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SAMPLING DESIGNS FOR ESTIMATING INTEGRALS
OF STOCHASTIC PROCESSES
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The problem of estimating the integral of a stochastic process from
observations at a finite number of sampling points is considered. Sacks and
Ylvisaker found a sequence of asymptotically optimal sampling designs for
general processes with exactly 0 and 1 quadratic mean (q.m.) derivatives
using optimal-coefficient estimators, which depend on the process covari-
ance. These results were extended to a restricted class of processes with
exactly K q.m. derivatives, for all K = 0,1,2,..., by Eubank, Smith and
Smith. The asymptotic performance of these optimal-coefficient estimators
is determined here for regular sequences of sampling designs and general
processes with exactly K q.m. derivatives, K > 0. More significantly, simple
nonparametric estimators based on an adjusted trapezoidal rule using
regular sampling designs are introduced whose asymptotic performance is
identical to that of the optimal-coefficient estimators for general processes
with exactly K q.m. derivatives for all K =0,1,2,... .

1. Introduction and main results. In addressing problems involving
time series, such as prediction, estimation of a weighted average, estimation of
regression coefficients and signal detection, one frequently has access only to
observations at a finite number of sampling points, rather than over an entire
observation interval, and the following questions arise. What is the best design
of sampling points and how does its performance compare with other com-
monly used sampling designs, such as uniform sampling? How should the
observations at the sampling points be used to form efficient estimators?

Specifically, we consider the problem of estimating the weighted integral of
a stochastic process over a finite interval:

1= ["o(t)X(t) dt,

where X = {X(¢), t € [a,b]} is a (measurable) process with mean 0 and
continuous covariance function R(s,t) = E[X(s)X(2)], and the weight ¢ is a
known (nonrandom) function (in Ljla, b]). We want to estimate I linearly,
based on observations of the random process X at n + 1 sampling points
T, = {¢; )7, over the finite interval [a, b] and using coefficients C, = {c; ,}{o,

n
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162 K. BENHENNI AND S. CAMBANIS

by

n
= Z ci,nX(ti,n)
i=0

The performance of I, is measured through the mean square error E(I — I,)>

Our goal is to specify the asymptotic performance of sequences of estimators
based on certain sampling designs {T,}, and coefficients {C,},. We are also
interested in finding asymptotically optimal designs {T*}, and estimator-coef-
ficients {C}*}, in the following sense:

E(I-I*?/ inf E(I-1)> > 1
(=137 fng E(1=1,)" =, 1,

where the infimum is taken over all sampling designs T, with n + 1 sample
points and all choices of coefficients C,. Optimal designs for fixed sample size,
when they exist, are in general hard to determine.

We consider regular sequences of sampling designs {T, (k) = {t, .}y, a =

to, <t ,< - <t,,=>)_, generated by a positive continuous density
h via
t i
1.1 ""h(t)dt=—, i=0,1,...,n,
(1.1) [y dt =

that is, the sampling points of T',(k) are the i/n percentiles of 2. When & is
uniform over [a, b], regular sampling becomes periodic sampling where the
endpoints are included.

The process X is assumed to have exactly K (=0,1,2,...) quadratic
mean (q.m.) derivatives and to satisfy certain regularity conditions stated
and discussed after the main results. We put a,(t) = REE+D(t¢—) -
REED(t ¢ +) (= 0).

The optimal-coefficient estimators minimize the mean square error
E(I — 1,))* for fixed sampling design T,. They are of the form

(1.2) I(h)=f,R;"
where X, = (X(¢, ,),..., X(¢, ), R, ={R(, ,,¢; n)}l" oo(n+ 1D x(n+1)
covariance matrix assumed nonsmgular fi=C( f(o,n)s- .-, (&, ) and f(2) =

[ER(s, t)$(s) ds. Theorem 1 spec1ﬁes their asymptotlc performance under
appropriate regularity conditions. B, is the mth Bernoulli number.

THEOREM 1. If Assumption A’y is satisfied, then

| Bog szl fb¢ (t)ax(t)

(13) n2K+2E[I - in(h)]z (2K+ 2)' h2K+2(t)
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In particular, if A* is proportional to (ax$?)!/®%X+3, then the sequence of
designs {T,(h*)}, has asymptotic performance

2K 21 - 1 (k)]

BzK+2 okes
n (;T?i'-{j[ K(t)¢2(t)] /(2K ) }

with minimal value of the asymptotic constant.

Assumption Ax used in Theorem 1 (which is slightly stronger than As-
sumption Ay used in Theorem 2) is satisfied by a large class of processes such
as Kth-order iterated integrals of a Wiener process and stationary processes
with rational spectral density and exactly K q.m. derivatives.

Theorem 1, together with the asymptotic optimality of the sequence of
designs {T,(h*)},, was shown for K = 0 and 1 by Sacks and Ylvisaker (1966,
1968, 1970a, 1970b) under slightly different regularity conditions, and for
general K by Eubank, Smith and Smith (1982) but for a more restrictive class
of covariances including the Kth-order iterated integrals of a Wiener process.
Theorem 1 provides further support to the conjecture of Eubank, Smith and
Smith (1982) that the sequence of designs {T,(h*)}, is asymptotically optimal
for general K and general processes satisfying conditions such as those in
Theorem 1 or in Sacks and Ylvisaker.

These optimal-coefficient estimators require the inversion of the covariance
matrix R,, which, for large sample size, may lead to numerical instabilities.
More crucially, they also require precise knowledge of the covariance function
R, and hence they are not robust. When the covariance function is not known
precisely or when an estimate is used, the performance of the resulting
“‘optimal-coefficient’”’ estimator may be inferior to that in Theorem 1. The
work of Stein (1988) suggests that if the covariance used is incorrect (through
misspecification or estimation) but is compatible (in an appropriate sense) with
the true covariance, then the resulting optimal estimator has the same asymp-
totic performance as in Theorem 1. However, in most cases, estimated (or
misspecified) covariances are not likely to be compatible (in the desired sense)
to the correct covariance and the asymptotic performance of the resulting
estimators is not currently known.

For processes with exactly K q.m. derivatives (K = 0,1,2,...) we now
introduce simple nonparametric estimators using regular sampling designs
generated by a positive density h. These estimators are not generally optimal
for fixed sampling design T,(k) but instead they are based on an adjusted
trapezoidal rule for integral approximation (cf. Proposition 3). For K > 1, they
are of the form

2K+3

(1.4)

1g(a) et #lt) 19()
Tl )‘“{EWX(““ T AT R

B;,,
- 21 nj+1 (—1‘1—)“,{ Yi(b) — Y(j)(a)},

(1.5)
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where the first term is the trapezoidal rule for integral approximation and the
second, correction, term involves the K existing q.m. derivatives of X at the
endpoints a, b via

1 ¢ @ 1
(1.6) YQI):z(zX) 5 YV(J)= zlf(‘(jl—)l)’ j=2,...,K.

For K = 0, no correction term is necessary and the estimators I,(4) are given
by the trapezoidal term. The asymptotic performance of these simple-coeffi-
cient estimators is identical to that of the optimal-coefficient estimators.

THEOREM 2. Under Assumption Ag, I,(h) of (1.5) satisfies (1.3).

In particular, if A* is proportional to (ax$?)!/@X+3 then the asymptotic
performance of I, (h*) is as in (1.4). When & is uniform over [a, b], then T,(A)
is a periodic sampling design with asymptotic performance

2 Bok+z 2K+2 2
(1.7) n*f*2E[I — I,(unif.)] —nﬁ(b—a)" ja”ax(tw () dt

and the asymptotic constant is generally larger than the one in (1.4). I (h*)
will be asymptotically optimal if the conjectured asymptotic optimality of the
optimal-coefficient estimators [ (h*) is true. Therefore for K = 0 and 1 the
sequence of estimators I,(h*) is asymptotically optimal (under Assumption
Ay and those required by Sacks and Ylvisaker).

The plain trapezoidal rule (i.e., without the correction term) is not asymp-
totically optimal when K > 1 as follows from Cambanis and Masry (1988),
where it is shown that when K = 1 it has rate of convergence n~* but larger
asymptotic constant. When K = 0 (no q.m. derivative) an asymptotic perfor-
mance as in Theorem 2 was established by Schoenfelder (1978) for the
simple-coefficient estimators based on the median rule instead of the trape-
zoidal rule; see also Cambanis (1985).

These simple-coefficient estimators do not require precise knowledge of the
covariance function R, other than the exact number K of its (K, K) mixed
partial derivatives, and hence they are fairly robust. They are also numerically
stable in view of their simple form. However, they use the q.m. derivatives of
X at the endpoints a, b, and these frequently cannot be observed in practice.
Therefore, it is necessary to estimate these q.m. derivatives from the samples
in such a way as to preserve the rate of convergence of the mean square error
and also the asymptotic constant.

The estimators derived from the approximation of the q.m. derivatives
based on Newton’s finite difference formulae (Proposition 5), that is, from
Gregory’s formula (Proposition 7), and the regular sampling points of T,(k)
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are of the form

_ #(a) sl é(e,) #(b)
I(R) —{Em (a) + lZI 7 (tn) (;n)+2h(b)X(b)}

(1.8)
-y D KGR NG
JZIC {A [h(tn_j’n)X(tn—jyn)} +( 1) A [(h( )X( )J}

where A’ denotes jth-order difference,

Vet = £ 0 (e, 0sitisn,

and where the constants C are defined in Proposmon 7. For j > 1, they can
be written in the form

1.9 By =—% o 22

(19) GRS L [0}

where the coefficients a,, i = 0,..., n, are symmetric and given by
1 K
- X C, fori =0,
2z

. K 7
(1.10) a; = 1+(—1)‘+IZ (g)Cj, forl <i <K,
1

1, forK+1<i<n-K-1,
a forn-K<i<n.

n—i»

For example, the values of a¢,, i = 0,...,n, for K =0,1,2, 3,4 (and appropri-
ately large n) are as follows:

K=0 5,1, 1, 1, 1,1,...,1 3
& 2,01, 1, 1,1,...,1, 1, 1, 1, ¥ 5.
1
1

3 7 23 23 7 3.
8y 6 24 1, 1,1"“1 ) 1) 1) 24y 6> 8»

739 211 299 251

1,739 211 299 251.

251 299 211 739
1,1 » 7205 240> 240 720>

720> 240> 240> 720>
95 317 23 793 157 1 1 157 793 23 317 95

2887 240> 302 720> 160° > 1607 720> 30> 240> 288 *

N RR R
I

II
W N =

The asymptotic performance of this sequence of simple-coefficient estimators
I,(h) is shown to be identical to that of I,(k) and therefore also of [ W(h).

THEOREM 3. Under Assumption Ay, I.(h) of (1.8) or (1.9) satisfies (1.3).
Just as in Theorem 2, the sequence I (h*) will be asymptotically optimal

provided the conjectured asymptotic optlmahty of the optimal-coefficient esti-
mators | o(h*) is true. We thus have asymptotic optimality for K = 0 and 1 for
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general processes satisfying Assumption Ay and those required by Sacks and
Ylvisaker, and for general K for the restricted class of processes considered by
Eubank, Smith and Smith.

We now state and discuss the assumptions used in the theorems. The
following notation is used: R™™ ?(s,¢) = 9P*9R(s,t)/dsP dt?, RPD(¢t, t — ) =
lim ., R®9(t,s) and R®9(¢,¢ + ) = lim, , R® (¢, s).

AssumpTiON A, (K =0,1,2,...). () Q = R® X exists and is continuous
on the square [a, b] X [a, b].

(ii) If p,q are nonnegative integers with p + q < 2, then Q¥ 9(s,¢)
exists and is continuous off the diagonal of the square [a, b] X [a, b] (i.e.,
for s #t); at the diagonal s =¢, it has left and right limits, that is,
QP V(¢ t +),Q™ (¢, t — ) all exist and are finite, and sup, . ,|QP 9(s, ¢)| < c.

(i) ag(t) = REE+D(t ¢ —) — REE+D(¢ ¢ +) is positive and continuous
on [a, b].

(iv) ¢ and 2 have K + 2 continuous derivatives on [a, b].

AssumpTION A% (K =0,1,2,...). Assume (i), (iii) and (iv) of Assumption
Ay and instead of (ii), the following:

(ii') Each R®9(¢,s) with p + ¢ = 2K exists on the square [a, b] X [a, b],
has continuous mixed partial derivatives up to order 2 off the diagonal (¢ # s)
and has left and right derivatives at the diagonal (¢ = s), that is R®9(¢ + ,¢)
and R®9(¢t — ,t) exist and are finite for all p + ¢ = 2K + 1, and
sup, . JR®2E+ (s, ¢)| < . For each ¢t € [a, b], R"2K*D(- ¢ + ) € H(R), the
reproducing kernel Hilbert space of the covariance R with norm || - ||z, and
sup,[|RO2E+2(. ¢t + )|l < oo,

Part (i) of Assumption Ay is the necessary and sufficient condition for the
process X to have K continuous q.m. derivatives. Parts (ii) and (ii’) are
smoothness conditions off the diagonal and thus they are weak. Part (iii)
guarantees the process X has no more than K q.m. derivatives. Assumptions
(), (i) [or (ii')] and (iii) are satisfied by a large class of processes including
Kth-order iterated integrals of a Wiener process and stationary processes with
rational spectral densities. When X is stationary, then conditions (ii) and (iii)
are satisfied if and only if R?K*2X(¢) exists and is continuous for ¢ # 0 and
R@X+1D(0 + ) exist and are finite and the jump ag(t) = R@X+*D(0 —) —
REE*IX(0 + ) = ay is positive.

Sacks and Ylvisaker considered also the case where the process X(¢)
together with its existing q.m. derivatives X®(¢), ..., X®)(t) are used at the
sampling points. The corresponding optimal-coefficient estimators have the
same rate of convergence but smaller asymptotic constant. Simple-coefficient
estimators using the K q.m. derivatives of X at the sampling points can also
be constructed based on the trapezoidal rule with a correction term that
‘depends on the values of the q.m. derivatives X®(¢),..., X¥X(¢) at all sam-
pling points and have the same asymptotic performance as the optimal-coeffi-
cient estimators using all existing q.m. derivatives at the sampling points [see
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Benhenni and Cambanis (1990)]. Although these simple estimators have better
performance than those in Theorem 3, they are impractical for applications
where q.m. derivatives cannot be observed.

In Section 2 we develop versions of classical results on the approximation of
integrals of nonrandom functions based on regular sampling points instead of
the classical periodic samples. They are used in the proofs of the theorems,
which are given in Section 3.

The following example compares, for a stationary second-order Markov
process, the finite sample size performance of the optimal-coefficient and the
simple-coefficient estimators under both uniform sampling and the sampling
designs T, (h*), which from now on we refer to for simplicity as asymptotically
optimal.

ExamMpPLE. We consider the estimation of the integral
1= [lePx(z) dt,
0

where the stationary process X has covariance R(¢,s) = (1 + alt — s|)e ¢8|,
with a > 0, and spectral density ¢(A) = (2a®/7)a? + A%2)~2. The process X
has exactly 1 q.m. derivative, that is, K =1. When B # 0, the density
that generates the asymptotically optimal sampling design is h*(¢) =
(2B/5Xe?/® — 1) 1%e?Pt/5 0 < ¢t < 1, and the corresponding sampling points
are

tf, = (5/28)In[1 + (e*/® - 1)i/n], i=0,1,...,n.

The simple-coefficient estimators with asymptotically optimal and uniform
sampling designs, I(A*) and I (unif.), are given by (1.9), where the coeffi-
cients a; of (1.10) take the values shown on the line K = 1 in the list following
(1.10). The sample size of each design T, is N =n + 1.

When B is close to zero, then A*(¢) becomes close to the uniform density,
and thus no interesting comparison can be made between the uniform and the
asymptotically optimal sampling designs. (For B8 < 0, the normalized mean
square errors are too small for a wide range of values of a even when n = 2.)
We thus choose a moderate positive value of B =3, so as to be able
to distinguish between the two sampling designs. The asymptotic constant
in (1.3) when h = h* or h = unif. takes the following values [a,(t) = 4a®,
B, = —1/30I:

C* =a3y~5/180, C*=a’(e? — 1)B"1/360.

The,improvement provided by using the asymptotically optimal design over
the uniform design becomes significant as 8 increases, since for large sample
sizes the number of samples N* (resp., N*) required for a given mean square
error when using the asymptotic optimal (resp., the uniform) design are
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la:a =8, =3

...
<

-
S
(3]

103

Normalized Mean Square Error

—t
S
&

1073
1 3 5 7 9 11 13 15 17 19 21

Sample Size (N)

Fic. 1. Normalized mean square error versus sample size: A denotes asymptotically optimal
sampling design; B denotes uniform sampling design; 1 denotes simple-coefficient estimators;
2 denotes optimal-coefficient estimators; 3 denotes asymptotic expressions.

related by
N*—1 (C*\* 28 v
W={F} ={(62ng} =0797, fOI‘B=3

(which tendsto 1 as 8 > 0 and to 0 as 8 — +).

When a is close to zero (very highly correlated samples), then the covari-
ance matrix {R(¢, ,,¢; ,)};_j_, becomes nearly singular and the optimal-
coefficient estimator is affected by this numerical instability whereas the
simple-coefficient estimator is not. For small values of a (highly correlated
samples), the normalized mean square errors are very small; for example,
when a =1 and N = 3 the normalized mean square error is of order 1073
Whereas for larger values of « (less correlated samples) the normalized mean
square errors are significantly higher; for example, when « = 8 and N = 3 the
normalized mean square error is of order 10~ 1.

The normalized mean square errors E(I — I )2/EI? and E(I - ,)?/EI*
using optimal and uniform sampling designs, along with their asymptotic
expressions n~*C*/EI% and n~*C*/EI?, are plotted versus the sample size
N =2,...,21 in Figure 1a, 1b, 1c for a = 8, 14,20, respectively. It is seen
from these plots that (as expected) for small sample size the optimal-coefficient
estimator outperforms the simple-coefficient estimator, but as n increases, the
improvement in performance is negligible. Table 1 shows the number of
samples N required to achieve a specified performance by the various designs,
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1

1b:ax=14, =3

._
<

—
<
~»

Normalized Mean Square Error

1 1 1 | 1 | 1 |
1 3 5 7 9 11 13 15 17 19 21

Sample Size (N)

le:ax=20, =3

B2

- —t s
s 38 3
w N —
] I

Normalized Mean Square Error

—
=
1

»
I

| 1 | | | 1 | l
9 11 13 15 17 19 21

Sample Size (N)

—
S
7Y
—
W
W
~

Fic. 1. Continued.
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TABLE 1
Number of samples N required to achieve a specified normalized mean square error under different
designs and estimators for a = 14, B = 3.

Normalized
* mean square error
Design Estimator 10! 1072 1073
Asymptotically optimal sampling  Optimal-coefficients I x 5 8 14
Simple-coefficients I* 5 8 14
Asymptotic expression (C*) 5 8 14
Uniform sampling Optimal-coefficients I (unif.) 6 10 18
Simple-coefficients I,,(unif.) 6 10 18
6 10 17

Asymptotic expression (C*)

as well as the number determined by the asymptotic expressions of the mean
square error, when « = 14 and B8 = 3.

2. Approximation of integrals of nonrandom functions using regu-
lar sampling. We develop (in Proposition 3) the Euler-MacLaurin form for
the improved accuracy trapezoidal rule when, instead of the customary peri-
odic samples [Krylov (1962)], we use the points of a regular sampling design
generated by a positive density function h. In order to achieve this, it is
necessary to develop “‘h-weighted” versions of Taylor’s expansion (in Proposi-
tion 1) and of the expansion in terms of Bernoulli polynomials (in Proposi-
tion 2).

We will use the h-weighted derivatives. If the function f and the density A
have m continuous derivatives, then the h-weighted derivatives of f are
defined by

foy=f/h, fi,=Ff§y/k, forj=1,2,...,m.

The probability function H(x, y) is defined by

Yy
h(t)dt, fora<x<y<b,
Hx,y) = | L0

—-H(y,x), fora<y<x<b.

It follows that, for all x # y and j > 0,
2 H(x,y) = —h(x) [ Hi(t,y)h(t) dt = L miti(a,y)
ar1(82) = ~h(x), o B y)h(8) di= -7y %)

In the particular case where h is the uniform density on [a,b], h(¢) =
(b—a)7', then f;, =(b—a)*'f¥, j>0,and H(x,y) = ly — x| /(b — a).
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ProposiTiION 1 (Weighted Taylor expansion). If f and h have m (= 1)
continuous derivatives on [a, b], then, for all ¢, x € [a, b],

m-—1 1 ) 1 " .
fioy(t) = J{;O J,—!HJ(x,t) (%) +‘(_m——1)!fo'" (u,8) fomy(w) () du.

Proor. The result follows by repeated integration by parts of the remain-
der. O

Proposition 2 gives the h-weighted expansion of a function f in terms of
the periodic extensions B¥(x), —® < x < », of the usual Bernoulli polynomi-
als Bj(x),0 <x < 1.

ProprosiTION 2 (Weighted expansion in Bernoulli polynomials). If f and h
have m (> 1) continuous derivatives on [a, b], then, for any z € [x, y] C [a, b],
we have

1 y
fo(2) = m/x fioy (B (2) dt

(x,2)

m-—1
+ Z HI~ l(x y)B (H( )[f(J ny) - f(j—-l)(x)]
j=1J

H(t, z)) B*(H(x,z)

h(t)dt.
H(x,y) °m H(x,y))] ®

- —H’" ‘@ [ f(m(t)[ (
For m = 1 the second term is not present.

Proor. Consider the following (integral) remainder:

H(t,z
pm(2) = — Hm Yx, y)f fom)(2)B ( (( )))h(t)dt

1 [ H(t,2)
- —H" (x,y)f:B (H( ))f(m o(2) dt.

For m > 1, integrating by parts (m + 1) times and using H(y, z) = H(x, z) —
H(x,y) < 0, we obtain
w1 ( H(x,z)

pu() = L 5 H 50 By g

)[fu n(¥) = f-n(®)]
1 y
— fo(2) + m/x fio(t)h(t) dt;

writing £, - 1Y) = fim—1)(®2) = [2fim-1 () dt = [2f . (£)R(2) dt yields the final
expression in Proposition 2. O
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ProposiTiON 3 (Weighted Euler-MacLaurin formula for regular sampling).

If fand h have m (= 1) continuous derivatives on [a, b], and if {T,(h)},_, isa
regular sequence of sampling designs then for m > 2 we have

f f(t)dt = Z [ fo(ti,n) +f(0)(tz+1 )

= B
le n1+1 (J + 1)' [f(J)( ) f(j)(a’)]
— EZOf””f(m)(t)[Bm(nH(t,tHln)) B, |h(¢) dt,

and for m = 1 we have
n—1

L
[0t =52 T [faltin) + foltinnn)]

~" (tisin
+; > f fi(#) By(nH(t, t;.1,,))h(2) dt.
i=0 ti,n

Proor. For simplicity of notation we will erte t; for ¢; ,. We first split the
integral into the following sum: [2f(¢) dt = ¥ 7 , Livrf(¢) dt Applying Proposi-
tion 2 in each subinterval [¢,, ¢, ;] [and using H(t t;.1) = 1/n by (1.1)), first
with z = ¢; then with z = ¢, ;, and averaging the two expressions, the final
result is obtained, since B(0) = —1/2, B(1) =1/2 and B,(0) = B,(1) =
for j > 1 and B¥(nH(¢,t)) = B, (nH(,¢,.,). O

The rate of convergence of the error in the approximation of the integral
I(f) = [2f(t)dt by the corrected trapezoidal rule I,(f;h, m) of degree m
based on a regular sampling design T,(k) can be derived from Proposition 3,
with the following notation:

L(f;h,m) = i: [ Fio(tin) + Fio(tirnn)]

M|H

=2 B,
§ nJ+1 (J i 1)[ [f(J)(b) f(j)(a)]’

for m > 2; when m = 0, 1 no correction is necessary and I,(f;h, m) is given
by the trapezoidal term. Then

B,
PI(f) = I(f3hym)] = { ~ ot Lm=0(8) = fin-p(@)], form =2,
0, for m =0, 1.

Approximation of the h-weighted derivatives. The Euler-MacLaurin for-
mula of Proposition 3 uses h-weighted derivatives of f at the endpoints a, b.
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In order to approximate these derivatives by values of f at the sampling
points, we develop a generalized version of the forward and backward Newton’s
finite difference formulae based on regular sampling, rather than the custom-
ary periodic sampling (Propositions 4 and 5). This gives rise to Gregory’s
formula for a regular sampling design (Proposition 6).

We will use the h-weighted divided differences of a function f on [a, b],

which are defined for any x,, x;, ..., x; in [a, b] as follows:
f(O)(xlv""xi) _f(O)(xOP"’xi—-l) .
f(O)(xCHxl’""xi) = H(xo,xi) ) 12 1.
When (x4, ...,%) = (5 ,,...,%,), 0<i<n, where {T,(h) =
(o, ps++ >ty o)n-1, since H(tJ nwrten) =k —j)/n for 0 <j <k < n, we have
ﬁO)(tO,n’tl,nV" i, n) Af(O)(tO n)

where A'f,,(t, ,) are the usual finite djfferences. We will also use the “classi-
cal” polynomial W(-) in Newton’s interpolation formula when using a periodic
sampling, where Wy(«) = 1 and, for ¢ > 1,

W(u)=u(u—-1)---(u—-i+1).
ProposiTION 4 (Newton’s interpolation formulae for regular sampling). If
{T (h)Y;_, is a regular sequence of sampling designs and f is a continuous

function on [a, b], then, for 0 <m < n and t € [a, b], we have the following
interpolation formulae:

(Forward)
f(O)(t) Z W[nH(to ns t)] Atf(O)(to n)

1
+ n_mHWm+1[nH(t0,n1t)] f(O)(t’tO,n’ e ’tm,n);

( Backward)
f(O)(t) = ZO (_ ) W[ nH(tn n1t)]ALf(O)(tn i, n)
-1 m+1
+(n%wm+l[nH(t7tn,n)] f(O)(t7tn,n7'"7tn—-m+1,n)‘

Proor. The definition of the Ah-weighted divided differences yields the
expression of f,(#) in terms of the successive divided differences at the
sampling points

f(O)(t) = Z n(t)f(O)(tO ny** z n) + m+1, n(t)f(O)(trtO,n""7tm,n)7

where P,.,n(t) =H(ty,,t) " H@t;_y ., 1) = n"'W[nH(, ,,1)], 1 <i<n+1,
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P, (t) = 1. The forward formula follows from the expression of h-weighted
divided differences in terms of finite differences. The same procedure can be
used to derive the backward formula. O

PRrOPOSITION 5 (Approximation of weighted derivatives for regular sampling).
Let {T(h):_, be a regular sequence of sampling designs, and f, h have m
continuous derivatives.

(Forward formula.) Fort & (¢ ,,tym_1,,) and 0 <j <m — 1 < n we have
for some &, = £(j, m) € (¢, ,,max(¢,¢,,_; ),

om711 )
fot) =n? L WO nH(to,0,1)] Afoto,n)
i=J *

1 ) .
+ m!nm-—j Wrgj)[nH(tO,n’ t)] f(m)(gt)'

(Backward formula.) For t & (¢, .1 ts,) and 0 <j<m—1<n we
have for some 1, = 1,(j, m) € min(t, £, _, 11 2)s 25 0),

ml(-1 . .
f(.l')(t) = nJ Z i‘ Wfi(l)[nH(t’tn,n)] Alf(O)(tn,—i,n)
i=j *

-y~

* mln™7

erzj)[ n’H(t7 tn, n)] f(m)( ”h) N

Proor. For simplicity we will write ¢; for ¢, , and P; for P, ,, and we
denote the h-weighted differential operator by d;: d; f = f;). Taking the jth
h-weighted derivative in Newton’s forward formula of Proposition 4, we obtain

mity .
fo®) =n? L = WOnH(to, D] Mo te) + d{Pn(®) fro(% bo, - S tmo1)}-
i=J *

The function g(x,C) = P, (%) fio\(x, 20, -» t,—1) — CP,(x)/m!, where C is a
constant, vanishes at least m + 1 times in [¢,,¢,,_,), since P,(-) has exactly
m roots to,t, ..., ¢, _1. Applying Rolle’s theorem j times, 1 <j<m—1, we
obtain that each g ;(x,C) vanishes at least m —j times in (¢4, ¢,,_)- Now, fix
t & (ty,t,_,) (but in [a,d]. Then d;P,(t) #0, and thus there exists a
value C, = C,(j, m) such that g (¢, C,) = 0. Let g(x) = g(x, C,). Then g; ()
has at least m —j + 1 roots in (¢,, max(¢,¢, _,)) and we have Em)(%) =
d o A8 xN = d{Pp(x) fox, Lo, - - - t,_)} — C,, since d,P,(x)=
WS nH(t,, x)] = m!. Taking the mth h-weighted derivative in the forward
formula of Proposition 4 and since d,, P(x) = 0 for 0 <i <m — 1, we have
fim (%) = d,, frofx) = d AP, (x) %, tg, ...t 1)} Since &) has at least
m —j + 1 roots in (¢,, max(¢,¢,,_,)), repeated use of Rolle’s theorem (m—j
times) implies that g,,(-) vanishes at least once in (t,, max(t, ¢,, ;). Thus,
there exists ¢, = £(j, m) € (¢, max(¢,t,,_,)) such that g(mX)¢,) = fm)é) —
C, = 0, and therefore

1
d;{Po(t) fio(E:t0s - 1)} = Fomy(€e) 7 Pm(2)-

The same technique can be used to derive the backward formula. O
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Alternative expressions of the remainder in the forward and backward
formulas in integral form are as follows:

(Forward formula)

L]

nJ m-—1

1
_— —WWw H(t ¢
(m - 1)! Ej W [rH(2o,,,1)]

X éo(—l)i_r(f.)j;tr’"Hm_l(x’tr,n)f(m)(x)h(x) dx:

(Backward formula)

(-1)™7 +1m31 ;
—(-rn_——]_)—!- ;} .W( )[nH(t tn n)]

n—r,n

> OB H N ) () R(3) .
r=0

These are obtained by expanding A’f (%, ,) in Taylor series around ¢, , as in
Proposition 1 and using Lemma 4 (in Section 3 prior to the proof of Theo-
rem 3).

ProposITION 6 (Weighted Gregory’s formula for regular sampling). If f
and h have m continuous derivatives on [a,b] and {T,(h)}._, is a regular
sequence of sampling designs, then

1 »-1
[1@de =50 F [foltin) + foltiern)]

1m . . o
o g o[Nf(o,(tn_,-,n) + (—1) A fg(a)]

n
1 m Bm
T 5]

X[(=1)" fm-1(8) = fom-1(a)]
1 . B,
- wn- 1)(0)[ moa(—1)7 - 7]

(m — 1)!m!inm™+!

X[(—l) f(m)(gb m) + f(m)(ga,m)]

1 +1 j m-—j
- Z (Jil),w,s,”m)[(—l) fon(€.5) = Fom(£a.)]

T f‘“"ﬂm)(t){B [nH(t tivi,n)] = Bulh(2) dt,

!
mnlo
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where £, ; €(a,t,,_1,), &b, ; € (ty_pps1,0,0) and Cy =1/2,

(=D (-7 B,
c,.._mfovvm(t)dt_ - ng(jﬂ)!

W9(0), fori> 1.

Proor. Denote by D(a,b) the second term in the Euler-MacLaurin ex-
pression of Proposition 3 (without the minus sign). Applying the formulae of
Proposition 5 at the endpoints a, b, and since the B;,,’s with j odd are
nonzero, we obtain

m—-2 1 Bj+1

D(a,b) = X W G D1

Jj=1

m-l o] o1 .
x\nd T WO0) = [(=1) Mfigti,n) = &foa)]
1=j *
1

WO — (D) f(ts.,) -
i W (0)—3 i (6,5) = Fom(£a.)]

where ¢, ; € (a,t,_,) and &, ; € (t,_,,.1,t,). Inverting the order of summa-
tion and applying the formulae of Proposition 5 to f,,_;(a) and f,,_,(b), we
obtain the final expression of D(a, b) by showing that
1 B, ,
Jj+1 i i+1
— ¥ w0 = (-1)'*'C,.
l!,§1(l+1)! (0) = (=1)

The latter follows by expanding W, ; in terms of Bernoulli numbers (i.e., the
standard version of Proposition 2 with x = 0, y = 1 and k uniform over [0, 1]),
and using WY (1) — W93(0) = G + DWYUX0). O

Integral estimators are constructed from the weighted Gregory’s formula
for regular sampling:

_ 1 »—-1
L(fih,m) = on Z—:o [f(O)(ti,n) + f(O)(ti+1,n)]

1m=-2 . Do
e Zl Cy[ A fo(tnmjin) + (—1)’ Mfoa)],
iz

for m > 3; for m = 0, 1,2 no correction is necessary and I,(f;h, m) is given
by the trapezoidal term. Their rate of convergence is

n™[I(f) = I(f;h,m)]

1 m-1
_—1)!Cm—1[f(m—1)(b) +(-1) f(m—l)(a)]‘

- —(m—

n
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3. Proofs of theorems. The most important properties of Bernoulli
polynomials have been used in Propositions 2 and 3. The expressions of the
following integrals are established for use in the proof of Theorem 2: with
By(x) = Bg(x) — By,

L]

Bix= '(1 - x)'Bg(x) dx,

YLk = [[ By(x)Bg. () dxdy,

0<x<y<l1

vax= [ Brui(x)Bx(y)dudy.

0<x<y<l1

LemMa 1. For K > 1, we have the following:

. Bg,, 1
(1) Bo k= —Bg, Bi,k= — K++1 - EBK'
.. 1 1, x Bak+z

(i1) WIOBKH(&') dy =(-1) GK+ 2
B i B2
K 2K +2 K+1
— (~D¥KNK + 1)!
+3BxBru ~ Brg -
Yo,k = — Y1,k T Bo,kBo, k+1-

Proor. (i) Follows from integration by parts using Bg_ (1) = Bg,40) =
Bg,.,, K> 1.
(ii) For any n > 1, m > 1, integration by parts yields

[[Bu®) Bu(x) di = ——5 ['Bui(#) Boa() d,

m +
and (ii) is obtained by applying this relation repeatedly and using By(1) = 1/2,
B(0) = -1/2.

(iii) The second part follows from y; x + v x = Bo, kBo, k+1- The first part
follows from (i) and (ii) along with

 R— Yy =
71,K=f0dyBK+1(y)f0 dxBg(x)

1
T K+1

1= 1 =
J Bira() dy = By [ 3Bir(y) dy. D

We will use the following h-weighted derivatives of the covariance R:

R, (t,8) = E{Y(p)(t)Y(q)(s)}, for0 <p,q <K andt,s € [a,b].
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We also define recursively R, ,\(¢,s), for (K <p or K<qand 0 <p +q <
2K, t,s €[a,bl} and for 2K+1<p+q<2K+2, t+s in [a,b]), as
follows:

L)

ROV (¢, ), K<q,

h(s) (P, q—
R, o2 8) = 1
'};Et—)‘Rgp’_)l,q)(t,S), K <p.

Lemmas 2 and 3 express the jump along the diagonal of the h-weighted
derivatives R g g, and R 5k, in terms of the jump ag of the derivative
R® K+D and will be used for the expression of the asymptotic constant in
Theorem 2. )

LeMMA 2. Under Assumption Ay, we have
Rig ke(tit =) — R genp(t,t +) = d2()ag(t) /h*EH3(¢).
Proor. We have By gyt ¢ +) =1lim, R&% (¢, t + u)/h(t + u). We
can write Y, = h 'Yy’ + Z,_,, where the stochastic process Z;_, is a linear
combination of the processes Y, 1 <j <i — 1, with coefficients depending

on powers and derivatives of the density A, and thus has K — (i — 1) q.m.
derivatives. Thus, for any ¢, s € [a, b],

Rk k), 8) = ng‘;*K’(t, s)h X(t)hE(s)
+{R () EYZO () Zx_o(5)
+hK($)EYSO(8) Zg_1(t) + EZyx_1(t)Zx_y(5)}
and
R{‘,’g}}o(t,s) = R%‘;’K“)(t, )R E(t)h K (s) + W(¢,5),

where W(¢, s) is a linear combination of R%/Xt, s), 0 < i, j < K, with coeffi-
cients depending on powers and derivatives of h at the points ¢, s, and thus is
continuous on [a, b] X [a, b]. It follows that

R gin(t,t ) = RED(¢,t )R 2E-1(t) + W(t,t)h~'(2).
Therefore, we obtain
R(K,K+1)(t’t -) - R(K,K+1)(t’t +)
= R 2K () [ RE K+D(¢, 8 —) — RE K D(8,¢ +)].

But, Rt 5) =(é¢/hXtX¢/hXs)R(t,s) and the continuity of ¢, h and
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R®IX¢,8), 0 < i, j < K, imply that
REX+D(t,t —) — REE+D(t,t +)

d’ 2
- (Z) (O)[REKeD(1,8 —) = REED(t, 1 +)]

¢ 2
- (%] ey
from which the final expression follows. O

LemMa 3. Under Assumption A'y, we have

b (1) ak(2)

b .
/a [R(o,2K+1)(t:t =) — Ry, 2x+1)(25 ¢ +)]h(t) dt = (_I)K/ Wz(t)'dt'

ProoF. For small u > 0, we have

d
aR(o,zx)(t:t tu) =h()Ryaxy(t,t tu) + h(t £u)Re k1t t L u),

and, integrating, we obtain

b—u
/a [Ro,2+1(t:t = u)h(t —u) = R a1t t + u)h(t +u)] dt

+u

K-1 J
. b
= }:0 (= 1)'[Bgax—p(t:t = ) = Ryaxp(t,t +0)] .,
2

b—u
D [ R gen(t:8 = ) = B, gan(t:8 + w)] R (1) .

Then by the dominated convergence theorem, since sup, . ,JR% ¥*D(¢, s)| <
and sup,,|R®2K*1(¢, s)| <, and by the continuity of R, (¢ s) with
p + q < 2K, letting u — 0, the result follows from Lemma 2. O

ProoF oF THEOREM 1. Let % be the reproducing kernel Hilbert space
(RKHS) generated by the covariance kernel R (¢, s), ¢, s € [a, b], with inner
product { f(-), R (-,2)) = f(?), t €[a,b], for f € X, and let # be the L,-
closure of the linear span of the random variables {Y,,(¢), ¢ € [a, b]}. Then
every f€ Z is of the form f(¢) = E[Y,(¢)Z] for some Z € # and the
correspondence f < Z is an isomorphism between # and &, so that if
fi © Z;, then (fy, fy) = E[Z,Z,] and in particular {(f(:), R(:, 1)) =
E[Y()Z] = f(8), t € [a, b]. It follows that if f€ # with f(¢) = E[Y,(t)Z],
Z € #, then we have

<.f(.), /:R(O)(.,s)h(s) ds> - E[Z/:Y(O)(s)h(s) ds] - j;bf(s)h(s) ds,

(F(*), Ro (1)) = E[Y (1) Z] = f;(t), te€[a,b],0<j<K.
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where the last equality is proven by induction, using the definitions of the
weighted derivative f;(#) and weighted q.m. derivative Y{; ().

Let P, be the projection from the Hilbert space # onto sp{R(o)( t),
teT,) In view of the isomorphism between # and &, with f(t) =
JER (¢, s)h(s)ds, we have  *

E(I-L) =1~ Pfl = (F=Puf. > = [*(f = P.f)(5)h(s) ds.

Let g =f— P,f. Note that g(¢; ,) = 0 and, by Assumption A, g has 2K
continuous derivatives on (a, b) and 2K + 2 continuous derivatives on each
subinterval (¢; ,,¢;,, ,). An inspection of the proof of Proposition 3 makes
clear that the weighted Euler-MacLaurin formula with m = 2K + 2 is appli-
cable [as only the everywhere continuous derivatives of order up to 2K are
involved in the expression of each integral over (¢; ,,t;,,,) and therefore
cancel upon summation]. Using the expression of its second term D(a, b) given
in the proof of Proposition 6, gives

E(I-1,)" = [*g(s)h(s)ds

1
(31) =D(a’b) + (2K+ 2)!n2K+2

n—1
X Z f_m"g(2K+2)(t){Bzx+2[nH(t,ti+1,n)] = Byg.o}h(t) dt,

where, in view of the remark following Proposition 5,

1 2K B, 2K+l i (i
= —WW —1)i"
D(e.?) = G~ 1)!nj§1 (G + 1) § iV <°>,§0( ) (r)

{( 1) f H2K+1(x1tn—-r,n)g(2K+2)(x)h(x) dx

—-r,n

tr,n
_f H2K+l(x:tr,n)g(2K+2)(x)h(x)}'

a

For the first term D(a, b), since (P, )k 2(t) [and thus ggk. o (2)] does
not exist at ¢t € T,, we write the integrals as sums of integrals in between
successive points of T, and applying the mean value theorem we obtain

1 2K B 2K+1 1 .
D(a, ) = (2K+2)'n2K+3Z(J+1)' L WO

i

Z (;)g [12K+2—(l—1)2K+2]

{( 1)’ g(2K+2)(§1) g(2K+2)(§z)},

wheret;, , , <§ <t ,andt, .., ,,<§& <t, .., From Assumption Ay,
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we have

t b
fer+1y(t) = LR(0,2K+1)(3:t +)h(s)ds + ft R, 2x+1y(8,t —)h(s)ds

and, differentiating, we obtain ,

farsa(®) = ~Br(t) + [Rosx.n(s.t +)h(s) ds,

where
Bx(t) = R ox+1y(t:t =) — Rg axr1)(t,t +).

From (ii') of Assumption A%, R sx.9(',t+)€ # and, since P,fe
sp{R(:,2), t € T,},

(Puf, Roaxsn( >t +)) = (Pyflexso(t +) = (B far+a(t), forteT,.
Writing R 542", ¢ +) = EY)§,, £, € #, we have

(f, Rosxen(st +) = ['E[Yo(s)&] h(s) dx

b
= ["R 2x42 (s, t +)h(s) ds.
a
It then follows that, for ¢t & T,,
8ek+2)(t) = —Bk(?) +< f=P.f,Ro ak+a)( >t +)>
Since |Bx(#)| < ¢; < » by the continuity of Bx(¢) on [a, b],
sup ” R ox+2)( "t +)” =My og+2 <®
t
and ||f— P, fll<|fl, we have, for t & T,, Igox+2®)| <c¢; + I fIIMg ks
Therefore, there exists a constant c, such that |D(a, b)| < ¢,/n?%*2 so that

D(a, b) = o(n~2k+2),
The second term can be written as

1 n—1 .
go ‘/;f“,n{_BK(t) +< f-P.f, R(0,2K+2)(‘,t)>}

(2K + 2)1n2k+2
X{Byg.o[nH(t, ti+1,n)] - BzK+2}h(t) dt.

The sum of second terms involving { -, - ) is bounded in absolute value by

M0,2K+2 1
@K+ 2yl = Puf I [[1Baxia() = Bagoalds.

Since g,k 9(t) is bounded we have, from (3.1),
| f- Pnf||2 = E(I - fn)z < con @K+ 4 oon @K+,

It follows that the sum of the second terms is o(n~@%+*2), Since the Bernoulli
polynomials B,x, (%) — Byk,, have constant sign on [0, 1], the mean value
theorem can be applied to the sum of the first terms involving By to obtain

1 n—1 1 1
- (2K + 2)!n2K+2 igoﬁx(fi,n);fo [BZK+2(x) - Bzx+2] dx,
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where tzn <§zn <tz+1n Usmg l/n_h({z n)(tz+ln_ zn) tzn<{zn <
tiv1ns Lemma 1(i) and the above results, we obtain, by Riemann integrability,

B
2K+2 _ 2K+2
n?K*+2g (1 in) "0 GE+ 5 fa Bx(t)h(t) dt
and the final expression of the asymptotic constant follows from Lemma 3. O

Proor oF THEOREM 2. For simplicity we write I, for I,(k). In view of the
isomorphism, we have

E(I-1)" =|fI7

where

(1) = E[Yo(8)(I - I)]
1 n—1
- /:’R(O)(t,s)h(s) ds — o E)O [Roy(tst;) + Ryt tisy)]

X 1 B,
+ 21 PYESY W[R(o,j)(t, b) — Ry, ;(t,a)],
i !

for K > 1; for K = 0 the last sum is not present. Thus, for K > 1,

1 n-1
B(I=1,)" = (fur £ = [0 dt = 50 T [l + (b))

K

1 +1
L L 11),[(f)<,>(b> (F)(@)];

j=1

again, for K = 0, the last sum is not present. The case K = 0 will be treated
separately since the Euler-MacLaurin formula can only be used for K > 1.

Case K > 1. When K > 1, applying the weighted Euler-MacLaurin for-
mula for regular sampling (Proposition 3) to f,,, we obtain

2 1 BK+1
E(I-1,))" = K+1 (K + 1)! [(f )xy(b) — (fn)(K)(a)]
1
T K+ DinkT
n—1 .
X go ft.m( F) s () [ Brsr(nH(t,2;,1)) — By, 1] h(2) dt

1 n—1
= m Z {BK+1[( f)ao(tiv1) — (fn)(K)(ti)]

+ftt( ) (D) [ Brar(RE(E, 8;11)) = Bgar] B(2) dt}‘
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Applying Proposition 3 to the integral of R (¢, - ) in the expression of f,
and then taking the /th weighted derivative (! < K + 1), we obtain

n-1

1
(F)a(t) = Kk {BK[R(,,K_I)(t,tj“) ~ Ry k-1(t:t))]

1n K
mne o

1 By,
+ LR (6 t0) = R st )]

+'/:j+lR(l,K)(t’ $)[ Bx(nH(s,2;.1)) = B|h(s) ds .

Therefore for K > 1, the mean square error can be written as

1 n-1
E(I_I'l)z_ Z Mi,j:

KI(K + 1)!n?5+ 1 &~

where
M; ;= BKBK+1[R(K,K—1)(ti+11 tiv1) T Bk, k-1(tir t))
R k-v(tiv1rt;) = R, k-t tj+1)]
1 Bf.,
+— m[R(x,x)(mu tjv1) + Bk, gyt t5)
—Rix, m(tiv1rt;) — Rex, xo(ti tj+1)]
tiv1
+
J

£ —
t_J 1R(K+1,K)(t’ S)BK+1(nH(t, ti+1))

XBg(nH(s,t;.,))h(t)h(s)dtds
+ Bk j:jH[R(K,K)(ti+l’ s) — Rk, k)t 3)]
XBy(nH(s,t;.,))h(s)ds
+ BKKM[R(KH,K—D(Ltj+1) - Rigi1, k-1t tj)]

X By, (nH(t,t;1))h(t)dt

1 BK+1 t;,
+;m : I[R(K+1’K)(t, tj+1) - R(K+1,K)(t’ tJ)]
XBg.1(nH(t,t;,,))h(2) dt
6
= Z El,i,j’

=1
where, for each I = 1,...,6, E, ; ; denotes the term on the lth line.
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For diagonal terms M, i» We use Proposition 1 to do the h-weighted Taylor
expansion of R ;, 0 <i,j < K, around (¢,,t,). For the first term E, ; ;, we

find

“

E BK"’lBK{ ‘+1R(K+1 x(%, ;) h(x) dx
tiv1
+ft. [R(K»K“)(tiﬂ’x)_R(K,KH)(t,-,x)]

XH(x,t;,1)h(x) dx}.

By the mean value theorem, since H(x,t;,,)h(x) is of constant sign on
t; <x <t;,,and H(t;,t;,,) = n~! (from the definition of 4), we have

1
2

1
E ;.= - BK+IBK{R(K+1,K)(ai’ti) + ER(K,K+1)(ti+1’ b;)

1
- ER(K,K-H)(ti’ bi)}’

where the intermediate points a;, b; are in (¢,, ¢; ;). Likewise the second term

1 B, | |
E, ;= ;iK—_l_l[R(K,K+l)(ti+1’ a;) - R(K+1,K)(bi7ti)]’

where the intermediate points a’;, b} are in (¢;, ¢, ,).

For the evaluation of the third term E, ; ;, the double integral has to be
evaluated separately above and below the diagonal, since R k+1 Kk, s) has a
jump at the diagonal ¢ = s. We write

By = f/ <R(K+1,K)(t’S)EK(nH(s’ti+1))§K+1(nH(t’ti+l))

t;<t<s<t;,,

TR ki1, 5)(Ss t)§K+1(nH(3, tiv1))
X By (nH(t,t;,1))}h(¢)h(s) dtds.

The Bernoulli polynomials B (x) have constant sign on [0, 1] when K is even,
but change sign at x = 1/2 when K is odd. In order to apply the mean value
theorem in the second term of E;,; we decompose the range of integration
{t; <t <s <t;,,} in areas where the sign of the integrand remains constant.
We will use the median m; of the subinterval (¢, ¢;, ,) defined by [rih(@) dt =
1/2n. The range {¢; < ¢ < s <t,,,} is then decomposed as in Flgure 2a. We
change variables as follows: x = nH(s,t;,,), y = nH(t,t,,,). Applying the
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tA xA
v 1
-
A;
m———— 1 B,
A tl———
. Al 2 2
——
B
I | B, |
! ! ! . .
t; m; tie1 ; 0 % 1 ;

Fic. 2a. Decomposition of the square (¢;,t;,,) X (¢;, ;1) by its diagonal and the h-median m ; of
the interval (t;,¢; ), and its standardized form.

mean value theorem, we obtain
1 3 — —
E;; ;= ) Z [R(K+1,K)(§i,l’ ”h,z)BK(x)BK+1(y)
I=1

+Rg1, k(€05 m,1) B r(%) B (y)] dr dy,

where ¢, <&, <m;; <t;iq, t;<m; <& ,<t;, 1 =1,23. In the evalua-
tion of the fourth term E, ; ;, one step h-weighted expansion gives

R(K,K)(t’ti+1) - R(K’K)(t, t;)
= B, ke(8 ) H(2:,8) + R k(8 m) H(E 8i40),

where ¢, <¢, <t <m,<t;,,,. As in the evaluation of the term E;,; we
decompose the range of integration (¢;,¢,,,) into (¢;,, m;) and (m,,¢;,,), in
which the mean value theorem can be applied to obtain

1 2
E, ;.= '_23K+1{ )y f [(1 — %) Rk k+1(@i0560)
n 1=1"D;

+xR g k1) ;15 ”Ii,l)] Bg(x) dx} )

where D, ={0<x<1/2}, D,={1/2<x<1} and ¢, < ,<a,;,; <t
t; <b;, <m;,; <t;,, Likewise, for the fifth term we obtain

1 2
Es; ;= FBK{1§1 fDl[(l —%)Rki1, k(@50 60)

+xR k11, k)(bi 15 m,z)] By.i(x) dx} )
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where t; < ¢, <a,;; <t 1, t; <b;; <m;; <t and for the sixth term,

1 Bg
i {Zf [R(K+1 K)(al 1A z+1)

Boii= i g1

—R(K+1,K)(b§,z, ti)] §K+l(x) dx ),

where ¢; <a,,<tl+1 and ¢; < b ; <t
The ﬁnal expression for the diagonal terms is obtained by summing all six

terms. Using

1 i1
= [ = Ry = 1), | <G <t

and observing that the first term vanishes by Lemma 1(i), we obtain, by
Riemann integrability,

2 n b 1 1
Y. My ;—, [ dth(t)|BxBroi| g R ken(t:t +) + 3Rk, ken(tst ~)
i=1 a

B% .,
+ K+1 [R(K,K+1)(t’t _) - R(K,K+l)(t:t +)]

+Rx k+n(t:t =)y x + Bk gen(t:t +)7e k
+BK+1[R(K,K+1)(t’t —)B1k

+Rx g1t t +)(Bo,x — 31,1{)]
+BK[R(K,K+1)(t’t +)B1, k+1

+Rk k1t t —)(Bo k+1 — Bl,K+1)]

By
m[R(K,KH)(t,t _) - R(K,K+l)(t’t +)]BO,K+1
and replacing B; g, v; g by their values in Lemma 1, we obtain
1 n—1
2
n K12 iz=:1 M;

B b
= (0" g s oy, [Remen(tt =) = R a2 #)]R(8) d

Byk.s b (t)ag(t)
= (-1¥ GK+ 2)'j T dt (by Lemma 2).

For the off-diagonal terms M; ;, Proposition 1 allows us to Taylor-expand
the h-weighted cross-covariances R, ,, around (¢;,t;) for i #j up to order
p=K+2 or g=K+ 2, since by assumption R(K K)(¢, s) has continuous
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mixed partial derivatives up to order 2 for ¢ # s. In what follows, the interme-
diate points with index i all will be in (¢,,¢;,,) and those with index j in
(¢;,t;, ). Thus, for the first term E, ; ; and the second term E, ; ; we obtain

L]

1 1
E,; i =BgBg.1—3 {R(K+1 (tist;) + R(K+2 (€1 t))

1
* -2—nR(K+1,K+1)(§i,2’ ) + R(K K+2)(tl+1’77!»1)

1
- 3_!;R(K, K+2)(ti1 nj,z)} ’

1 R
yiyJ = K+1 ;E{R(K+1 K+1)(tw J) + R(K+2 K)(az 1 j+l)

1
- ER(K+2,K)(ai,21tj)}'

For the evaluation of the third term Ej ; ;, the h-weighted Taylor expansion
up to order 2 gives

Rix+1,5(t8) = Rgi1, m(tint;) + Rkio ky(é:,s, ;) H(E;,t)

+ Rigi1, key(tms) H(t, 8),

where ¢, <&, ,<t and ¢; <m, <s. The range of integration [¢;,¢;,,] X
[¢;,¢;.1]1s decomposed in four different sets as shown on Figure 2b, where m;
is the median of the subinterval [¢,,¢;,,]. The mean value theorem can be
applied in each of the four regions A;, A;, A3, Ay, where the Bernoulli polyno-
mial B(x) has constant sign. Putting x = nH(,t,,,), y = nH(s,t;,,), the

A xA
i ———
1
A, | A,
B, B,
m; = 1
A] Az 2
] B, By
! ! - .
tj mi ‘]*l s 0 1 1 y

Fic. 2b. Decomposmon of the rectangle (t;,t,,1) X (¢;,;,,) by the h-medians m; of (¢;, tir1)
and m; of (t;,t; 1), and its standardized form.
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four regions are transformed into B,, B,, B;, B,, and thus we obtain

1
E;; ;= ?{R(KH,K)(ti,tj)ﬁo, &Bo, k+1

1 4
+ ; l{:l fBl[R(K+2,K)(§i,l’ t;)(1 —x)

+R ki1, k(& 0smj0) (1 — y)] §K+1(x)EK(y)] dxdy}.
For the remaining terms of M, ; we have

1
E4,i,j = _23K+1{R(K+1,K)(ti1tj)BO,K
12 _
+ 2 & Rocorxen(tio i) [, (1= ) Bi(x) d
1
2 s Rkso, K)(aw j)BO K

1
Es, ;= n_BK{R(K+1,K)(ti’tj)Bo,K+1

12 =
to g (K+2,K)(§i,l1tj)[Dl(1 — %) By, (%) dx

1
+ %R(KH,KH)(f;,z, 77j)BO,K+1} ’

1 By,

2
Es,i,j = F K+1 lglR(K+1,K+1)(§i,l’nj)fDJBK+l(x) dx.

Collecting all six terms, and replacing B, by their values in Lemma 1, the
terms involving R x k., and R g, g, all vanish, and the final expression for
the off-diagonal terms is obtained. Then from the mean value theorem, we
have n~? = h({DR(Xt;,, — t,)¢;,, — t;), where {; € (¢;,¢,,), and by
Riemann integrability, we obtain

Ry M, ;~, [[ dtdsh()h(s){Regsr,xen(t:8) Ak,
i+j t#s
+R g gr2(t:8) Ak 2 + Rgra k)t ) Ag 3},
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where, using the notation of Lemma 1, we have

1 Bi1

Ag .= -2-BKBK+1 + K+1 + Bo,k+1B1,k T+ Br+1B1, k

By
+ EBKBO,K+1 + ﬁﬁo,mf&

1 B, (1 1
—+‘(— - —) + B1,k+1Bo, k

1
+ '2'B0,KBK+1 + BgPBy, k+1=0.

Thus, we obtain
n?y, M, ;—,0.

it
The result follows by combining the diagonal and off-diagonal terms.

CasE K = 0. Replacing f, by its expression we obtain

nt tiv1 1
Bu-1) = [0k - 51 )

n—1

= Z Mi,j’
i,j=0

where

bivy (Li+
Mi’j='[t¢ 't{ 'Ry(t, s)h(t)h(s) dtds

J

1 tiv1
= 2—n— A [R(o)(t, tj) + R(O)(t, tj+1)]h(t) dt

1 ., .
), [Ro(tt) + Boft tn) (1) di

1
t iz [Ro(tirt;) + Rotistje1) + Roftisnt;) + Rotivrs tiv1)]-

As in the case K > 1, the Taylor expansion of Proposition 1 is used to expand
Ry(-, ) around (¢,,,) up to order 1 for the diagonal terms M; ; and around
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(¢;,¢;) for i # j up to order 2 for the off-diagonal terms M, ; to obtain

2V [”4’2( ) () dt and n?Y M, o
b 0 ll n 12 h.2(t) 0 b i, n

The following Lemma will be used in the proof of Theorem 3.

LEMMA4. For1<l,j<m—1landt & ()t 1,),5EE i1 ntnn)
we have

nfz 'WU’[nH(tOn,t)]Z( (L) H )

(0, forj=#1,
B 1, forj=1,
.m—l (_1)I,+_]
w'T Wt (s, t0,)] T (-1 () H 8 i)
i=j . r=0
_ |0, forj +1,
1, forj=1.

Proor. For t & (¢ ,,t,_1,), let f(x)= H'(t,x)/1! for x € [a,b]. The
forward formula for f;/(¢) (see Proposition 5) gives

m= 1

f(j)(t) =n’ Z .] W<J)[nH(t0 n,t)]Alf(O)(tO n)
= J!
where the remainder vanishes since f,,, =0 for m > [. Since f(¢) =0 for
J#1 and f,;(¢t)=1 for j=1, the result follows by using the Afoto. )
Likewise, the second result follows from the backward formula (see Propos1-
tion 5). O -

Proor oF THEOREM 3. The mean square error resulting from using the
estimator I,(h), denoted here by I,, of the integral I can be expressed in
terms of the mean square error based on the estimator I, with a residual term
which is shown to be of order o(n~2%X+%) We have

E(I-1,)=E[(I-1,)+(I,- L)

= E(I-1,)* +E(I, - ,)" + 2E(1 - I)(, - L).

For the approximation of quadratic mean derivatives at the endpoints a, b,
consider the error in the approximation of Y (a), by the first term of the
forward formula in Proposition 5. The form of the remainder given for the
deterministic case in Proposition 5 cannot be used here since the (K + 1)th
q.m. derivative of the process X does not exist. Hence we proceed as follows.
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For 0 <j < K, we denote the remainder by

1
D;(a) = Y(a) - n’Z 77 Wi(0) MY (a).
. J

We write A% for finite differences with respect to the second variable. Let
K1 ) )
8(t) = E[Yo(t)Dy(@)] = Bo (t,a) = n/ L —W(0) A" Rt, a).
i=j "°

By the assumptions of Theorem 1, g has K + 1 continuous derivatives. Then
from the isomorphism between % and -# we have

ED;(a)’ =| gl

=(&(*), R j5(,a)) — n,z W<f>(0)<g()A°‘R<o>( ,a))
J

1
=g(j)(a) nJZ W(J)(O) Ng(a)
-jt

1 ) 1 .
=z WEi(0) K+ D18 v(£a,;) (by Proposition 6),
where £, ; isin (a,tg, ;). The (K + l)th welghted derivative of g is given by
fucrn(€) = Ruun p(£:0) = an S W) T () Ruenotert).
Using the h-weighted Taylor expansion of R g, o(¢,t,) for the second argu-

ment around e up to order K + 1, and applying Lemma 4 with m = K + 1, we
obtain

K1 .
g(K+1)(f) = —nJ.Z.HVVi(”(O)

x Z( D) gy [ Reaeen ol ) HE 2, £, () i,

and since

1 1 ryK+1
[THR(x,t,)h(x) dx = ——H""(a,1,) = =)
a n

K+1 K+1
we have
1 rK+1
|8k 1(8) | < nK+1—JMK+1{ _J_|W(J)(0)‘ Z ( )(K+ 1)'}
1
= TE+15 %K, ;-

n
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Therefore,

1 1 1
2 .
EDj(a) =< n2(K+1—j)|WI$;]-21(O)| (K + 1)!aK,j = n2(K+1—j)AK,J

The same procedure, using the backward formula for the jth h-weighted
derivative of g at the point b, gives for some finite constant By ,

1
2
EDj(b) = n2(K+1—j)BK,J
We now express I, — I, linearly in terms of Dj(a) and D;(b) by using the
expression for C; from Proposition 6, as follows: _
- K 1 B;
L-I= % s
n/*t(j + 1!

Jj=1

—7[Di(a) — D;(b)]

and, taking the mean square error, we have

BZ+1 2 2
E(I n) 42 2(]+1) ( _,:1)|2E[Dj(a’) + Dj(b) ]

K Bin
= 2K+4Z (j +1),2[AK,j+BK,j]'

It follows that
E(I, - I,)" = o(n~@K+®),

For cross-correlation between quadratic mean derivative and integral ap-
proximation, using the expression of I, — I, we can write
- K 1 B;,,
E(I- I,,)(In -1,)= J§1 FmE(I - In)(Dj(a) — D;(b)).

Recall from the proof of Theorem 2 that f,(¢) = E[Y(¢XI — I,)]; since
g(t) = E[Y(t)D;(a)], then in view of the isomorphism between # and #, we
have

K1 .
E(I-1,)D,(a) = {f,,8) = (fu)i(e) = n’ L ZW(0) &f,(a)
‘ i i

1 . 1
= FT—;W&%(O) m( f)x+v(éa, ;)

(by Proposition 5), where £, ; is in (a,?g,). Applying Proposition 3 to
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R (¢, - ), we have

By

1
fa(2) = 'nK_+1‘(K—+"1‘)—![R(o,K)(t’ b) _R(O,K)(t’a)]

1 n .t b, 5
+m Eo ft,. R x+1(t %) By (nH(x,t;,1))h(x) dx.

Taking the (K + 1)th h-weighted derivative, we obtain
1 1 —
|(F)xsn(€)] < men{wKul + fo |Bx+1(x)|dx}

1
—RFi0K ‘
It follows that
1

2K+2—jAK,j'

1 , 1
|E(I-1,)D;(a)| < ;W;|Wé’21(0)|(—k+—1)!bx =

Likewise, for some finite constant By ;, we have

1
| E(I - 1,) Dy(b)| <~z B -

Therefore, we have

_ 1 K |B;
|E(I-L)(I, - L) < &5 1B,01] (Ak,; + Bx )

-1+ D!
so that
E(I-1,)(I, - I,) = o(n~@K*2),
Thus, the result follows from Theorem 2 and
E(I-1,)" = E(I-1,)* + o(n~@K*?). O
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