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ON BOOTSTRAPPING KERNEL SPECTRAL ESTIMATES

By J. FRANKE AND W. HARDLE

University of Kaiserslautern and Université Catholique de Louvain

An approach to bootstrapping kernel spectral density estimates is
described which is based on resampling from the periodogram of the
original data. We show that it is asymptotically valid under suitable condi-
tions, and we illustrate its performance for a medium-sized time series
sample with a small simulation study.

1. Introduction. During the last years, Efron’s (1979) bootstrap has
been recognized as a powerful tool for approximating certain characteristics,
that is, variance or confidence limits, of statistics, which cannot at all or only
with undue effort be calculated by analytical means. In time series analysis,
due to the complicated data structure, this kind of difficulty quite often crops
up, particularly if one is not willing to assume Gaussianity of the data. In spite
of the need for an improved evaluation of the performance of spectrum or
parameter estimates for stationary processes, the bootstrap has only recently
been applied to problems from time series analysis. Most authors, like Freed-
man (1984), Efron and Tibshirani (1986), Swanepoel and van Wyk (1986) and
Kreiss and Franke (1989), consider resampling the estimated innovations of
parametric time series models, whereas Kiinsch (1989) discusses resampling
blocks of data from a stationary process. In this paper, we discuss an intuitive
approach to bootstrapping kernel spectral estimates based on resampling from
the periodogram of the data, an idea which has been pursued independently in
a quite different manner by Hartigan (1990). We prove a theorem asserting
that our procedure works provided we take care of the bias in a particular
manner. This result is related to similar observations of Romano (1988) for
bootstrapping kernel probability density estimates. Some simulations illustrate
that our procedure works for moderate sample sizes.

2. Kernel estimates for spectral densities. Let X;,..., X, be a sam-
ple from a strictly stationary real-valued process {X,, —® < n < »} with mean
0, finite variance and spectral density f(w). Let
2

, -T<w<m,

1| T "
Ir (o) = ? kE X, e
=1

denote the periodogram of the sample. Let N denote the largest integer
less than or equal to T/2. Let the discrete frequencies w, be given by
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122 J. FRANKE AND W. HARDLE

2wk/T, —N < k < N. We consider estimation of f(w) by a kernel spectral
estimate of the form
N _

> K(%)IT(‘%),

1
1) flosh) = 7 3

where the kernel K(6) is a given symmetric, nonnegative function on the real
line. We stress the dependency of f on the bandwidth £, as the performance of
the estimate essentially depends on this smoothing parameter. As the func-
tional measuring the local performance we consider the mean-square percent-
age error (MSPE), originally proposed by Parzen (1957),

F(wih) - f(w) }2
flo) |

Here, we have taken into account that f(w) is a scale parameter of the
asymptotic distribution of I(w). Under suitable assumptions on the process
{X,} and on the kernel K,

MSPE(w; k) = E{

"(w 1 1 1
(2) MSPE(w;hk) = { ff(( ))} 'E[_sz(e)doﬁm(Th)

and T~ /% is the rate at which 2 has to go to 0 if we want to minimize
MSPE(w; h) asymptotically [compare Priestley (1981), Chapter 7.2]. In this
paper, we direct our attention to this most common situation in kernel
spectrum estimation.

Hirdle and Bowman (1988) apply the bootstrap to kernel estimates for
regression curves, and Romano (1988) discusses the related problem of boot-
strapping kernel estimates for probability densities. We use the familiar device
of interpreting the spectral estimation problem as an approximate multiplica-
tive regression problem, starting from

(3) Ip(wp) = f(w,)e,, k=1,...,N.

The residuals are approximately independent and identically distributed for
large T. There are several precise formulations of this vague statement which
differ with respect to the—always finitely numbered—frequencies at which
the periodogram is considered and with respect to the assumptions on the
process {X,} [compare, e.g., Brillinger (1981), Chapters 4 and 5].

3. The bootstrap procedure. In this section, we apply the bootstrap
approach of Hirdle and Bowman (1988) to (3) by pretending that ¢,,..., ey
are really i.i.d. As we want to resample from the residuals, we need an initial
estimate of f(w). For this purpose, we consider a kernel estimate f(w; k;) of
the form (1) with an arbitrary initial bandwidth k,. In the resampling step, we
use another kernel spectrum estimate f(w g) of the form (1) to get the
bootstrap approximation of the law of f(w; k). The bandwidth &, which we
want to use in spectrum estimation, the resampling bandwidth g and the
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initial bandwidth 4, may all be different subject to some conditions which we
shall discuss later. We now consider the following procedure for getting a
bootstrap approximation for f(w; k).

Step 1. We choose an initial gl‘obal bandwidth A; > 0 which does not
depend on w. We estimate the residuals ¢,, £ = 1,..., N, of (3) as
Ip(wy)
g, = 77—,
f(@y;h)

We rescale these empirical residuals and consider

s b1 N, wheres = — § 8
sk_g.’ =1,...,N, were.«:,—N= -
Step 2. We draw independent bootstrap residuals &7,...,ex from the
empirical distribution of £,,..., &y, thatis, forall j =1,..., N,
1
pr{s}‘=€k}=ﬁ, k=1,...,N.

Keeping (3) in mind, we define bootstrap periodogram values as

I;“(wk)=I§‘k(_wk)=f(wk;g)gz7 k=1,...,N,
with some resampling bandwidth g. For convenience, we set I7(0) = 0, which

corresponds to the periodogram value at 0 taken from a mean-corrected
sample. Finally, we get a bootstrap spectral estimate as

. 1 X 0= o\
Frosh,g) = T KTt

The rescaled empirical residual ¢} has mean 1 with respect to the empirical
distribution of £,,..., £y. This is asymptotically the correct value as the true
residual ¢; is asymptotically distributed as an exponential variable with pa-
rameter 1. Like recentering in additive regression models [Freedman (1981)],
rescaling avoids an additional bias at the resampling stage. Apart from this
appealing property, we need this device also from a theoretical point of view.
Without rescaling, a proof of the validity of the bootstrap procedure would

require more detailed information about the asymptotic properties of ¢, ..., &y
than given by Chen and Hannan (1980), and, presumably, Theorem 1 would
not even be true in general for resampling directly from £,,..., £y.

Resampling from the periodogram is considered independently by Hartigan
(1990). He appeals to the fact that the I(w;) asymptotically are independent
exponential variables and derives resampling estimates for the variance of
linear combinations of the periodogram ordinates by systematically perturbing
the I7(w;). However, his procedure has bias problems for non-Gaussian data.

Exploiting our knowledge about the asymptotic distribution of the ¢,, we
can modify the preceding bootstrap procedure by replacing %,..., % with
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independent exponential variables x,..., x5 With parameter 1. As in Step 2,
we get modified bootstrap periodogram values

I;(wk) =I;‘—(_wk) =f(fok;g)/\’kr k=1,...,N, I;(O) =0,

and a modified bootstrap spectral estimate

Floihe) = T k(452w

As we see in the next section, the bootstrap principle holds for /* as well as
for f*. Higher-order asymptotics and /or elaborate Monte Carlo studies would
be needed to detect differences between both methods. Up to now, some scant
simulation results support the intuition that f* is,to be preferred for not too
large samples and, in particular, for non-Gaussian time series.

4. The bootstrap principle holds. The basic idea of bootstrapping, as
applied to the spectral estimation context, is to infer properties of the distribu-
tion of the estimate f(w; h) from the conditional distribution of its bootstrap
approximation f*(w;h, g), given the original data. To prove the theoretical
validity of this bootstrap principle, we follow Bickel and Freedman (1981) and
consider the Mallows distance between the pivotal quantity VTh {f(w; h) —
f(0)}/f(w) and its bootstrap approximation VTR {f*(w; h, g8) — f(w; 8)}/
f(w; g). Here, the Mallows distance between distributions F and G is defined
as

dy(F,G) = inf{E(X - V)%

where the infimum is taken over all pairs of random variables X and Y having
marginal distributions F and G, respectively. We adopt the convention that
where random variables appear as arguments of d, these represent the
corresponding distributions. In particular, bootstrap quantities represent their
conditional distribution given the original data X,..., X;.

For our main result, we need the process generating the data to show
sufficiently weak dependence between observations taken at time points far
apart. To make this statement precise, we restrict our attention to linear
processes, and we assume that the coefficients of the infinite moving average
representation decrease sufficiently fast. Furthermore, we consider only the
most common situation in kernel spectrum estimation by assuming that the
spectral density f(w) which we want to estimate is twice continuously differ-
entiable and by choosing a kernel K for which T-!/% is the optimal rate of
decrease for the bandwidth % if one is interested in a small mean-square
percentage error. This fact is guaranteed by condition (C4) [compare, e.g.,
Priestley (1981), page 511].

If we want the bootstrap principle to hold in the simple form described in
Section 3, we have to make the crucial assumption that the resampling
bandwidth g, which we use for defining the bootstrap spectral estimate,
converges to 0 a bit slower than T~ !/5. The reference estimate f(w;g),
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therefore, is a bit smoother than an optimal estimate of f(w). However, this
should not worry us as we do not use f(w; g) for estimating f(w) but only for
inferring information about the distribution of f (w; h), which itself is a kernel
estimate with bandwidth 4 decreasing to 0 with optimal rate T~ 1/3,

We make use of the following notational convention: A ~ a, if and only if
there are constants c,c’ such that 0 <c<h/ar<c <o for all T large
enough.

THEOREM 1. Let {X,, —® < n < »} be a real-valued linear process:

Xn= Z bkgn—k, _°°<n‘<°°,
k= —o
where £,, —© < n < o, are independent identically distributed random vari-
ables satisfying
c1 E¢, =0, E¢2 =1, El¢,|° <, the characteristic function
(C1) q(w) of ¢; satisfies sup{lq(w)l; lul = 8} <1 forall 5 > 0.
Assume that the spectral density f of {X,} is nonvanishing and twice continu-
ously differentiable on [—, 7], and

oo

(C2) L |kby| <.

k=—o

Let K be a symmetric, nonnegative kernel on (—,®) satisfying
1 o 1l .
—_— = — 2 =
(C3) o f_wK(G) do=1, = j_mo K(6)do =1,

where K has compact support [—«k, k] and K is uniformly Lipschitz with
constant L.
Let k(u) denote the Fourier transform of K(0), and assume that it is locally
quadratic around 0:
RO k@)
(C4) hn}) — exists, is finite and not 0.
u—
For T — «, let the bandwidth h of the estimate of interest, the initial
bandwidth h; and the resampling bandwidth g satisfy
h~T Y5 h,—> 0 such that (Th})~' = 0(Q), g - 0 such
that h/g — 0.

Then, using the preceding definitions, the bootstrap principle holds:

. F(o;h) —f(0) . f*(0;h,8) = f(w;8)
@ dz[”’f @) T Fwe) ] 0

in probability,
" f(osh) —f(@) o F'(wh,8) —(w;8) |
N O DA Towye ] 0

in probability.
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The proof of the theorem, which is deferred to the Appendix, crucially
depends on a theorem of Chen and Hannan (1980) which states the almost
sure uniform convergence of the empirical distribution function Fy of the
sample I'r(w;)/f(w;), j =1,..., N, to the distribution function 1 — exp(—x)
of the exponential distribution with parameter 1. To make use of this theorem,
we need finiteness of the fifth moment and the condition on the characteristic
function in (C1). Theorem 1 is presumably correct, assuming E¢: <
only, because, for our purposes, the weaker convergence in probability of
sup|Fy(x) — (1 — e )| suffices. We do not try to prove this assertion, as (C1)
does not appear excessively restrictive.

To cope with the bias part of the Mallows distance in (i) and (ii), the kernel
K must decrease sufficiently fast to 0. For simplicity, we even assume that its
support is compact. Some of the kernels which are frequently used in applied
spectral analysis satisfy this assumption, for example, the Bartlett-Priestley
window [compare Priestley (1981), Chapters 6.2 and 7.5], and restricting
attention to kernels with compact support gives rise to considerable simplifi-
cation of already quite technical proofs.

In the literature, rescaled kernel estimates of the form

- f(w;h) 1 ¥ e-w
f(w;h)=m’ ST(w)=ﬁkZ K( A )

--N

sometimes are considered. As we shall show in the appendix, ; < S;(0) < 2
for all o, if T is large enough. Therefore, the results of this paper hold for
f(w; h) too if they are appropriately rephrased.

As already mentioned, Hardle and Bowman (1988) propose a similar proce-
dure for bootstrapping kernel regression estimates. In contrast to our Theo-
rem 1, they consider resampling regression function estimates with bandwidth
g ~T71/5 only. In this case, the bootstrap principle does not hold in the
straightforward form of Theorem 1 as the bias of the bootstrap approximation
does not approach the bias of the kernel estimate fast enough. However, it is
possible to handle this difficulty by essentially bootstrapping only the variance
part of the bootstrap approximation and by introducing the bias part by means
of an explicit estimate of f”(w), remembering the asymptotic relation (2). The
same idea works in the spectral estimation context too, and we formulate the
result as Theorem 2. We do not give the proof, as its larger part is identical
and the rest is quite similar to the proof of Theorem 1. Details can be found in
a technical report [Franke (1987)].

THEOREM 2. Let {X,, —® < n < »} be a real-valued linear process satisfy-
ing the assumptions of Theorem 1. Let the kernel K satisfy the assumptions of
Theorem 1, too. Let f"(w) be a weakly consistent estimate of f"(w). Let

? » 1 X 0~ W\ ,
fc(w;h,g)=E*f*(w;h,g)=ﬁ'k_ZZNK( h )f(“’j;g)

be the conditional expectation of f*(w;h,g) and of Ft(w; h, g) given the
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original data. Then, for T —» o, h ~T Y% g~ T Y% h, > 0 such that
(ThH)~1 = 0Q1), we have

w;h) — f(o
() dz[\/ﬁ———f( f()w).f( );
@ik g) ~fu(wih, ) + (H/2) f”(w)] o
f(w;8)
in probability,
f w;h) — f(w
(ii) d, Jﬁ———f( f()w)f( );
g P @ih8) ~I@ihg) + (hz/z)f”w)] 0
f(w;8)
in probability.

Here and in the following, E* denotes the expectation with respect to the
empirical distribution of £,,...,éy.

As a consistent estimate for f”(w), we can choose, for example, a kernel
estimate of the simple form

0 Pk = gz T Wi,

2k——

where W is a kernel of order (2,4) as defined by Gasser, Miiller, Kohler,
Molinari and Prader (1984).

5. Simulations. In this section, a small simulation study illustrates the
performance of our bootstrap approach for a medium sample size T' = 256. We
consider data from an autoregressive process of order 5:

X,=05X, ,—0.6X, ,+ 03X, ;— 04X, ,+0.2X, 5+,

where the g, —© <t < », are independent standard normal variables. The
process parameters have been chosen such that the spectral density has a
specified shape: one major peak, one minor peak, and local minima between
the peaks, at 0 and at 7. We consider estimating the spectral density at the
discrete frequencies w, = 27k /256 for k = 42, 84 (approximately at the two
peaks), for & = 30, 54 (at the left and right slope of the major peak) and for
k = 67 (approximately at the trough between both peaks). For those w,, we
consider the density and skewness of the law of the asymptotic pivot
VTh{f(w,; h) — f(w, )} /f(0,), or, to be precise, a kernel probability density
estimate p, , with Gaussian kernel and bandwidth b = 0.4, chosen by a
cross-vahdatory argument, and the sample skewness s, ;, both based on 500
mmulated data sets. For the spectral estimate, we used the parabolic
Bartlett—Priestley kernel [Priestley (1981), Chapters 6.2 and 7.5], scaled such
that condition (C3) of Theorem 1 is satisfied. Inspection of various spectrum
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estimates showed that a good global bandwidth selection lies somewhere
between 0.10 and 0.15.

We compare five approximations of p, , and s, ,, three of them derived
from the bootstrap principle angd the other two from asymptotic normality. All
are based on one particular sample, X;,..., X,55. To get something like a
representative data set, we chose that one out of nine independent samples for
which the average mean-square percentage error of f(w;0.1) assumed its
median value. The three bootstrap approximations are provided by the condi-
tional laws of VTh {f*(w;h, g) — f(w; g)}/f(w; g) for bootstrap bandwidths
g = 0.2,0.3,0.4 and initial bandwidths A; = g in all three cases. Based on 500
resamples, we calculated kernel probability density estimates pj , , with,
again, Gaussian kernel and bandwidth b = 0.4 as bootstrap approximations of
D, »» and sample skewnesses s} , , as approximations of s, ;.

Usmg asymptotic normallty of f(w; k), as in Prop081t10n A2, and the
asymptotic bias expansion, contained in (2), we know that VTh { f(wk, h) —
f(o,)}/f(w,) is also approximately normally distributed with mean u, , and
variance o2 given by

w = O5VTHS f'(w,) /f(w), o2 = [K*(8) do/(2m).

To cope with the additional smoothing introduced by kernel probability density
estimation, we have to compare p, , with the normal density ¢, , with mean
I, p» but with larger variance o2 + b2 The normal approximation to the
skewness s, , is, of course, 0.

To get ¢, ,, we have to know f and f”. As a realistic competitor for the
bootstrap, we therefore consider &, ,, a plug-in normal approximation with
mean

G n = 0.5VTR® f"(w; hy) /f (w0 hy)

and variance o2 + b2, f(w; h 1) denotes again a spectral estimate, given by (1)
with Bartlett—Priestley kernel K and bandwidth &, = 0.15; f"(w; h,) denotes
a kernel estimate of f”(w), as in (4), where the kernel W has the same support
as K and, there, equals {c, cos*(c,u)}” with suitable constants c;, c,. The
bandwidths 4., h, are chosen to give a visually good correspondence between
the true functions and their estimates.

Figures 1 and 2 show plots of p, , and its approximations for £ = 42 (peak)
and %k = 30 (slope) and bandwidths A = 0.05 and h = 0.10, respectively.
Among all these selections of w, and h which we have considered, Figure 1c is
typical for the majority of those situations: Visually, the bootstrap provides a
better fit to the true density than its competitor, the plug-in normal approxi-
mation. In a few cases, for which Figure 2 is an example, the bootstrap
approximation is not better than the plug-in normal approximation, but it
never was considerably worse. A bit surprising was the observation that the
bootstrap densities pj , , did not depend as much on the chosen bootstrap
bandwidth g as we originally expected, as can be seen from Figures 1b and 2.
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Fi6. 1. (a) Probability density p,, , (solid line) of the asymptotic pivot and its normal approxima-
tions ¢y, 5, (dotted line) and &, ) (dots and dashes) for k = 42 and h = 0.05. (b) Bootstrap
approximation p}.;, , for k = 42 and h = 0.05 and g = 0.2 (long dashes), g = 0.3 (short dashes)
and g = 0.4 (dots).

In some cases, only the heavily oversmoothed reference spectral estimate
(g = 0.4) deviated considerably from the pj , , for smaller g = 0.2 and 0.3.

Table 1 compares the skewness s, , of the asymptotic pivot and its boot-
strap approximations sj , , for g = 0.2, 0.3 and 0.4. The bootstrap manages
to reproduce the skewness of the distribution, which we want to approximate,
quite well.

We also have repeated the simulation study with innovations ¢, drawn from
a centered and scaled y? distribution. Qualitatively, the results are the same
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F1G. 1. (c) Probability density p,, ;, (solid line), its plug-in normal approximation &, , (dots and
dashes) and a bootstrap approximation p¥ ,, o 4 (dots) for k = 42 and h = 0.05.
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Fi6. 2. Probability density p,, ), (solid line) of the asymptotic pivot, its normal approximations
@15 (narrowly spaced dots) and ¢, j, (dots and dashes) and its bootstrap approximation p§ ), .
for k =380 and h = 0.10 and for g = 0.2 (long dashes), g = 0.3 (short dashes) and g = 0.4

(widely spaced dots).
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TaBLE 1
Skewness of asymptotic pivot for various bandwidths h and its bootstrap approximations for
several values of g taken from one representative sample

E
30 42 54 67 84
h=0.05 Skn 0.800 0.606 0.866 1.055 0.674
¥ oz 0.852 0.795 0.963 0.610 0.352
¥ hos 0.930 0.759 0.726 0.721 0.702
¥ o4 0.719 0.895 0.665 0.869 0.978
k=010 Skn 0.426 0.613 0.560 0.542 0.287
¥ noz 0.557 0.642 0.630 0.511 0.491
St hos 0.417 0.546 0.532 0.583 0.372
SE h o4 0.330 0.701 0.625 0.494 0.428
h =015 Skn - 0.414 0.489 0.467 0.554 0.330
$E o2 0.426 0.507 0.309 0.351 0.337
¥ hos 0.454 0.566 0.323 0.539 0.499
¥ 1 oa 0.495 0.425 0.457 0.399 0.470

as in the Gaussian case, that is, the bootstrap outperforms the plug-in normal
approximation in approximating the probability density and the skewness of
the law of interest.

6. Confidence intervals and bandwidth selection. Once we know
that the bootstrap principle holds for spectral density estimation we can apply
it in the usual manner to get estimates for statistical quantities of interest. For
the sake of illustration, we have a look at the problem of getting a confidence
interval for f(w) and of selecting a local bandwidth A = h(w) of the kernel
estimate f(w; k) at a given frequency w. In this entire section, we implicitly
assume that the conditions of Theorem 1 are satisfied.

Let ¢, be characterized by

flosh) = f(@) _

nVTh Ty S

that is, {1 + ¢ (Th)~ % f(w; k) is the upper bound of a (1 — 2a)-confidence
interval for f(w). A bootstrap approximation for the generally unknown
quantity c, is given as c, defined by

[k, 8) ~fosg) Sc*}

)

pr* =

f(w;8) N

where the bootstrap distribution pr* corresponds to drawing the bootstrap
residuals €7, ..., e} from the empirical distribution of the rescaled residuals as
described in Section 3. From Theorem 1, we know that ¢} — c, in probability
if T — «. Explicit calculation of ¢* will be quite difficult, and, therefore, we
propose to estimate it by the familiar Monte Carlo algorithm, as described, for
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example, by Efron and Tibshirani (1986), which usually is associated with
bootstrap procedures. Analogously, we can get a bootstrap approximation for
the lower bound of a confidence interval for f(w).

A major problem with kernel spectral estimates is the choice of bandwidth
h. Until quite recently, the literature contains only rough guidelines for
choosing A which often depend on some prior information on the shape of f.
An extensive discussion of this problem has been given by Priestley [(1981),
Chapter 7]. In a recent paper, Beltrdo and Bloomfield (1987) have investigated
the problem of selecting a global bandwidth which minimizes the average
mean-square percentage error,

AMSPE(h) = l Y. MSPE(w; h),
J 1
where MSPE(w; ) is defined as in Section 2. They have proposed a cross-
validatory choice of bandwidth, and they have shown that their procedure
produces a bandwidth which approximately minimizes AMSPE(%).

We consider the problem of selecting a good local bandwidth % = h(w)
which minimizes approximately the mean-square percentage error MSPE(w; k)
for a given frequency w. Following Rice (1984) who considered bandwidth
choice for the related nonparametric regression estimates, we restrict the
minimization to an interval By = [aT /% bT '/5] of bandwidths which
shrinks to 0 at the optimal rate. Here, 0 < a < b < ® are suitable constants.
Let h,, depending on the sample size, be defined by

MSPE(w; ho) = min MSPE(w; k).
T

As we shall discuss in proving Theorem 3,

2 f"(@)

provided f”(w) # 0 and a,b are chosen such that a <z, < b. Notice that
2, T~'/% minimizes the dominating part of the asymptotic formula (2) for
MSPE(w; &) considered as a function of 2. As MSPE(w; 2) depends on the
unknown spectral density f, we cannot calculate &,. Therefore, we propose to
estimate MSPE(w; h) by its bootstrap approximation,

f*(0;h,8) ~ f(0;8) }2
f(w;g) ’
and then to choose the bandwidth A% which minimizes MSPE*(w; h),
MSPE*(w; h%) = ngnT MSPE*(w; h).

1/5
(5) T1/5h0—>zw=[—1—f Kz(/\)dA{ flo )}] , for T — o,

MSPE*(w; h) =E*{

T}{e calculation of h% can be accomplished easily, as MSPE*(w; k) can be given
explicitly. We do not have to resort to Monte Carlo methods in this case. A
straightforward calculation, using the independence of the bootstrap residuals
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e} and E*ef = 1, shows
var*(s’f

(6)

L &2 o0

j=-

{Tlh e

where, by Proposition Al of the Appendix,

)f(w,,g) (w;g)}z,

N
¥k = R ¥ 2=__]‘_ -2 . .1s
var*(e¥) = E*(ef — 1) stk 1 —> 1 in probability.
k=1

Restricting minimization to a finite subset of B; which is allowed to
increase with the sample size at a certain rate, Hirdle and Bowman (1988)
have shown that the analogous bootstrap selection of the bandwidth of a
kernel regression estimate is asymptotically optimal in the sense that the ratio
of the minimum of the bootstrap error estimate and the minimum of the true
error converges to 1 in probability. Using the explicit formula (6), we are able
to prove the same result without restrictions to B, and, furthermore, to prove
consistency of A% in the sense that T'/5(h* — h,) — 0 in probability.

THEOREM 3. If the conditions of Theorem 1 are satisfied and if, addition-
ally, f"(w) # 0 and 0 < a <z, <b < «, then, for h,, h¥ defined as before,

(i) TY/3(h% — hy) — 0 in probability for T — o,
. MSPE*(w; h}) 1 in probability for T
(ii) MSPE(w; y) - in probability for T — .

The proof of the theorem is again postponed to the Appendix.

7. Concluding remarks. We have shown that a rather straightforward
approach to bootstrapping kernel spectrum estimates works. Our procedure is
quite similar to the bootstrap for both parametric and nonparametric regres-
sion with fixed design. Some care has to be taken if the bootstrap principle is
to hold. Either one has to restrict the bootstrap essentially to f(w;h) —
Ef(w; h), estimating the bias Ef(w; k) — f(») explicitly as in Theorem 2, or
one has to choose a preliminary estimate f(w;g) which is asymptotically
smoother than an optimal kernel spectrum estimate. If h /g does not converge
to 0, then the assertion of Theorem 1 does not hold. As can be seen from a
careful look at the proof, the critical quantity is

(7) VTh (E*f*(w; b, 8) — Ef*(w; h, g)),
which dominates the left-hand side of (A7) of the Appendix, and which
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converges to 0 in probability if ~/g — 0. Now, remark that

E*f*(w;h,8) = - g {Th ) K(w;wj)K(wj;wk)}IT(“’j)-

Tg,—N k=-N

By the compactness of the support of K and by the asymptotic properties of
the periodogram, exhibited in (A6), E*f*(w; h, g) behaves asymptotically like
the mean of Tg independent random variables with uniformly bounded vari-
ance. Therefore, (7) converges to 0 only if the scaling factor (Th)'/2 converges
to » slower than (Tg)!/2. The necessity to oversmooth in resampling kernel
type function estimates is not a particular feature of spectrum estimation.
Similar results have been found by Romano (1988) for probability density
estimates and by Hardle and Bowman (1988) far regression function esti-
mates.

Finally, let us remark that our results do not strongly depend on the
particular assumptions on the stationary process. Essentially, we need asymp-
totic normality of f(w; k), as stated in Proposition A2 of the Appendlx and the
empirical distribution function of the Ir(w;)/f(w);), j = , N, must con-
verge uniformly to 1 — e™* in probability.

APPENDIX

Some auxiliary results and proofs of the theorems. For real num-
bers a; and random variables Z;, we write Z = o,(ay) for T — « [Z} =
O,(ay) for T - «] if Zp/ap — 0 in probability [Z;/b; — 0 in probability for
all sequences b, such that a; = o(b;)]. For analyzing the bias of the kernel
spectrum estimate, we repeatedly consider

o= 5 155

If the kernel K satisfies the assumptions of Theorem Al, we have

w+7r].
82(0) = 11 =|81(0) — 5= [ 5K 5] do
(A1) o
2w Ly if o] A
< pa—
< Th I|lwl <m7T—kn,

where [ —k, k] contains the support of K, and, for any bounded function ¢,

N W~

<cpsuply(0)], m=1,
]

with a suitable constant c?, because only about 2«Th summands do not
vanish.
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THEOREM Al. Let {X,, —© < n < »} be a linear process,

Xn= Z bk§n—k’ —o <n <o,
k=—o a
satisfying assumptions (C1) and (C2) of Theorem 1. Let the spectral density f
of {X,} be nonvanishing and satisfying a uniform Lipschitz condition. Let K
be a symmetric, nonnegative kernel satisfying assumption (C3) of Theorem 1.
Let I(w) and f(w; h) denote the periodogram and the kernel spectrum esti-

mate based on X, ..., X, as in Section 2.
If, for T - », we have h = 0,(Th*)"1 = 0OQ1), then

sup | f(w;h) — f(@)Syp(@)| = O,(A~1T~13) + O,(h).

—T<W=<T

Proor. The theorem is related to Theorem 2.1 of Woodroofe and van Ness
(1967) who, under assumptions on K which are too restrictive for our
purposes, give an exact rate for the convergence in probability of suplf Flw; h) —
Ef(w; h)| /f(w). Referring to the similarity of arguments, we only sketch the
proof of our theorem. Let J;, $ denote the periodogram and spectral estimate

of &4,..., &

T 2

Z lkw

Tr(@) = sy = g T R[22 )dn().

j_N

Because f is bounded, it suffices to show that the assertion of the theorem
holds for the independent ¢; and that the supremum of |f Flw; h) — $(w; h) flw)]
is of the order O,(h), for

| F(@;h) = f(0)Sp(w)]
<|F(@;h) = ¢(w;h) f(@)] +|é(w;h) — Sp(w)|f(w).
(1) We split sup|¢(w; h) — Sp(w)| into two parts and show that both of

them converge in probability to 0 with the desired speed. Let a, = hT~1/3,
myp=I[az'l,and 0, = mk/my for —mp <k <my:

sup |¢(w; h) = Sp(w)]

= sup sup |[$(w;h) — Sp(w)]

IklsmT |w—0kIS1'raT

sup [(8,; k) = Sr(6,)]

|El<mp

+ sup |@(6;h) — Sp(6) - $(w; k) + Sp(w)].

lw—6l<marp

Both terms on the right-hand side are of order O,(h~'T~'/3). For the second

IA
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term, using Lipschitz continuity of K, we have

RTY®  sup |$(0;h) — Sp(0) — G(w;h) + Sp(w)]

lo—8l<marp Y

1
Jj=—-N

for T — o, by results of Chen and Hannan (1980) on the empirical distribu-
tion of the JIr(w)), j = , N. For the first term, we have by Chebyshev’s
inequality, for all 5> 0

pr{AT1/° sup |5(04 k) = S7(0)| > 3)
IkISmT
h2T2/3

< X E{3(0);h) - ST(Bk)}

IlemT

hT1/3
< (2mT + 1)6—2,

and the right-hand side is bounded for T' —» ». We have used
E{$(w; h) ~ Sp(o))*

c
< for all € [ —m, ] and suitable constant ¢ > 0,
which follows from independence of the ¢; and then from using (A2).
(i) From (A2) and part (i), we know that #(w; h) is O,(h) uniformly in w.
Using this result and Lipschitz continuity of f, we can show that

F(aik) ~ owim) (o) = g & K222 ) {En()) ~ Tr(o) (@)

j_—N

is O,(h) uniformly in w. For this purpose, we use the approximation of the
discrete Fourier transform of the X, by the discrete Fourier transform of the
¢, as given by Hannan [(1970), page 246]. O

Theorem Al and (A1) immediately imply Corollary Al, from which, together
with (A2) and the compactness of the support of K, Corollary A2 follows.

CoRrROLLARY Al. Under the assumptions of Theorem Al

sup | f(w;h) = f(@)| = O,(A7'T-1/3) + O,(h).

lwl<m—kh
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COROLLARY A2. Let the assumptions of Theorem Al be satisfied. If for
T — o, g — 0 and (Tg*)™! = OQ1), we have, for w # +,

Z Kz( 7 ){f(w,,g) f(wj)}z _ p(g_zT—2/3) + Op(gz).

J—N

Relation (5) of Chen and Hannan (1980) on the empirical distribution

function of the I(w;)/f(w;), j = , N, implies for N = [T'/2] - «
1 & Ip(w)) In(w) |
— -1, .8.
,Zl f(w)) [ f(w;) .

under the assumptions of Theorem 1. (Al) (A2) and Theorem Al allow us to
replace f(w) by its estimate f(w; k) if we settle for eonvergence in probability.

PROPOSITION Al. Under the assumptions of Theorem 1, we have, for
=[T/2] - © and h — 0 such that (Th*)"! = O(1),

1N Inw) N{h(a»)}_)2
N2 f(e;h) 7 1| (w3 k) ’

1 X IT(wj) _ IT(wj)
NE\ @) T

M

) } — 0 in probability.

ProOPOSITION A2. Let {X,, —© < n < »} be a linear process,

Xn= E bkfn—k’ _°°<n<°°,

k= —o

satisfying the assumptions of Theorem 1, and let f(w; k) denote a kernel
spectral estimate with a nonnegative symmetric kernel K satisfying assumption
(C3) of Theorem 1. If, for T — », we have h — 0 and Th? — «, then, for

lw| <
A 1 ©
(i) Thvar(f(w;h)) - o2 = fz(w)z—f K2(6)do, forT — o,
Yy —
(ii) VTh {f(w;h) — Ef (w3 h)} > Z in distribution,
where Z is a Gaussian random variable with mean 0 and variance o?.

Proor. Using the compactness of the support of K and the asymptotic
properties of the periodogram I;(w;), j = 1,..., N = [T /2], as given in Theo-
rem 6.2.3 of Priestley (1981) we have, for a suitable constant C,

Thvar(f (03 )} < i > KZ( : )f(wj)+CS (@)h for @ > xh.

Jj=-N
As, by (A2), S;(w) is bounded, (i) follows.
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Part (ii) can be shown by the same methods used in the proof of Theorem
V.11 of Hannan (1970), which states a stronger result for a slightly different,
but asymptotically equivalent spectral estimate. O

LEmMma Al. (i) Let K satisfy the assumptions of Theorem Al, and, for
lw| < 7 — kh, let p be twice continuously differentiable on [w — kh, w + kh].
Then, for T — o, h — 0 such that Th — o,

h2

1 XN 0 - o,
T—hJ-ENK( h )p(“’j) ~p(0) - 5P ()

C
< E{St;plp(H)l +h Sgplp (0)|}‘

B2
+ 5 sup|p"(6) - p'(w)l,
0
where ¢ is a suitable constant and the suprema are taken over the interval
[w — kh,w + «h].
(ii) Let the assumptions of Theorem 1 be satisfied. Then, for T — ©, h — 0
such that (Th*)~! = O(1), the bias of f(w; h) satisfies

. h? ' log T
Ef (0;h) — f(w) = —2—f”(w) + o(h?) + (——T—)
uniformly in |o| < 7 — kh.

Proor. (i) The compactness of the support of K, its Lipschitz continuity
and the differentiability of p imply, uniformly in || < 7 — «h,

w —

1N ; 1
EFZ_NK( - )p(wj = 5= | _E(®)p(w +0h)do

c
< — 0) + b sup|p'(6) }.
< Th{sgplp( )| sgplp( )|
The assertion follows from the Taylor expansion of p(w + 6h), using that

K(6)/(2m) and 62K () /(27) integrate to 1 and 8K(9) integrates to 0.
(ii) Replacing p by f in (i) and noting that, under our assumptions,

log T )
(A3) Elp(w;) =f(w;) + 0[——T—], j=1,...,N,

uniformly in j [Priestley (1981), page 418], the second assertion follows. D

Proor oF THEOREM 1. (a) To prove (i), we use Lemma 8.8 of Bickel and
Freedman (1981) and split the squared Mallows metric into a variance part
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and a squared bias part,
f(w;h) — Ef (w; k) rE f*(w;h,g)A— E*f*(w;h, g)
f(w) . f(w;8)

B% = Th|by(w) — bi(w) [,

V2 = d2|VTh

where

{Ef (03h) = f(w)} oo+ {E*f*(0;h,8) - f(0;8))
(@) and Bi{w) = F(w:8)

Throughout the proof, we use the abbreviations I ; = I(w)), IF ; = I}(w;)
and

br(w) =

a;(w;h) = —l—K(w _wj),

Th h
N
Yi(w;h,8) = ) ay(w,h)aj(w,;8) —a(w;8).
j=-N

(b) We first prove that V; — 0 in probability. For this purpose, let x;,
|jl = 1, be independent, exponentially distributed variables with parameter 1,
and let x, = 0. We remark that I,(w)/f(w) converges to y, in distribution.
We define

N
fo>w;h) = ¥ aiw;h)f(e;)x;, D°=VTh{f°w;h) - Ef°(w;h)},

j=-N
D =VTh{f(w;k) — Ef (0; 1)},
D* = VTh {f*(w; h,g) = E*f*(w; h, g)}.
We use that d, is a metric, and we get
d,(D, D% D° D° d,(D°, D*)
"= () 2(f(w) ’ f(w;g)) F(:8)

To prove d,(D, D°) — 0 in probability, consider a zero-mean Gaussian vari-
able Z with variance o2 given in Proposition A2. By this proposition, D
converges to Z in distribution, and ED? — EZ?2. Exactly as in proving the first
part of Proposition A2, E(D°)? » EZ? follows. Using boundedness of f and
the regularity conditions on K, it is easy to show that D° satisfies Liapounov’s
condition [Shiryayev (1984), page 331] and, therefore, converges to Z in
distribution, too. Now

dy(D,D°% <dy(D,Z) +dy(Z,D°% - 0,
where the convergence holds by Lemma 8.3 of Bickel and Freedman (1981).
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Theorem 8.1 of Major (1978) provides an explicit formula for the Mallows
metric of real-valued random variables which implies

2
} E(D")2 — 0 in probability,

dz[DO D° =[1«_ 1
2| f(0) F(w;g) flo) Ff(wsg)

as, for example, by Theorem Al and (Al), f(w; g) = f(w) > 0 in probability,
and as, by (A2) and the boundedness of f, E(D°)? is bounded.

(¢) To finish the proof that V, — 0 in probability, it suffices to show that
d,(D° D*) - 0 in probability, as f(w; g) = f(w) > 0. As D°, D* are sums of
independent random variables (conditional on the original data), we have, by a
slight modification of Lemma 8.7 of Bickel and Freedman (1981),

N
(Ad)  d¥D° D*) <Th Y. o¥(w;h)dY f(w){x; -1}, If; - E*I} ;].
j=-N

As the distributions of y;, ¢¥ do not depend on j, we have, using the definition
of If ;,

d3[ f(e){x, — 1}, If,, — E*I} ]

= 2d§[ f(“’j){/\’j - 1}’f(wj;g){)(j - 1}] + 2f2(wj;g)d§(Xj - 1,&f — 1)

= 2| f(w)) - F(o;8) EGx - 1)* + 2%(w;: 8)d3(x1, 1)

Therefore, using Corollary A2 and (A2), we conclude that the right-hand side
of (A4) converges to 0 in probability if d,(x;, £f) — 0 in probability. To prove
the latter convergence, we use

dy(x1,€7) < dz(ng(l)) + dz(b‘?’g’f) +dy(2F,e7),

where the distributions of ¢{ and &5 are the empirical distributions of the true
residuals ¢, ..., ey and of the unscaled empirical residuals ,,..., £y, respec-
tively.

Theorem 1 and relation (5) of Chen and Hannan (1980) imply that the
distribution function of &) converges to the distribution function of x; uni-
formly a.s. for N - « and that

E%(:Q) =

Therefore, d,(x;,?) — 0 a.s. by Lemma 8.3 of Bickel and Freedman (1981).
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To get an upper bound for d,(¢?,£¥), we choose the joint distribution of
(9, £%) such that it assumes the value (g}, £;) with probability 1/N, j =
., N. Then, by Proposition Al,

2(.0 ax 1 N A ‘2
d2(31 1) < X (ex — &)
N o1
1 N[ 1 1 ‘ _ B
= 7(wr) - F(onih) I7 , — 0 in probability.
k=1 k ky Y4
By exactly the same argument, we also get
2 1 X A =~ \2
d (81»31) = N Z (Sk_ Ep
k=1
1 N 1 N -1]2
= [N é,f] 1- [ﬁ Y ék] — 0 in probability,
k=1 k=1

by Proposition Al, using &, = IT(wk)/f(wk, h;).

(d) We now start to discuss the bias part BT First, we remark that we may
neglect the denominators of b,(w) and b%(w), as f(w; g8) = f(w) > 0 in
probability, and as, by Lemma Al and Propos1t10n A2,

f(w)
VTh {1 — b
T {1 f(w,g)} r{e)
A5 w; Ef (w; Ef (w;
(A5) _‘/_f( g) —Ef(w;8) + Ef (w;8) — f()[ B (0 h)_f(w)]

f(@) f(w;8)

=0,(g 2)'
By Theorem 6.2.3 of Priestley (1981) we have, with I';(j, ) uniformly bounded
in j, k, T and with 6%, = 1 for j = +k and &}, = 0 otherwise,

1
(A6)  cov(Ip,j Ip,s) = 854 f*(@)) + 7Tr(j,k) forall 1< jl, Ikl < N.

Using this relation, (A3), Lemma A2 and the compactness of the support of K,
a straightforward calculation shows

N *h3
(A7) ThE{ )y Yj(w;h,g)[IT,j _f(wj)] 0
j=-N
for suitable c¢* > 0. As E*If ; = f(wj;g) we have
N
br(w) — bf(w) = f(w ){Ef(w sh) — f(o )} '(w;hag)IT,j'

f(w;g j=-N
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Therefore, using (A5), (A7) and f(w; g) = f(») > 0 in probability, we finally
get By = VTh (bp(w) — b5(w)) — 0 in probability by proving vTh ar(w) — 0
with

N

ar(w) = X a;(w; h)f( i)~ Z vi(@;h, 8) fw;).

j=—-N j=—-N

For this purpose, we split a,(w) into three parts and show that the first and
third parts are of order O(1/(Tg)) and the second is of order o(h?):

N 1 ©
ar(w) = ¥ a;(0:8)f(w) = 5= [ K(6)f(w+0g)ds
j=-N -
N
+p(0;8) = L aj(0;h)p(w;;8)
j=-N
(48) 1w
+,_ZE a;(0;h) | 5— [ K(6)f(w; + 0g)db
N
- X a(w;58) fp)
j=-N
where

1 =
p(0;8) = 5= [ K(8)f(w+6g)db f(o).

As in the proof of Lemma Al, the compactness of the support of K and the
Lipschitz continuity of K and f imply that the first part of (A8) is bounded by
a constant multiple of 1/(Tg) for T large enough. This upper bound is
uniform in |w| < = — kg. Therefore, the third line of (A8) is asymptotically of
order 1/(Tg) too, because only summands with o — w;| < xh do not vanish.

Because f is twice continuously differentiable and K is bounded, p(w; g) is
twice continuously differentiable on [—7 + kg, m — kg]. Using Lebesgue’s
theorem on dominated convergence, we conclude that p(w;g), p'(w;g) and
p"(w; g) converge to 0 uniformly on [w — 8, w + 8] for all 6§ < 7 — |w|. Apply-
ing the first part of Lemma Al, we get that the second line of (A8) is
asymptotically o(A2).

(e) The proof of (ii) follows exactly the same lines as the proof of (i), but is
easier. In particular, defining D* as D* with f* replacing f*, (A4) would be
replaced by

d3(D°, D*) < Th ZN a¥(w; B)dY f(0){x; — 1}, f(w;:8){x; — 1)] - 0

in probability by Corollary A2, and the rest of part (c) of the proof is not
necessary.
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LEMMA A2. Let K, h, g satisfy the assumptions of Theorem 1.
Then yj(w;h,g) = O(h/(Tg?) uniformly in |o| < — «h. In particular,
yi(w; h, g) =0 if lo — w;| > (h + g)xk.

4

Proor. By definition of vy;,

K-

1 N ® — w,
(o K
'Yj(w’h,g)l = Tzhg k=Z—N ( 3 )

1
+—K - 1.

K22 isn@) -1
The first term on the right-hand side is of order k/(Tg?) by Lipschitz
continuity of K and (A2). The second term is of order 1/(T'2gh) by (Al).
The compactness of the support of K implies y,(w; &, g) = 0 for o — w;| >
(h +g)k. O

Proor oF THEOREM 3. The proof is a combination of arguments given by
Rice (1984) and of results which we have already obtained in the course of
proving Theorem 1. We, therefore, only give a sketchy outline of the argu-
ments. We use the notation

l L K?(0)de ! +
(2) = 217"[_@ (6) z 2f(w)

which is the asymptotically dominating part of 7*®> MSPE(w;h) for h =
2T~ 1/ [compare (2) of Section 2]. Using (A7) and a Taylor expansion argu-
ment as in the proof of Lemma Al,

(A9) sup |T*5 MSPE(w;2T~/%) —I(2)| >0 for T > »

a<z<b
for arbitrary 0 < a < b < ». A calculation of derivatives shows that I(z) is
strictly convex and infinitely often differentiable on (0, ), and that it has z, of
(5) as a unique minimum, provided f”(w) # 0. These properties and (A9)
imply T'/5h, — z, for T — «, provided a < z, < b. As the next step, we prove

sup T*5MSPE*(w;h) — MSPE(w; k)| = 0
(A10) heBr

srof

in probability for T — co.

This convergence is shown separately for the variance part and for the bias
part of the mean-square percentage error, noticing also that we can forget
about the denominators as f(w;g) — f(w) > 0 in probability. The conver-
gence of the variance part of (A10) follows rather easily from Corollary Al,
using (A2) and the asymptotic properties (A7) of the periodogram. To prove
that the difference of the bootstrap bias and the bias of f(w; ) itself converges
to 0 faster than T2/5, one has to repeat the arguments of part (d) of the proof
of Theorem 1, remarking that all of them hold uniformly in & € Bj.
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Now (A9), (A10), (5) and the regularity of /(z) imply T'/5(h*% — h,) — 0 in
probability, using exactly the same arguments as by Rice (1984) in the proof of
his Corollary 2.2. By the first part of Theorem 3, we immediately conclude the
second part of Theorem 3 because [(z) is continuous and because, by (A9) and
(A10), MSPE*(w; ) and MSPE(w; ) can both be approximated by
T-*/51(hT'/®) uniformly in h € B;. O
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