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A NOTE ON THE LARGE SAMPLE PROPERTIES OF
LINEARIZATION, JACKKNIFE AND BALANCED REPEATED
REPLICATION METHODS FOR STRATIFIED SAMPLES

By EpwaARD L. KORN AND BARRY I. GRAUBARD

National Cancer Institute

Krewski and Rao consider inference for a (nonlinear) function of a
vector of finite population means 8 = g(Y). For a sequence of finite popula-
tions with increasing number of strata, they demonstrate that § = g(3) is
asymptotically normal, where ¥ is the usual unbiased stratified estimator
of Y. Additionally, they demonstrate that (§ — 6)/v'/2(6) is asymptotically
a standard normal distribution, where v(6) is a variance estimator obtained
using linearization, jackknife or balanced repeated replication (BRR) meth-
ods. In this note we extend their results to when the partial first derivatives
(g(n), 82w, ..., g,(n)) = 0, where p is the limit of Y with increasing
number of strata. We explore the asymptotic distribution of (8 — 6) /v1/%(6)
and show (1) that it is no longer normal and (2) that it depends upon which
variance estimator is used. We describe an application of these results to
hypothesis testing using complex survey data.

Large sample surveys frequently have complicated multistage designs. For-
tunately for the purposes of inference, the first stage of these designs can
usually be approximated by a probability proportional to size with replacement
sample of a small number of primary sampling units (PSU’s) from within
strata. With these designs, Taylor series linearization, jackknife and balanced
repeated replication (BRR) methods can be used to estimate the variance of
complicated statistics; see Wolter (1985) for a complete review. Krewski and
Rao (1981) put these estimation methods on a firm asymptotic footing by
considering a sequence of finite populations with L strata, L — . In particu-
lar, they considered inference for a (nonlinear) function of a p-vector of
population means § = g(Y). They showed for 7 being the usual unbiased
stratified estimator of Y, that § = g(7) is asymptotically normal with variance
that can be estimated by any of the above mentioned methods. An implicit
assumption in their work is that the partial first derivatives g,(u) are not
identically zero, where u is the limit of Y. (Subscripts of L are suppressed
throughout this note, and all limits should be interpreted as L — «.) In this
note we utilize the second-order asymptotics of Rao and Wu (1985) to explore
the asymptotic distribution of § and the variance estimators when the partial
first derivatives are identically zero.

We first briefly describe the variance estimators that Krewski and Rao
(1981) consider. For the finite population with L strata, n, PSU’s are sampled
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from strata A, h = 1,2, ..., L. The total number of sampled PSU’sis n = X n,,.
The linearization variance estimator is defined by

v(0) = ¥ ¥ £:5)8;(3) Di;(3),

where D, ;(9) is the (ij)th element of the usual unbiased stratified estimator
D®@) of the covariance matrix of y, D(¥). Regularity condition C4 of Krewski
and Rao (1981) is that n D(y) converges to I', say, while Theorem 3.1 of
Krewski and Rao (1981) which utilizes this condition and three additional
regularity conditions (their C1-C3) insures

(D n'/?(y = Y) -4 N(O,T).

Krewski and Rao (1981) define six related jackknife estimators of the variance.
However, Rao and Wu (1985) show that they are asymptotically equivalent to
order Op(n_?’). Therefore, we consider only one of their jackknife estimators
here, namely,
. L ny . 9
vy () = thn;l(nh - 1) 21 {g(3") - (M)},
_ iz
where y”' is the usual estimator of Y computed from the sample after
omitting the data from the ith sampled PSU of the Ath stratum: see Krewski
and Rao (1981) for details. For n, = 2 for all ., the BRR estimators of
variance considered by Krewski and Rao (1981) are as follows:

o(0) = T {2(32) - 23))’/s,
w@(0) = T {g(3Y) - (39))’/(49),
w9 = ¥ [{eG?) - e)) + (e(3Y) - g(&)}z]/(%),

where the sums are over the S half-samples and %Y’ and y¥’ are the
estimators of Y based on the jth half-sample and the complement of the jth
half-sample; see Krewski and Rao (1981) for details. For convenience, we
restate the relevant asymptotic theorem of Krewski and Rao (1981).

THEOREM [Krewski and Rao (1981)]. Under the regularity condmons Cl Cé
of Krewski and Rao (1981), (i) n'/%(§ — 0) >4 N, o®); (i) nv(6) - a2 in
probabzlzty and [if gk(u) #£0] Gi) T = (0 0)/v1/2(0) o N(0,1), where
o? =L g(wegwy;, T =Wy J)) and v(8) is the ltnearzzatwn Jackknife or
any one of the BRR variance estimators.

To demonstrate the differences in the asymptotic behavior of § when
gx(n) =0, we first consider a simple univariate example. Suppose we are
interested in testing the null hypothesis that u = u,. A test statistic could be
based on g(y), where g(¢) = (¢ — uy)> We consider the distribution of g(¥)
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under a sequence of finite populations satisfying the null hypothesis in the
limit. Although the pointwise limit Y is assumed to exist by regularity
condition C5 of Krewski and Rao (1981), the asymptotic behavior of 6 — 6 =
(5 — po)? — (Y — uo)? depends upon the speed at which ¥ — p,. In particular,
if n/%¥ — p,) — C, then it is easy to show that n(§ — 8) »4 2Cy*/?Z + yZ?2,
where Z has a standard normal distribution and vy is the asymptotic variance
of n/%(y — Y). Using the linearization variance estimator described above,
vL(()) 4(y — p,)2f)( ¥). Under the regularity conditions C1-C4 of Krewski and
Rao (1981), n D(3) - y in probability, so that it is easy to show that
n?v,(8) >4 4y(y'/?Z + C)?, where Z is the same standard normal random
variable utlhzed for the asymptotic distribution of 6. Thus, for example, when
C=0,(6—0)/vl/%6) -, I|Z| /2.

To further explore the asymptotic distributions of 6 and the variance
estimators, we will utilize the following additional regularity conditions:

(C5) n1/2(l_’ w) — 0.

(C6') The partial second derivatives g; J( ) and third partial derivatives of g
are continuous in a neighborhood of u, i, j = 1,2,..., p, the vector of partial
first derivatives (g,(n), g85(n), ..., g,(n)) is 1dent1ca]ly zero and the matrix of
partial second derivatives, G = ((g,;(w))), is not identically zero. Recall that p
is the dimension of Y and u.

THEOREM. Under the regularity conditions C1-C4 of Krewski and Rao
(1981) and C5-C6/,

® n(d —0) > T2 X,
(i) n2v() - 42” AL X,
Gii) T = (6 — 0)/01/2(0) 2 ZP*I)«-X‘/(4Z’-’_1)«2.X~)1/2

where X; are independent chi-square random variables with 1 degree of
freedom, the A; are the eigenvalues of 3 1T'G and v(6) is either v (), v,(8) or
v(Z)(g)

Proor. Under the regularity conditions C1-C3, Krewski and Rao (1981)
show in their Theorem 3.2 that n{D(7) — D(3)} — 0 in probability. This result
with (1), C5' and C6' yields by standard Taylor series arguments the following:

n(d - 0) = 3{n/*(3 - V)f G{n'/%(7 - T)} + 0,(1)
and
n2uy(8) = {n'/2(y - }_’)}'GFG{nlﬂ(y -Y)} +0,(1)

Using (1) and standard results for quadratic forms [Johnson and Kotz (1970),

pages 150-151], the conclusions of the theorem follow for v, (0), s1nce the
eigenvalues of 'GTG are four times the squares of the eigenvalues of iI'G.
Since g;(Y) = o(n~'/?) by conditions C5 and C6', equation (31b) of Rao and
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Wu (1985) implies v,(f) = vL(0) + 0,(n~%?), while equations (37) and (39) of
Rao and Wu (1985) imply v(d) = vL(0) + 0,(n"2%). The conclusmns of the
theorem therefore follow for these two varlance estimators also.

Using C5' and the results of Rao and Wu (1985), it is easy to show that
n2v(6) and n2v$X(6) are not asymptotically equivalent to the other variance
estimators. For example when g(¢) = (¢ — ;;,0)2 the asymptotic mean of these
two statistics is 7y? compared to 4y2 for n2v{2(6), a large difference.

The result (i) is well known for chi-square tests involving contingency table
data from complex surveys [Fay (1989)]. For example, 6 may be the usual
Pearson chi-square test statistic for testing independence in a two-dimensional
table. In this application, ¥ is the sample cell proportions and p is the limiting
cell proportions associated with the sequence of finite populations. Under the
null hypothesis, g(1) = 0, but we see from (iii) that the sum of the eigenvalues
will need to be estimated for centering 7' for hypothesis testing [Rao and Scott
(1987), Fay (1985)]. For this application, Fay (1985) derives (ii) using v,(6),
but for the BRR, he uses a different estimator with the same asymptotic
distribution. The theorem suggests that he could have used v(z)(O) Note that
the expected value of v(0) for large samples is 4XP_;A%2/n, which is twice the
large sample variance of § — 6, a point also noted by Slmonoff (1986). Besides
chi-square statistics for contingency table applications, the theorem will have
relevance whenever a quadratic test statistic is used for hypothesis testing
with complex survey data. For example, consider testing whether several
regression coefficients are simultaneously zero. In this application, § could be
the classical F statistic with ¥ being the vector of sample means, squares and
cross products of the variables. The theorem suggests ways to adjust the
reference distribution to create a valid test statistic under the null hypothesis.
Note that a Wald statistic that estimates the covariance matrix of the regres-
sion coefficients using a. replication method will also produce a valid test
statistic that incorporates the survey design. However, such a Wald statistic
may have poor properties when the number of regression coefficients is
approaching the number of PSU’s available for the covariance estimation
[Korn and Graubard (1990)]. As a final example, consider testing whether the
sampling weights matter in a regression analysis. DuMouchel and Duncan
(1983) and Fuller (1984) suggest computing the difference in the weighted and
unweighted regression coefficients. For computing a test statistic, DuMouchel
and Duncan (1983) use a model based estimate of the covariance matrix of this
difference, while Fuller (1984), incorporating the survey design, uses a Taylor
series linearization method to estimate a linear transformation of this differ-
ence. The DuMouchel and Duncan (1983) procedure does not take into account
the possible clustering of the sample, while the Fuller (1984) procedure may
not work well with limited number of PSU’s for the covariance estimation.
The theorem suggests ways one could use the DuMouchel and Duncan (1983)
test statistic but modify its (null) reference distribution to account for cluster-
ing in the survey design.
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