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NORMALIZING TRANSFORMATIONS AND BOOTSTRAP
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This paper considers the problem of constructing approximate confi-
" dence intervals for functional parameters in the nonparametric case. The
approach based on transformation theory is applied to improve standard
confidence intervals. The accelerated bias-corrected percentile interval in-
troduced by Efron relies on the existence of a normalizing transformation
with bias and skewness corrections, although calculation does not require
explicit knowledge of its functional form. We formally construct such a
transformation and estimate bias and skewness correction factors for non-
parametric situations. The resulting interval is shown to be second-order
accurate. To this end Edgeworth expansions for the distributions of trans-
formed statistics are derived, using the von Mises expansion.

1. Introduction. In recent years intensive investigations have been made
concerning the problem of constructing approximate confidence intervals.
Work has been done both for parametric and nonparametric situations. Stan-
dard confidence intervals may be constructed based on consistent estimators
with asymptotic normality. The common weakness of these intervals appears
to lie in accuracy, since the standardized quantities are often quite skewed and
biased, especially for small sample sizes. Several authors have improved the
standard confidence intervals, using Edgeworth or Cornish-Fisher expansions
[Abramovitch and Singh (1985), Bartlett (1953), Beran (1984), Johnson (1978),
Hall (1983), Hinkley and Wei (1984), Peers and Igbal (1985) and Withers
(1983)].

The bootstrap method provides an alternative procedure for constructing
nonparametric confidence intervals. In practical applications the percentile
interval [Efron (1979)] has been widely used, and the advantages and disadvan-
tages have been pointed out both in theoretical and practical aspects. A
comprehensive survey of work in this area was given by DiCiccio and Romano
(1988). Efron (1987) improved the percentile interval by taking bias and
skewness corrections into account, and introduced the accelerated bias-
corrected percentile interval called the BC, interval. The BC, interval is
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constructed based on the existence of a normalizing transforma-
tion. The advantage of this method is that the calculation does not require the
exact form of a transformation, but only its existence. Hall (1988) showed
without knowledge of a transformation that the BC, interval is second-order
correct in the context of the smooth function model for which estimators can
be expressed as a function of multivariate vector means.

In the present paper we formally construct a normalizing transforma-
tion with bias and skewness corrections required in Efron (1987), using an
Edgeworth expansion based on a functional Taylor series expansion. The
result in Section 3 shows that the BC, interval is second-order correct for the
nonparametric situations. It also provides a unified approach to a normalizing
transformation theory and can be used to construct confidence intervals with
second-order accuracy for the parametric situations. In Section 4 we propose
an approximate confidence interval for a functional parameter in a nonpara-
metric model, which can be constructed without bootstrap sampling. Some
numerical results are presented at the end of Section 4.

2, Edgeworth expansion for the distributions of transformed
statistics. Let X, X,,..., X, be independent and identically distributed
random variables with unknown distribution function F. Let 6,
(X 1» Xg, ..., X,) be an estimator of 6, a parameter of interest which depends
on F. We assume that there exists a suitably regular functional ’.f(') on the
space of distribution functions on R? such that § = T(F) and 6, = T(F,),
where F, is the empirical distribution function of X;, X,,..., X,,.

Suppose that 0 admits the functional Taylor series expansion
(2.1) 6, =0+n_12 T(X;;F)+n~?2 Z Z Ty(X;, X;;F) +o0,(n7"),
i=1 i=1j=1

where T((X;; F) and Ty(X;, X;; F) are defined as symmetric functions such
that for an arbitrary distribution G on R?,

d: i

deiT((l —&)F + ¢G) = f fTi(xl,...,xi;F)jI:[ld{G(xj) - F(x;)}
at e = 0 and

JTi(x1,.., % F) dF(x;) =0 forl<j<i.

Then it may be seen that n'/%(f, — 6) is asymptotically normally distributed
with mean 0 and variance

o%(F) = [T¥(x; F) dF(x).

The standard confidence interval is constructed based on the normal ap-
proximation to the distribution of n'/ (9, — 6)/¢, where & is the estimated
standard deviation of 0 In practice this approximation is not adequate, since
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the pivotal quantities are often not unbiased and quite skewed. The normal
approximation may be improved by adjusting bias and reducing skewness. To
this end we use an Edgeworth expansion for the distribution of a transformed
statistic. For theoretical work on the functional Taylor series expansion, we
refer to von Mises (1947), Reeds (1976) and Withers (1983).

Suppose that the variance of o%(F) is estimated by

(2.2) 6*%(F,) =n"' ¥ TH(X;; F,).
i=1
We consider the bias and skewness of each of the following quantities:

6, —0 6,—6
. T =pl/2 % __ =plr2 2t .
(2.3) > =n 2 and T,=n 5(F)

Substituting (2.1) in T, and calculating the moments and from them the
cumulants of 7T, , we formally expand the first three cumulants in the form

k(T,) =n"'2b (F) + O(n™%?),
ko(T,) =1+ 0(n7Y),
k3(T,) =n"'2k (F) + O(n™%?),

where

(24) b,(F)={20(F)} " [Ty(x,x; F) dF(x),
k (F) = a*S(F){[Tf(x; F) dF(x)

+3[ [ T3 F)Ti(y: F)Ty(3,5: F) dF(2) dF(») ).

For the Studentized quantity T,, expanding &(F,) in a functional Taylor
series and combining the resultant with (2.1), we have

T,=n""20"Y(F) Y T(X;;F)
i=1

1 n n
+ n—8/2 3 o~ (F) Zl .Zsz(Xi’ X;;F)
i=1j=

(2.5) n n
o ()L ¥ T F){THX;F) - a(F)

i=1j=1

+2/T1(Z; F)Ty(X;,2; F) dF(z)} +0,(n"V2).
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Then the first three cumulants of T, can be formally expanded as
ky(T,) =n~2b(F) + O(n=%/?),
k(Ty) =1+ 0(n™h),
k3(Ts) =n"'%k(F) + O(n=%2),

where

b,(F) = %[a_l(F)sz(x,x;F) dF(x)

~o ()| [T F) dF ()
(2.6) +2//Tl(x;F)Tl(y;F)Tz(x,y;F)dF(x)dF(y)}],
ky(F) = —0‘3(F){2fT1‘°’(x;F) dF(x)

+3/fT1(x;F)Tl(y;F)Tz(x,y;F) dF(x)dF(y)}.

Let g(én) be a one-to-one and twice continuously differentiable function in a
neighborhood of (3n =6. It is known that the limiting distribution of
n'/%(g(6,) — g(6)} is normal with mean 0 and variance {o(F)g'(0)}2. Corre-
sponding to each of T, and 7, in (2.3), we write

e g(6,) — &(6)

(2.7 vz (6)

where v = o(F) or v = 6(F,).
Under suitable regularity conditions a bias-corrected Edgeworth expansion
for the distribution of the transformed variate (2.7) is

1/2 g(én) —g(6) — p-l2

Pln
vg'(0)

(b, + %a(F)g"(o)g'(e)‘l} <x

(2.8) 1 1 i

=®(x) - n‘l/z{gkv + EU(F)g”(())g’(O) }(x2 - 1)¢(x)
+0(n™h,

where ®(x) and ¢(x) are the distribution function and the density of the

standard normal distribution, respectively, and the bias b, and the skewness

k, are given by

(b,(F),k,(F))in(2.4), ifv= o(F),

(b(F),k,(F))in (2.6), ifv= 6(F,).

It may be seen from (2.8) that the asymptotic bias and skewness of the

(b, k) = {
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transformed variate are, respectively,
b, + Lo(F)g"(6)g'(6)"" and k, + 30(F)g”(0)g’(0)_1.

We formally expanded 9,, in a functional Taylor series and obtained the
Edgeworth expansion by calculating cumulants directly. Suitable conditions
are required for the validity of these expansions. For the theory of Edgeworth
expansions, we refer to Beran (1984), Bhattacharya and Ghosh (1978),
Pfanzagl (1985), Takahashi (1988) and Withers (1983).

In the next section we discuss the BC, interval from the point of view of
transformation theory based on the Edgeworth expansion (2.8) with v = o (F).
In Section 4 the Edgeworth expansion with v = ¢(F,,) is used to construct an
approximate confidence interval for 6.

3. Bootstrap confidence intervals. Nonparametric bootstrap methods
provide a useful procedure for constructing confidence intervals for a parame-
ter 6. Let G(x) = Py (6% < x} be the cumulative distribution function of the
bootstrap distribution of 0 where 0* is the estimator of 6 based on bootstrap
sample from F, . The G( x) is the condltlonal distribution function of 0* and is,
in practice, approx1mated by Monte Carlo sampling. Then, for a given a, the
percentile interval is given by [G~ (), G~1(1 — a)].

Efron (1987) improved the percentile interval by taking bias and skewness
corrections into account and gave the accelerated bias-corrected percentile
interval

(3.1) [G~Y(@(2[al)),G Y (2(2[1 - al))],

where zla]l =Z, + (Z, + 2,) /{1 — a(Z, + 2,)}, 2, is the 100« percentile point
of a standard normal variate and Z, and a are to be considered the bias and
skewness corrections, respectively. The BC, interval is constructed based on
the existence of a transformation. It is assumed that there exists a monotone-
increasing function g such that

g(8.) - 8(9)

(32) 1+ ag(9)

+Z,
is normal with mean 0 and variance 1.

The BC, interval requires us to calculate the bootstrap distribution and two
correction factors Z, and a included in (3.1) or (3.2). The advantage of this
method is that the calculation does not require the exact form of a function g,
but only its existence. In practice, it is necessary to show the existence of g
and to estimate Z, and a, which satisfy the above condition asymptotically.
We formally construct a transformation and estimate two correction factors
such that the normal approximation to the distribution of (3.2) is valid with a
remainder of order o(n~'/2). In other words it will be shown that the BC,
interval is second-order correct in a nonparametric model.

The approach used here is based on an Edgeworth expansion for the
distribution of a composite function of 0 The use of a composite function is
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motivated by the discussion in Section 10 of Efron (1987) and in DiCiccio and
Tibshirani (1987) for a one-parameter model. In this section further investiga-
tion will be given for nonparametric situations.

3.1. Normalizing transformation. Let f be a monotone-increasing and
differentiable function in a neighborhood of 9 = 0. Since the asymptotic
variance of a transformed variate f(8,)is {o(F)f’ (9)}2 /n, we first search for a
function which satisfies the condition

(3.3) a(F)f'(8) =n'/?

In general, the asymptotic variance o%(F) is a function of the parameter  and
also the moments of a population distribution F. Hence the variance stabiliz-
ing transformation f may depend on unknown parameters, and we write
f(6,) = f(,,n), where n = (n,,..., 7n,) is an unknown vector of parameters.
Then we consider the quantity

(3.4) Ti=n 1/2{f( b,,9) - f(o, n)}

where 4 = (#;,...,7,) is an estimator of n having an estimation error
0,(n"17%).

Suppose that f is a twice continuously differentiable function in a neighbor-
hood of (On, 7) = (8,7), and that 7 admits a functional Taylor series expan-
sion. Expanding f(8,,#) and f(6,#) in a Taylor’s series around (8,, #) = (6, )
and (0, %) = (6, n), respectively, and substituting (2.1) and the corresponding
expansion of 4 in the resultant yield

nl/sz =n! Z T(X;;F)f,

i=1
1 r n 1 n 2
E Z Z Tz(Xjo;F)fo + E Z T(X;;F)} foo
i=1j=1 i=1
q n n
+ Z Z Z Tl(Xi;F)Ul(“)(Xj;F)f,,na
a=1i=1j=
+o0,(n"1?),

where f,, f,, and f,, are the partial derivatives of f(f)n, 1) at (Hn, 7)) =(6,7),
and U{*(X;; F) is the influence function of #,. Then the first three cumulants
of n'/2T; can be expanded as

Kl(nl/ZTf) = n—1/2{ba(F) + %C(F)} + O(n—3/2),
(35) Kz(nl/sz) =1+ O(n_l)’
K2(n1/2Tf) = n—1/2{k0(F) + 3C(F)} + O(n—3/2),
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where b, (F) and k,(F) are given by (2.4) and
q
(3.6) ¢(F)= n‘1/2{02(F)f,,9 +2Y fo,,ale(x;F)Ul(“)(x; F) dF(x)}.
a=1

It should be noted that n~/%0%(F) f,, and n~'/*f, included in c(F) can be
replaced by —d0(F)/30 and —(3o(F)/dn,)o~%(F), respectively, which are
obtained by differentiating (3.3) with respect to 6 and 7,,.

Let h(T;) be a monotone-increasing and twice continuously differentiable
function in a neighborhood of T, = 0. It follows from (2.8) and (3.5) that an
Edgeworth expansion for the distribution of h(T}) is given by

1/2 h(Tf) - h(O)
" 7(0)

1 1 »
—n—l/z{b,(F) + 5e(F) + 5 (0)R(0) } <x

(3.7)
= &(x) — ml/‘é’[%{ka(z«*) +3c(F)} + %h"(O)h’(O)_I]

X(x2 - 1)¢(x) + O(n71).

Comparing the standardized quantity in (3.7) with (3.2), we see that & is given
as a solution of

(3.8) n~ 2K (0) = 1 + ah(0).
A particular solution of this differential equation is
h(T;) = a_1<exp(n1/2an) - 1}.
Taking this h(T}) in (3.7) yields
P[a‘l{exp(nl/zan) - 1} - n~Y%b,(F) + $c(F) + 3n'/%a} <x]
(39) = @(x) - n V2[4{k,(F) + 3¢(F)} + 3n'"%a](2* - 1)¢(x)
+0(n71h).

The approach to normality may be accelerated by choosing a to make the term
of O(n=1/2) in (8.9) to vanish, so the error involved is of order O(n~1). This
can be realized by choosing a to be

(3.10) a=-n"Y%3k,(F) +c(F)}

Then it can be seen that the Edgeworth expansion (3.9) is further reduced to
(3.11)  Pla~Yexp(n'/%aTy) - 1} + Z, <x| = (x) + O(n"Y),

where

(3.12) Zy= —n"V2{b (F) — 1k, (F))}.
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The transformation h(T;) with T, defined by (3.4) can be rewritten as

1 <eXP(“f(émﬁ)) - 1} — {exp(af (0, %)) — 1}
1+ aaYexp(af(0,4)) — 1} :

Comparing this with (3.2), we can show that a transformation required to
construct the BC, interval is

(3.13) g(6) = a_l{exp(af(én,ﬁ)) - 1}.

REMARK 1. If a = 0 in (8.10), it follows from (3.8) that the differential
equation is reduced to A'(0) = n'/?, so h(T;) = n'/2T,. Hence, in the case
where a = 0, it is not necessary to consider a composite function. Examples of
this sort will be discussed in the next section through the case of Fisher’s
z-transformation for a correlation coefficient in a bivariate normal sample.

h(Ty) =

In a one-parameter model DiCiccio and Tibshirani (1987) also discussed the
problem of constructing a function g which satisfies the condition (3.2) and
gave an alternative confidence interval (BC? interval) by finding a function g
in closed form. The functional form given by DiCiccio and Tibshirani (1987)
coincides with g(6,) in (3.13), but the skewness correction is different from the
one in (3.10). As shown in Example 1 below, for a maximum likelihood
estimator §, in a one-parameter model, the bias and skewness corrections
given by (3.10) and (8.12) are reduced to those suggested by Efron (1987).

ExampLE 1. Suppose that /() is the log likelihood function of a random
sample of size n drawn from a distribution depending upon an unknown
parameter 6. Let 0 be the maximum likelihood estimator of 6. Take T, =

K3/ 2(0 — 0), where «k, is the variance of a score function. Then it is known
that

bo(F) = n'?k3/*(kgo1 — 2k3)/86,
ko (F) = n'?k3?(koo1 — K3),
c(F) = n'%k3%%(k3 = 2K001) /6 (= —0'(F)),
where kg9, = E[0%1(0)/00] and «, = E[{3l(0)/36}°]. Substituting these in
(3.10) and (3.12), we have Z, = a = k4/(6«3/?) = {skewness of 41(8)/36}/6.

Note that f,, in (8.6)is 0. This agrees with the result in Theorem 2 of Efron
(1987) and in DiCiccio and Tibshirani (1987).

3.2. Second-order accuracy. The bias and skewness correction factors Z,
and a included in (3.11) have to be estimated from a sample. We replace, for
example, o(F), b,(F), k (F)and C(F)by é = o(F,),b, = b,(F,)), k, =k (F,)
and ¢é = c¢(F,), respectively, which have estimation errors OP(n_l/ 2). Let

b= a7 exn{a( £(0,, 5) - £(0,9)} - 1] + 2,
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where ¢ = —n~/%(k,/3 + &) and Z, = —n~%(b, — k,/6). By using (2.1), A
can be expanded in the form

h=n-Vi (F)Y Ty(X: F) + n‘W"’[éa*(F) Y ¥ Ty(X,, X, F)
i=1

i=1j=1

+{ Zn: T1(X,-;F)} {=§k(F)o 2(F) + 3n""*fpy = 307 2(F)c(F)}

i=1

+Zy +0,(n"1?).

qa n n
+n V2 ¥ Y Ty X F)USN(X;5 F) fon,
a=1i=1

j=1
Then the first three cumulants of A are of the form
ki (h) =o(n"2%), ky(h)=1+0(n"') and ky(h) =o0(n"1?),
which lead to
P(h <x) = ®(x) +o(n"V?).
Hence the results derived in Sections 3.1 and 3.2 are summarized in the

following theorem.

THEOREM 1. Suppose that 5,, has the Edgeworth expansion
P[n'/%(8, - 6) /o (F) < x]
= 0(x) —n Vb (F) + sk, (F)(x* — 1)}é(x) + O(n7?),

where b,(F) and k (F) are given by (2.4). Ifa = —n~"*k,(F)/3 + c¢(F)} +
0, then the transformation g and two correction factors Z, and & (# 0)
satisfying the condition

2(8,) - &(6)

+2Z, <
1+ ag(0) 0¥

(3.14) P = ®(x) + o(n"1/2)

are given by
g(6,) = d-l[exp{af(é,,,ﬁ)} - 1]
and
(815) 4= -n"V2(k,/3+¢), Zy=-n"'*b,-£,/6),

where f is a solution of the differential equation (3.3) and 50, E_ and ¢ are,
respectively, estimators of b (F) and k_(F) in (2.4) and c(F) in (3.6), which
have estimation errors 0,(n~'/?). If a = 0, then the transformation g is given

by g(8,) = £8,, 7).

In most statistical applications the remainder in (3.14) may be replaced by
O(n~1). We derived Theorem 1 to show that Efron’s BC, interval is second-
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order correct in a nonparametric model. This theorem also gives a general
procedure for finding approximate confidence intervals which achieve second-
order accuracy in parametric problems. Several examples are given in the
following discussion.

ExaMmpLE 2. Let 5,, /0 be distributed according to a x?2 distribution with n
degrees of freedom. Consider the standardized quantity T, = n'/%(6,/n — 6)/
(Y26). Then o(F) =286, b,(F) =0, k,(F)=2/2 and c(F)= — V2. An
asymptotic variance stabilizing transformation defined by (3.3) is f(6) =
(n/2)'/2log 6. Hence

Zy=a={2/(9n)}"” and g(@) = (9n/2)"%(8,/° - 1),
and finally we have
P[(Qn/2)1/2{(5n/0)1/3 -1} + {2/(9n)}* < x] = ®(x) + O(n7Y).

This is the Wilson-Hilferty approximation for the central y? distribution [see
Wilson and Hilferty (1931)]. It is well known that this approximation produces
highly accurate values even for small n. Efron (1987) considered the same
example in the case where n = 19, and gave a = 0.1081, which is equal to
a=1{2/(9-19)}2

ExampLE 3. Let S be a sample covariance matrix based on a sample of size
n from a p-variate normal distribution with positive definite covariance
matrix 3. Let [, >1,> -+ >1 >0and A; > A, > -+ > A, be the ordered
eigenvalues of S and 3, respectively. Consider the standardized quantity
T, =n"2%(1; — 1,)/(/2,). If A, is a simple root, then o(F) = y21,, b (F) =
W2)7'x2 A /(A —A), B (F)=2/2 and ¢(F) = — V2 [see, e.g., Konishi
(1981)]. Solving the differential equation V2 A, f'(A,) = n*/? yields f(A,) =
(n/2)'/?1og A,. The bias and skewness correction factors are

e & A 2
Zo=—(2n)"/{2 Y ‘g}

a#i )li

and

V2

-1/2 __ _

3

Hence it follows from Theorem 1 that

9n\V2(( 1\ Pl 2
TR

i a#i "1
=®(x) + O(n7Y),

where the population eigenvalues are estimated by the corresponding sample
eigenvalues. Note that the remainder is shown to be of order O(n™1).

a=n 5 (asymptotic skewness of T,).
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ExampPLE 4. Let r be a correlation coefficient based on a sample of size n
from a bivariate normal distribution with population correlation coefficient p.
It is known [Hotelling (1953), page 212] that for T, = n'/%(r — p)/(1 — p2),

o(F)=1-p% b (F)=-p/2, k(F)=—6p and c(F) = 2p.
Hence we have

f(p) = (n*?/2)log{(1 + p) /(1 - p)} = 2(p),

say, Z, - -n"Y% /2 and a = —n" Y}k (F)/3 + ¢(F)} = 0. Taking g(8,) =
z(r) in (3.14) gives .

Plz(r) — 2(p) — n"V3(r/2) <x] = ®(x) + O(n7Y).

This implies that the asymptotic variance stabilizing transformation z(r) also
yields a normalizing transformation, and that the confidence interval for p
based on Fisher’s z-transformation achieves second-order accuracy. Another
example is the z-transformation for a sample canonical correlation coefficient
in a normal sample. It can be verified [see, e.g., Konishi (1981)] that the
skewness correction factor a is 0, and consequently a confidence interval for a
population canonical correlation based on the z-transformation achieves sec-
ond-order accuracy.

One advantage of Theorem 1 is that in parametric cases it unifies the
general problem of finding normalizing transformations for estimators and
produces accurate confidence intervals. One disadvantage is that the procedure
requires finding a variance stabilizing transformation explicitly. In nonpara-
metric cases it is generally difficult to find such a transformation in closed
form. In order to avoid this difficulty, we introduce in the next section an
alternative approximate confidence interval, which does not require bootstrap
sampling. Tibshirani (1988) provided an algorithm to find a variance stabiliz-
ing transformation under certain restrictions and introduced the bootstrap
t-interval based on a transformed variate.

4. Approximate confidence intervals based on transformations.

4.1. Construction of confidence intervals. A nonparametric confidence in-
terval for a parameter 6 is constructed based on an Edgeworth expansion for
the distribution of a transformed statistic. The Edgeworth expansion (2.8)
with v = ¢(F,) (= ¢) implies that the bias-corrected Studentized quantity

nl/2 g(é)n) —&(9) —p-l2
6g'(9)

has asymptotically the standard normal distribution and its rate of conver-

gence to normality is of order n~1/2

The problem is what function should be chosen to improve the normal
approximation. Following the arguments of Section 3.1, we search for a

1
(4.1) (6.(F) + GoEr @)
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function g which reduces the term of order n~'/2 in the Edgeworth expansion
(2.8) with v = 6(F,,) to 0, so the error involved is of order n~!. This can be
realized by finding a function which satisfies the second-order differential

equation
(4.2) ik (F) + 30(F)g"(6)g'(6) " = 0.

In the nonparametric case it is generally difficult to obtain a function g in
closed form, since o(F) and & (F) may depend on 6 but their functional forms
are unknown. To avoid this difficulty arising in nonparametric situations, we
first estimate the unknown parameters. Suppose that b.(F) and k(F) are
estimated by b, = b,(F,) and £, = k(F,): Then a particular solution of the
differential equation (4.2) is

g(6,) = (-36/k,)exp{~£,0,/(35)}.
Taking this g(6,) in (4.1) and replacing b,(F) and o(F) by their estimates, we
have
(43 mexp(mT,) - 1) - nV3(5, - 1F.),

where m = —k,/(3n'/?) and T, = n'/2(6, — 0) /6.

We will show that the normal approximation to the distribution of the
pivotal quantity (4.3) is valid with a remainder of order o(n~/2). It can be
readily seen that the pivotal quantity can be expanded as

(4.4) T, — n=22{b, + 3k (T2 - 1)} + 0,(n7Y).

Substituting (2.5), b, = b, + 0,(n"?) and £, =k, + 0,(n"'/?) in (4.4) and
calculating the cumulants yield the results that the bias and skewness of (4.4)
are of order o(n~!/2). Then we have

(45)  P[T, - n/2(b, + 1h,(T? - 1)} <z] = ®(x) +o(n""/?).

This result also follows from Theorem 1 in Abramovitch and Singh (1985).
Hence the normal approximation to the distribution of (4.3) is valid with a
remainder of order o(n~!/2). A confidence interval for a parameter 6 is
constructed by inverting the pivotal quantity (4.3) directly. The results are
summarized in the following theorem.

THEOREM 2. Suppose that the distribution function of T, = n'/%(8, — 6)/&
with 62 given by (2.2) can be expanded as

P(T, <x) =®(x) — n_l/z{bs(F) + %ks(F')(x2 - 1)}¢(x)
+0(n™Y),

where b,(F) and k (F) are given by (2.6). Let b, and k be estimators of b (F)
and k(F), respectively, which have estimation errors O,(n~'/?). Then (i) the
pivotal quantity defined by (4.3) has the Edgeworth expansion

(47) P[mexp(mT,) - 1) = n=2(8, - 1B,) <x] = @(x) +o(n V),

(4.6)
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where m = —k_/(8nY?), and consequently (ii) a confidence interval for 6 is
given by

(4.8) 0|8, —n"%(6/m)log[1 + m{xz, +n 2(b, - )|

Let 6.,(a) be the a-endpoint of the confidence interval (4.8). It is easily seen
that 6,(a) can be expanded as

br(a) =6, — n" 26—z, + n~V2{b, + 2k, (22 - 1)}] + O,(n"?).

This implies that the confidence interval (4.8) is asymptotically equivalent to
that based on a Cornish-Fisher inverse expansion for the percentile of the
Edgeworth expansion (4.6). Hence from the discussion in Hall (1988), we have
the following theorem.

THEOREM 3. The a-endpoint éT(P‘) of the confidence interval (4.8) is
second-order correct in the sense that 0(a) agrees with the exact a-endpoint to

order n~ L.

It follows from (4.5) that the polynomial transformation of T, is also a
pivotal quantity. However, it might be noticed that the use of this quantity
does not give directly a confidence interval, and that the polynomial transfor-
mation is not a monotone function over the whole domain of T,. We also note
that both methods (4.5) and (4.7) depend on the transformations used and are
not invariant under reparametrization. These two approximations are illus-
trated through an example of the sample correlation coefficient in the follow-
ing.

ExampLE 5. Let r be the sample correlation coefficient as discussed in
Example 4. We first obtain T(x; F) and Ty(x,y; F) for r by expanding r in a
functional Taylor series. Substituting the resultant in (2.6) and calculating the
asymptotic bias and skewness under the assumption of normality yield
b(F)=3p/2 and k(F) = 6p. Then from (4.7) we have

P[n'/2(~2r) Mexp(=2r(r = p) /(1 = %)) = 1} = n"V2r/2 <x]
~ ®(x) + O(n"Y).

Further, let R, = n'?(r — p)/(1 — r2). Tt follows from (4.5) that the polyno-
mial transformation of T, is

(4.10) P[R,-n"Y?3r + r(R2-1)} <x] = ®(x) + O(n™).

(4.9)

In the next section we compare these approximations and check the accuracy,
using Monte Carlo simulation.

In parametric problems Konishi (1981, 1987) constructed the concept of
normalizing transformations based on the rate of convergence to normality.
The use of transformations to parametrize models has also been discussed by
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Hougaard (1982) and DiCiccio (1984). There is a close relationship among
them in the sense that transformations are chosen in such a way that the
skewness of distributions vanishes or becomes smaller. For related work, see
Konishi (1987).

REMARK 2. We used the transformation theory to improve the standard
confidence interval and derived an approximate confidence interval. For the
a-endpoint 6,(a) given by (4.8), we consider a value of the bootstrap cumula-
tive distribution function PFn(é;" < 67(a)). This approximates

P[§, <6+ 30(F)k;\(F)
Xlog[l — n~V21k (F){-z, + n"V2(b,(F) — sk (F))}]].

Expanding the quantile in a Taylor series and applying an Edgeworth expan-
sion for the distribution of T, yield

 P[n'2(b, ~ 0)/0(F) <z, ~ n2(b,(F) = §k,(F) + k,(F)z2)]
= ®(z,) —n"V{by(F) = §ky(F) + sk, (F)z2 + b,(F)
+ 3k, (F)(22 - 1)}$(2.)
(4.11) +0(nY)
= ®(z,) = Vb, (F) = §ky(F) +b,(F) = §h,(F)
+5(ko(F) + ky(F))22)b(2,)
+0(n7Y),

where (b,(F), k,(F)) and (b,(F), k (F)) are given by (2.4) and (2.6), respec-
tively. It follows from (3.1) that

O(2[a]) = B(z,) + (2Z, + az2)P(z,) + O(n™1).

Comparing this with the last formula in (4.11) and noting that b,(F) —
k(F)/6 =b,(F)— k,(F)/6, we have

Zy= —n"V}b(F) - gk (F)} = —n"V*b,(F) - 5k, (F)}
- —n‘l/z%a‘3(F){302(F)fT2(x,x;F) dF(x) - [T}(x; F) dF(x)

4.12
@ =3[ [Ty(x; F)T((y; F)To(x,y; F) dF(x)'dF(y)},

a= —n V2R (F) + b (F)} = n"V246"%(F) [T}(x; F) dF(x).

If a is estimated by replacing F by the empirical distribution function F,,
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then
1 I THX;F)
3/2
6 (L1, TA(X;; F,))

4=

which agrees with Efron’s estimate [Efron (1987), page 178). This implies that
the approximate confidence interval given in Theorem 2 is asymptotically
equivalent to the BC, interval. The skewness correction a in (4.12) has a
different form from the one given by (3.10), which is derived via transforma-
tion theory. We found, however, that two correction factors produce similar
results in many problems. In a nonparametric setting we have been so far
unable to make the relation clear. Hall (1988) showed that the BC, interval is
second-order correct in a smooth function model, and gave an interpretation of
the skewness correction based on inverse Cornish—Fisher expansions of boot-
strap critical points [see also Bickel (1988)].

4.2. Numerical results. A Monte Carlo study was performed to examine
the normal approximations (4.9) and (4.10) to the distribution of the sample
correlation coefficient in a normal sample. We first obtained the exact values of
P(R, < r,y), where R, = n'/%(r — p)/(1 — r?), using Monte Carlo simulation;
1,000,000 repeated random samples were generated from a bivariate normal
population for different combinations of p and n. Table 1 compares errors
(x10%) in approximating the values of the probability P(R, < r,) for a sample

TasLE 1
Errors in approximating the values of P(R, < ry) for n = 50:
error = (approximate value — exact value) X 10*

ro Exact PT KT ro Exact PT KT

p=0.1 p=03

-20 0.0289 -90(0.004) —91(0.004) —22 0.0134 -54(0.002) —57(0.002)
-1.9 0.0852 —96(0.004) —98(0.005) —2.0 0.0215 -68(0.003) —72(0.003)
—1.8 0.0426 —102(0.005) —104(0.005) —1.8 0.0336 —81(0.004) -85(0.004)
—1.7 0.0514 -108(0.006) —109(0.006) —1.6 0.0514 -—92(0.005) —96(0.005)
1.8 0.9487 106 (0.006) 108 (0.006) 2.0 0.9564  82(0.006) 90 (0.005)
2.0 0.9635 95 (0.005) 97 (0.005) 2.2 0.9685 70 (0.005) 79 (0.004)
2.2 0.9746 81(0.004) 83(0.004) 2.4 09773 60(0.004)  68(0.003)
2.4 0.9824 67(0.003) 68 (0.003) 2.6 0.9837 49(0.004)  57(0.003)

p =07 p=109

— 1.7 0.0235 —24(0.002) —41(0.002) - 1.6 0.0210 23(0.0) -2(0.0)
-1.6 0.0315 —28(0.002) -—46(0.002) -1.5 0.0297 24(0.001)  -3(0.001)
—-15 0.0416 —32(0.002) -51(0.002) -1.4 0.0413 20(0.001)  —8(0.001)
-14 0.0539 -35(0.003) —55(0.003) -1.3 0.0555 17(0.001) -11(0.001)
2.4 0.9660 —35(0.005) 27(0.003) 2.4 0.9595 —138(0.003) —10(0.001)
2.6 0.9743 —43(0.005) 21 (0.003) 2.6 0.9686 —153(0.003) —15(0.001)
2.8 09805 —48(0.005) 16 (0.003) 2.8 0.9758 —167(0.003) —20(0.001)
3.0 0.9854 —53(0.004) 11(0.002) 3.0 0.9814 —179(0.003) —22(0.001)
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size n = 50 in the tail areas. Simulation entries in the table are estimated by
averaging over 10,000 repeated Monte Carlo trials. The standard deviations for
the means are given in parentheses. We use the notation KT and PT standing
for the approximations (4.9) and (4.10), respectively.

It may be seen from Table 1 that the approximation PT is slightly superior
to KT for low values of p, while KT is superior for high values of p in the
upper tail areas. In the lower tails KT and PT have almost the same standard
deviation, but in the upper tails KT has a somewhat smaller one. One
important advantage of KT is that it can be readily inverted to construct a
confidence interval for the parameter p. It should be pointed out that the
approximation PT performs poorly in the neighborhood of the extreme value
(n'2/(2r)) of a quadratic function, since the polynomial transformation for
PT is not monotonically increasing or decreasing over the whole domain of R,.
This implies that the method based on the polynomial transformation should
be applied with extreme care when a sample size is small and an asymptotic
skewness is large.
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