pos1t1ve constant a, where a
only depends on p and M. Hence

sup|(P, = P)(h(x,0) — hy(x, 0)){lIxll > K}|
(3.3) oeT

<a(P, + P){lxll > K}.
With (3.2) and (8.3), we find that
¥, = sup|H,(0) — H(0)|
6T

IA

sup (P, = P)hy(x, 0)(Ixll < K}

fe

+sup|(P, = P)hy(x, 0){Ixll < K} | + a(P, + P){lxll > K)
fe

- 2aP{||X|| > K} < 2ase
with probability 1. As this holds for every £ > 0, we conclude that
(3.4) sup| H,(8) — H(8)| - 0
6T
with probability 1.

Because R p(t) has a unique minimum at t(P) = 0, for all § > 0 there exist
0 <a <1and B > 0 such that

(3.5) inf {p(”x — t”) —p( 1“’_‘" )} dP(x) > B.

IIt]l> & 1+a

Let n be sufficiently large such that y, <B and 1 —a <A, (C,) <A(C,) <
1 + a. Then with (3.4) and (3.5), we have

inf H,(t,C,) > H,(0,C,).
itl>8

As t, minimizes H,(t,C,), it follows that ||t ,|| < for n sufficiently large
with probability 1. We conclude that t, — 0 with probability 1. O
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To obtain the limiting distribution of t,, consider the function Rp(t) in
(2.4). Because ¢ is bounded, R p(t) has derivative

~¢(P) fu(V(x -9 c(P) (x—t) )(x - t) dP(x),

where u(y) = ¢(y)/y. Hence (¢(P), C(P)) will always be a zero of the function

(3.6) G(0) = Pg(-;9),
where for 0 = (t,C),
(3.7) g(x:0) =u(Y(x- 9 CH(x—t) )x - t).

A vector v € RP is called a point of symmetry of P, it P(v + A) = P(v — A) for
all P-measurable sets A ¢ R?, where for A € R and v € R?, v + A A denotes
‘the set {v + Ax: x € A}. If p is a point of symmetry of P, it has the property
that

(3.8) G(r,C) =0

for all nonsingular matrices C.

We will use the following tightness property from Pollard (1984). It is a
combination of the approximation lemma (page 27), Lemma II.36 (page 34)
and the equicontinuity lemma (page 150).

LeMMA 3.1. Let F be a permissible class of real-valued functions with
envelope F and suppose that 0 < PF? < «. If the class of graphs of functions
in & has polynomial discrimination, then for each n > 0 and & > 0, there
exists a & > 0 for which

limsupP{ sup |V (P, ~ P)(dy ~ )| > n) <e,
n—® &1, $2€18]

where [8] = {($1, b2): 1, by € F and P(¢, — ¢,)* < 6%

To apply Lemma 3.1 we will need that the function u(y) = ¢(y)/y in (3.7)
is of bounded variation. This holds for instance for the function u(y) that
corresponds with the function py of (2.2).

THEOREM 3.2. Let p: R — [0, ) satisfy condition (R) and suppose that the
function u(y) = ¢(y)/y is of bounded variation. Let t(P) be uniquely defined
and suppose that it is a point of symmetry of P. Let G in (3.6) have a partial
derivative 3G /ot that is continuous at 0, = (t(P),C(P)) and suppose that
A = (3G /3t)(®,) is nonsingular. When C, satisfies (3.1), then Vn(t, — t(P)
has a limiting normal distribution with zero mean and covariance matrix
A~MA-T, where M is the covariance matrix of g(Xy,0,), with g defined in
3.7. '
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Proor. Write 0, = (t,,,C,). We first show that
[V (P, — P)(g(-,8,) — &(,8,))| > 0

in probability. Write k(x, @) ='u€\/ (x — t)"C~(x — t)) and consider the jth
component g;(x,8) = k(x,0)x; — t,) of the function g(x,6). Write t(P) = p =
(uy - w,)T and t, = (t,, - t,,)". Decompose g,(x,8,) — g;(x,8,) as fol-
lows:

(k(x’ en):":j - k(X,(‘)O)xj) - tnj(k(x’ on) - k(X, 00))
+(mj = t,;)k(X,0).

Consider the second difference in (3.9). Because the function u(y) is of
bounded variation, it follows from Lemma 22 of Nolan and Pollard (1987) that
the class of graphs of the functions % = {k(x,0): 6 € ©} has polynomial
discrimination and a bounded envelope. Since ® can be seen as a subset of
RP+1/2p(P+1) - G s permissible in the sense of Pollard (1984), so that Lemma
3.1 applies. Because 0, — 0,, for each & > 0, the functions k(x,0,) and
k(x,0,) are in the class [8] of Lemma 3.1 for n sufficiently large. This means
that if we integrate (3.9) with respect to (P, — P), the second difference is
0p(1/ Vn).

Choose M > 0 as in (2.7) and define the set T as in the proof of Theorem
3.1. It is easily seen that for j = 1,..., p the class of graphs of the functions
= {k(x,0)x 0T } has polynomial discrimination. Furthermore, since

k(x,0)x; = k(x,0)(x; — ¢;) + k(x,0)¢;,

% has a bounded envelope. Since & is permissible for the same reason as F
is, we conclude that the first difference in (3.9) will also be 0p(1/ Vn ).

Finally, the last term in (3.9) is 0p(1/Vn), because (P, — P)k(-,0,) is
0p5(1/ Vn) according to the central limit theorem and t, — p. It follows that
(P, — PXg;(-,0,) — g;(-,00)) = 0p(1/ Vn). Since this holds for every j =
1,..., p, we conclude that

(3.10) (P, — P)(&(-,0,) —g(+,80)) = 0p(1/Vn).

Because dG/dt is continuous at 0,, we have that

(3.9)

G
(811)  G(t.C) = G(w,©) + 2o (. C)(t ~ w) + (&~ W)r(0),

where r(0) > 0 as 8 — 0,. Since t, minimizes the function R (t), the pair
0, = (t,,C,) is a zero of the function P,g(-;0). Hence, together with (3.10), it
follows that

0=Png("9n)
= Pg(-,8,) + (P, — P)g(-,8) + (P, — P)(&(",0,) —&(",0))
= Pe(-,0,) + (P, - P)g(+0,) + op(1/V).
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Then use expansion (3.11) for Pg(-,0,) together with property (3.8). This
gives

G 1
0=—r(mC)(t, — ) + (t, - w)r(6,) + (P, — P)g(-,0) + OP(T;—)'

Because G /dt is continuous at 8, and since r(0,) = 0p(1), this reduces to
(3.12) 0 =(A+o0p(1))(t, — ) + (P, — P)g(,8,) + 0p(1/Vn).

According to the central limit theorem (P, — P)g(-,0,) = Op(1/ Vn), and
since A is nonsingular, it follows that t, — p = Op(1/ Vn). When we insert
this in (3.12), we find that

0=A(t,—p) + (P, — P)g(-,8,) +.0p(1/Vn).

Because 0, is a zero of (3.6), it follows that
n(t, - n)=-A" ‘/— Z g(X;,8,) +o0p(1).

As g(x,0,) is bounded, the theorem follows after applying the central limit
theorem. O

Note that the rate of convergence of C, is irrelevant as long as t(P) is
uniquely defined and is a point of symmetry of P. Let P be elliptically
contoured with parameters p and ¥ = BB”. According to Theorem 2.1(ii),
t(P) = p. and it is clear that p is a point of symmetry of P. When the function
¢ in Theorem 3.2 has a continuous bounded derivative, A reduces to

(3.13) A= —pBI,
where

3.14 = [(1—1) Il II+1’II II] lIxll) d
(3.14) B = [][1 - |wdlixl) + ZgClxlh | F(lxl) dx.

When ¢ is not differentiable, such as for instance Huber’s y¢-function ¢, the
matrix A may still be of type (3.13) under suitable conditions on the function
f. The matrix M reduces to a multiple aX, where

_L 2=l £(lix1) &
@ = [ () £(Ixl) dx

When A is of type (3.13), the limiting covariance of Vn (t, — p) reduces to yX.
The scalar y = a/B? is independent of p and ¥ and suffices as an index for
the asymptotic efficiency. Note that the limiting distribution is the same as
that of the corresponding affine equivariant location M-estimator considered
in Maronna (1976); in particular, when P is spherically symmetric, the
limiting distribution is the same as that of the location M-estimator defined by
minimizing (2.1) with the same function p. If we use the function py(y; k) in
(2.3), the asymptotic efficiency relative to the maximum likelihood estimator
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can be read from Table 1 in Maronna (1976). It is reasonable at the multivari-
ate normal, as well as at several multivariate student distributions, for moder-
ate values of k.

4. Robustness. The global-béhaviour of an estimator under large pertur-
bations of a given situation may be described by the breakdown point, a
measure of global sensitivity introduced by Hampel (1968). Donoho and Huber
(1983) give the following finite sample version. Let X = (x;,...,x,) be a
collection of n points in R” and let t,(X) be some location estimator based
upon X. The breakdown point of a location estimator t, at a collection X is
defined as the smallest fraction m /n of outliers for which the estimator can be
made arbitrarily large:

. ‘
() et - min {Tsule,®) - 6,E)] -,

where the supremum in (4.1) is taken over all possible corrupted collections of
n points Y, =(y;,...,¥,n»X; _,---,X; ) that can be obtained from X by
replacing any m points x, ,...,X; by arbitrary values y;,...,y,,. Similarly,
the breakdown point of a covariance estimator C, at a collection X is defined
as the smallest fraction m/n of outliers that can either take the largest
eigenvalue A,(C,) over all bounds, or take the smallest eigenvalue A,(C,)
arbitrarily close to zero:

£*(C,,X) = min {-"1: supD(C,(X), C(Y,,)) = oo},
l<m<n |\ N Y,

where D(A, B) = max{[A,(A) + A,(B)|, I/\I,(A)‘1 - AP(B)‘II} and where the

supremum is taken over the same corrupted collections as in (4.1). This

definition is similar to the one given in Donoho (1982).

The breakdown behaviour of a location M-estimator depends on whether
one uses a bounded or unbounded function p in (2.1) [see Huber (1984)]. When
we use a bounded function p, the breakdown point ¢*(m ,,X) will depend on
the actual structure of the collection X. If we consider the special case of a
function p that is constant outside an interval [—c, c], this is easy to under-
stand. Namely, if the width 2¢ of such a function p is small compared to the
distances between the x;, for instance if the x; are at least 2c¢ apart, then
replacing only one point already forces breakdown of the location M-estimator.
On the other hand, if the width 2¢ of p is large compared to the distances
between the x;, for instance, if all x; are the same, then one needs to replace
at least half of the observations to make the M-estimator break down. When p
satisfies conditions (R), the breakdown point of a location M-estimator will be
independent of X and attains the maximal value possible for translation
equivariant location estimators: ¢*(m,,X) = |[(n + 1)/2]/n. This property is
basically the reason why the scaled location M-estimator t, will have a
breakdown point that is at least equal to that of C,,.
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LEMMA 4.1. Let Q and H be probability measures and 0 < ¢ < 1. Define
Q. p=(1-¢)Q +eH.

Suppose that Q has a finite first moment and suppose that there exist k, and k,
such that 0 <k} < infy A (C(Q, y)) < supy A(C(Q, g)) < k3 < . When
Jp(llyll/%;) dQ(y) < », then there exists a constant K independent of H such
that

el
Rg (t) = (1 - 2£)p(k—2) - K.

Proor. Write C, o = C(Q, ). We have that
[{e(Vo - 7€ uy -0 ) -o(yy ol ny )} dQ)
= o(V¥TC ot
+f{p(\/(y -)7C L u(y - t) ) - p(\/m)} dQ(y)
- [o(¥TC % ny ) day).

By property (2.5), the third term on the right-hand side is bounded from below
by —/p(lyll/k,)dQ(y). By Lemma 2.1 and (2.5), the second term on the
right-hand side is bounded from below by —y,¢(y,) — [p(llyll/k,) dQ(y). Simi-
larly we have that

f{p(‘/(y -t)7C L u(y - t) ) - p(\/yTC;b,HY)} dQ(y)

is bounded from below by —yo¢(y,) — p(/t"C; . ut). We conclude that

lItll
Rg [(t)>(1- 26)p(\/tTC;b,Ht) -K=>(1- 2e)p(k—2) - K,

where K = y,¢(y,) + 2/p(llyll/k,) dQ(y). O

THEOREM 4.1. Let X = (x,X,,...,X,) be a collection of n points in RP.
Let p: R - [0,x) satisfy conditions (R) and let C, be an affine equivariant
positive definite symmetric covariance estimator. Let t, be defined in Defini-
tion 2.1. Then ¢*(t,,X) > *(C,,X).

Proor. If we replace at most m < ne*(C,,X) — 1 points, then C, does
not break down and we must show that [t ,(Y,,)ll stays bounded. Since C,, is
affine equivariant, £*(C,,X) is at most [(n — p + 1)/2]/n [see Davies (1987)]

“and therefore 2m < n — 1. Apply Lemma 4.1 with ¢ = m/n, @ the empirical
measure corresponding with x; ,...,x; and H the empirical measure
corresponding with y,,...,y,,. Denote by R%(t) the function R, correspond-
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ing to the corrupted sample Y,,. Since p(y) - © as y — », R%(t) is bounded
away from O for |/t|| sufficiently large, independent of y,,...,y,,. Because
R*(0) = 0 and since t ,(Y,,) minimizes R%(t), t,(Y,,) must be within a bounded
neighbourhood of 0, independent of the choice of y,...,y,,. O

2

REMARK. Define the maximum asymptotic bias of t by

B(e) = sup|[4((1 = )P + cH) — £(P)]|.

Another consequence of Lemma 4.1 is that if for 0 < ¢ < 1/2 the maximum
asymptotic bias of the covariance functional is finite, in the sense that the
smallest and largest eigenvalue are bounded away from 0 and o, respectively,
then also B(e) < ». This can be shown by a similar argument as in the proof
of Theorem 4.1. Also note that this implies that the location estimator inherits
the gross-error breakdown point &* = inf{e: B(g) < } from the covariance
estimator, where the supremum in B(e) runs over all probability measures
that assign mass 1 to some x € R”.

Whereas the breakdown point measures the global sensitivity, the local
sensitivity may be described by the influence function introduced by Hampel
(1968, 1974). Let t(-) be the location functional corresponding with t,. If 8,
denotes the probability distribution that assigns mass 1 to x € R?, then the
influence function of t(+) at P is defined pointwise as

t((1—e)P+¢€d,) — t(P
IF(x;t, P) = lim (A -e)P+edy) ~ UP)
el €

if this limit exists for every x € R”.
To obtain IF(x; t, P), we will need that the initial covariance functional C(-)
in (2.4) is continuous at P, that is,

(4.2) limC((1 - ¢)P + 6d,) = C(P).

Examples of such functionals are S-functionals, including the functional
corresponding with the MVE estimator [Lopuhaé (1989)].

THEOREM 4.2. Let p: R — [0, ) satisfy conditions (R). Let t(P) be uniquely
defined and suppose that it is a point of symmetry of P. Suppose that the
function G defined in (3.6) satisfies the conditions of Theorem 3.2. When C(-)
satisfies (4.2), then for x € RP?, it holds that

IF(x;t, P) = —A~'g(x;t(P),C(P)),
where g is defined in (3.7).

¥
Proor. Write P, , = (1 — &)P + &,. First show that t(P, ,) - t(P). This
is almost a copy of the proof of Theorem 3.1 if we read P, , instead of P,.
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Instead of (3.4), we now have that

Ye.x = sup| P, h(-,0) — Ph(',0)| < 2eyohy + 2ep(2M) — 0,
0T

where h, T and M are chosen as in the proof of Theorem 3.1. One can then
show t(P, ,) — t(P) completely similar to the proof of Theorem 3.1.

The expression for IF(x;t, P) can now be obtained similar to the proof of
Theorem 3.2. Write 0, (ts x Cex) = WP, ,),C(P, ). Then 6, , is a zero
of P, g(,t,C, ), where g is defined in 3. 7) Together with (3. 11) and (3.8)
it follows that

0= (1-£)G(b, .. C, ) +eg(x:0, )
(4.3) —(1—6){ (1, Co ) (b x— ) + (b o n)r(ou)}

+e8(x;0, ),
where p = t(P). Because dG /it and g are continuous at 0,, we obtain
0=(1-¢)(A+o(1))(t,x— n) + O0(e)

as ¢ | 0. Because A is nonsingular, we conclude that t, , — p = O(¢) as ¢ | 0.
When we insert this into (4.3) and use that g is continuous, (4.3) reduces to

t(P x) _"'

€

—-A~ g(x 0,) +o(1)
as ¢ | 0, which completes the proof. O

Note that IF(x; t, P) is bounded and that the rate of convergence in (4.5) is
irrelevant as long as t(P) is uniquely defined and is a point of symmetry of P.
At elliptically contoured distributions the influence function is the same as
that of the corresponding affine equivariant location M-estimator considered
in Maronna (1976). In particular, when P is spherically symmetric, the
influence function is the same as that of the location M-estimator defined by
minimizing (2.1) with the same function p:

w(lIxl) <
Bllxll =

where B is defined in (3.14). This influence function is weakly redescending,
that is, |[IF|| is nonincreasing for |[x|| - « and nonzero for x # 0. A natural
question is whether one can also use functions p in Definition 2.1 which will
lead to strongly redescending influence functions, that is, IF(x;t, P) = 0 for x
outside a certain region. A function p(y) that is constant for |y| > ¢, say, would
correspond with a derivative ¢ that is zero for |y| > ¢ and hence with an
influence function (at spherically symmetric distributions) that is zero for
x|l > c. When we use such a function p, the breakdown behaviour of the
location M-estimator m, will depend on the actual structure of the collection
at which it is computed. This suggests that when we use a bounded function p

IF(x;t, P) =
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in Definition 2.1, we cannot hope for a breakdown point of t, that will be
independent of the breakdown behaviour of C,,. Nevertheless, it is possible to
use a biweight type p-function. The difference is, however, that one can no
longer use any affine equivariant covariance estimator in Definition 2.1, but
only a covariance S-estimator defined by a different p-function, and that in
order to obtain a result like Theorem 4.1, the two p-functions must be related
to each other. In that case, one can obtain an affine equivariant location
estimator with a high breakdown point, a strongly redescending influence
function and high asymptotic efficiency relative to the sample mean. This
method can be seen as the multivariate version of Yohai’s regression MM-
estimators [Yohai (1987)] and is treated in detail in Lopuhaa (1990).
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