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MAXIMUM LIKELIHOOD ESTIMATION OF A SET OF
COVARIANCE MATRICES UNDER LOWNER ORDER
RESTRICTIONS WITH APPLICATIONS TO BALANCED
MULTIVARIATE VARIANCE COMPONENTS MODELS

By JAMES A. CALVIN! AND RicHARD L. DYKsTRAZ

University of Iowa

The problem of maximum likelihood estimation of Léwner ordered
covariance matrices is considered. It is shown that a dual formulation of
this problem is tractable and important in its own right. The interplay
between the primal and dual problems suggests a general algorithm for
computing the solutions to these problems. This algorithm has application
to some estimation problems in balanced multivariate variance components
models. The speed of convergence is also discussed for the variance compo-
nents models.

1. Introduction. The study of variance component estimation in univari-
ate mixed models has long been a topic of interest to statisticians. Henderson
(1953) proposed equating mean squares with their expected values to estimate
individual variance components. Herbach (1959), Thompson (1962) and
Patterson and Thompson (1971, 1975) have proposed procedures for maxi-
mum likelihood (MLE) and restricted maximum likelihood (REML) estimation
of the components. Rao (1971a, 1971b) developed MINQU and MIVQU estima-
tors which are related to REML estimation and are discussed in Rao and Kleffe
(1988). Searle (1971) and Harville (1977) provide excellent summaries of
several such techniques. Harville and Callanan (1990) discuss the computation
problems associated with REML estimation.

One of the problems encountered in estimation can best be seen by consider-
ing a simple example. Consider the two-factor random effects model without
interaction:

(1.1) Y”k=/.L+al+bJ+e i=1,...,A;j=].,...,B;k=1,...,N,

ijk>

where the a,, b, and e;;, are independent with a; ~ N(0, o), b; ~ N(0, o)

12

and e, ;, ~ N(0, 0?). A set of minimal sufficient statistics for this model is Y...,
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MS,, MS, and MS, [Arnold (1981), Section 15.2], where MS,, MS, and MS,
are the standard mean squares from the analysis of variance table. The
expected values of the mean squares (EMS) for a, b and e are 02 + BNo?2,
a2 + ANo? and o2, respectively. The method-of-moments estimation proce-
dure—equating the mean squares for a, b and e to their expected values and
solving for 02, 02 and g —may encounter the problem of negative estimates
since either MS, or MS, may be smaller than MS,. MINQUE and MIVQUE,
which are unbiased, also have a positive probability of yielding negative
variance estimates. In practice, one usually sets these estimates to zero
[Arnold (1981), page 262]. Likelihood based estimation procedures will typi-
cally, in addition, adjust the other estimates for the fact that one or more of
the estimates are zero. In the balanced one-factor model, the REML estimate

of 02 is the weighted average of MS, and MS, when o2 is estimated to be

zero.

The development of the equivalent estimation and computational tech-
niques for multivariate variance components models has not proceeded at the
same pace. Clearly, equating mean squares to their expected values is still
feasible. However, there is little agreement about what procedures should be
employed. Rao and Kleffe (1988) discuss multivariate extensions to MINQUE
and MIVQUE procedures, but implementation is difficult and the iterated
versions may be slow to converge.

The multivariate version of (1.1) is

12) Y,,=p+A,+B. +E,,, i=1,...,A;j=1,...,B;k=1,...,N,
Jjk i ' Jjk

13

where A;, B; and E;;, are independent p X 1 vectors, with A; ~ N(0, X ),

B, ~ N(0,%p) and E,;, ~ N(0, 2 ). For this model a set of minimal sufficient
statistics is (Y..., A4, A, Az}, where

A B N _ _ _
AA = Z Z Z (Yi“_ Y...)(Yi.._ Y...) ’
i=1j=1k=1
(1.3) A B N B _
A=Y ¥ ¥ (Y,-Y.)(Y,-Y.)
i=1j=1k=1
and
A B N _ _ _ o _ _ ~ .,
i=1j=1k=1
A B N _ _ _ _ .,
+Y X X (Yijk - Yij-)(Yijk - Yij-) .
i=1j=1k=1

The sums of squares matrices A,, A and Ay are distributed Wishart ,(n, =
A -1, EMS, =3; + BN3,), Wishart (ng=B -1, EMSy =3; + AN3p)
and Wishart ,(ng; = ABN — A — B + 1, EMSy = 3 ), respectively. If the mean
square matrices are equated to their EMS matrices, it is easy to see that it is
possible to obtain estimates for individual matrices that are not nonnegative
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definite (n.n.d.). Hill and Thompson (1978) and Bhargava and Disch (1982)
show that for even relatively simple models, the probability of obtaining an
estimate outside the parameter space can be quite high. In this case setting
these matrix estimates to zero is clearly the wrong thing to do. One alternative
is to project the estimates onto the space of n.n.d. matrices by taking a spectral
decomposition of the matrices outside the parameter space, setting negative
eigenvalues to zero and then recombining to get estimates in the parameter
space. Klotz and Putter (1969), Amemiya (1985) and Anderson, Anderson and
Olkin (1986) discuss maximum likelihood versions of this problem for models
with only two variance component matrices. However, when more than two
matrices are involved, it is not obvious what should be done.

In this paper we are concerned with maximum likelihood estimation of the
parameter matrices of a set of Wishart matrices subject to the restriction that
the differences between certain pairs of matrices are nonnegative definite. In
practice, the Wishart matrices are typically the sums-of-squares and cross-
products matrices from a balanced multivariate variance components model
and the parameter matrices are the corresponding EMS’s. (Note that model
1.2 satisfies these conditions when estimation is based on A,, Ay and Ag.)
The pairwise difference restrictions correspond to requiring that the estimates
of the individual covariance matrices be in the parameter space. In the case of
balanced variance components models, our procedure leads to REML estimates
of the matrices. Our proposed procedure will work for any balanced model for
which the covariance matrices can be described as the difference between two
EMS matrices. All nested models and all two-factor models fall into this wide
class of balanced multivariate variance component models.

As an example, we consider a subset of the data from Calvin and Sedransk
(1991). They look at two response measures of the quality of care received by
cancer patients. The data was collected from random samples of patients
within each of a set of randomly sampled hospitals within each of seven strata
classifications. In our subset we will use two randomly selected patients within
each of two randomly selected hospitals within each of the seven strata. The
bivariate response measure contains (1) the pretreatment score and (2) the
therapy score, which were designed to measure the quality of care received
during the two stages of patient care. [The data and the software necessary to
perform the analysis described in this paper are available from the authors
upon request. For a further description of the data, see Calvin and Sedransk,
(1991).] Thus, a model for this data:is the two-factor random effects nested
model:

(1.4) Yr=n+A, +B,,+E;;,

where the strata effect A, the facility effect B, ; and the random error E, ;, are
independent 2 X 1 vectors, with A; ~ N(0,%,), B;; ~ N(0,2;), and E, ;, ~
N(0, 2 5). Using our subset we find the EMS’s for this model are EMS, =
3g+ 235 +43,, EMS; = 3, + 23, and EMS; = 3. Thus, 3, = (EMS, —
EMSg)/4, 35 = (EMSg — EMS,)/2 and 3, = EMS,. The mean square matri-
ces for the data and the estimates of 24, 25 and 2 based on equating the
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mean squares to their expected values are listed next. Note that the solutions
do not fall in the parameter space since the estimate of 2 ,, MS, — MS;)/4,
is not n.n.d.

MS,

_ [2420.68 1571.20 _[374.21 167.87
MS,

" 11571.20 1681.43 " |167.87 1136.51

_[255.57 47.96
MSg 47.96 63.49]

(1.5)
_[511.62 350.83] ﬁ3=[59.32 59.96]

A~ [850.83 136.23 59.96 536.51

3 =[255.57 47.96
E 47.96 63.49]°

Projecting the individual estimates back into the parameter space yields

3 =[531.16 318.22 3 - 59.32  59.96
A 318.22 190.65 B 59.96 536.51

s =[255.57 47.96
E” | 4796 63.49]

However, it is not clear that 3, should be the only estimate which is modified.
It is based on both MS, and MS, and, as we shall show, this simple
adjustment does not yield restricted maximum likelihood estimates.

Section 2 provides background notation and defines the problem. Section 3
is devoted to developing the major building block in the estimation procedure
and Section 4 describes the general estimation procedure. Section 5 discusses
the speed of convergence of the algorithm and provides an application using
the data in (1.5). The proof of the convergence of the algorithm is left to the
Appendix.

2. Background and problem definition. To set notation, suppose
31 ..., 2, are real symmetric p X p matrices and that < is a partial-order on

the index set {1,..., k). We will say that the vector of matrices
2
-]
2

is isotonic with respect to < if it is order preserving in the Léwner sense
[Lowner, (1934)]. This means that if i <j, then 3; — 3, is n.n.d, which we
write as 2; < 3. We say that X is antitonic if i <j implies %; < X;. The set
G, which we will refer to as the minimal set of pairwise restrictions, contains
the smallest possible set of pairs (i, j) which describe the partial order. For
(1.4), if we let 3, = EMSg, 3, =EMS; and 3; = EMS,, then G =
{(1,2),(2, 3)}). Thus, our goal is to construct the maximum likelihood estimate
of ¥ which is isotonic with respect to <, the partial order associated with G.

Let A,,..., A, denote independent p X p Wishart random matrices with
respective parameters (ny, 2,),...,(n,,3,;), where the n; are all known and
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greater than or equal to p and the 3, are all positive definite (p.d.). The
log-likelihood of ¥ can be expressed as

’ A" 7R expltr( - 34,371))
(2, 4) =In [ » F1- g
i-12 D 7T ((n; + 1 -j)/2)

(2.1) ,

n; 1
= 2  —— 3 -1
=Y { 3 In|3,| 5 tr(A,3; )} +c,

i=1

where c is a constant which does not depend upon X.

For our particular problem, it will be convenient to parameterize the
likelihood in terms of A; = 7%, i =1,..., k. Since 0 < 3, < 2 ffA; 2 A;>0
[Rao, (1973), page 70], our problem then becomes one of maximizing the
likelihood over the class of antitonic rather than isotonic vectors of matrices.
While this is a difficult optimization problem which cannot be solved in closed
form, we are able to provide a tractable algorithm which is guaranteed to
converge to the correct solution. Our approach hinges on the delicate interplay
between the stated problem and a specific dual formulation based on the
Fenchel duality theorem.

Fenchel-type duality theorems have been used in several statistical contexts
to identify interesting dual problems, e.g., Barlow and Brunk (1972),
Pukelsheim (1980, 1981), Miiller-Funk, Pukelsheim and Witting (1985) and
Dykstra and Lemke (1988). In this paper, however, it is the interplay between
the primal and the dual problems which is of primary interest, since it
suggests the algorithm and provides a vehicle for the proof of convergence.
We now briefly review the needed Fenchel duality theorem, as stated in
Rockafellar [(1970), page 335].

THEOREM 2.1 (Fenchel). Suppose f is a closed proper concave function
defined on R" and K is a closed nonempty convex cone in R™. If we define the
concave conjugate of f, f *, and the dual cone of K, K *, as

n

f*(y) = inug {inyi—f(x)}, K* = {ye R™: Zn:xiyisOVxeK},
xeR” 1

= i=1
then
(2.2) sup f(x) = ~ sup f*(y)
xeK YEK*
if either

() ri(dom f) N ri(K) # Tor
(i) ri(ldom f*) N ri(K*) # @,

where 1i means relative interior and dom f = {x € R": f(x) > —oo}.
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If (i) holds, sup, .k« f*(y) is attained and if (ii) holds, sup, . x f(%) is
attained. In general, x* and y* are respective solutions to (2.2) such that

f(x*) = sup f(x) = — sup f*(y) = —f*(y*)

xeK yeK*
if and only if
(2.3a) x* e K,
(2.3b) y* € K*,
n
i=1
(2.3d) — y* is a subgradient of —f at x*.

Suppose now that K denotes the cone of antitonic vectors of symmetric
p X p matrices. Our MLE problem is then of the same form as the primal
problem, sup, ¢ x f(%), in Theorem 2.1; that is, find the supremum over A € K
of -

ko n, 1
(2.4) /(A,A) = E,l 5 In|A;| — Etr(AiAi), A;sym.pd.,i=1,...,k,
—oo, elsewhere.

Since In|A,| is a concave function of symmetric p.d. A; [Farrell, (1985), page
326], ¢ will be a closed proper concave function. What makes the Fenchel dual
approach appealing is the tractability of the concave conjugate of the log-likeli-
hood. [Note: It is possible to formulate (2.4) either in terms of square p X p
matrices (p2 variables) or triangular p X p matrices (p(p + 1)/2 variables)
since the problem requires the A; to be symmetric. We have chosen the
former, since it makes the Fenchel duality theorem more transparent and is
more consistent with standard matrix notation. We then add symmetry by
restricting the domain of #.]

LEmma 2.1. Let A and A be k X 1 vectors of matrices, with each A,
symmetric. The concave conjugate of the function (A, A) given in (2.4) is

1k '

/(W,A) = |32 Yon;In|y; + !+ A |+ c*, Y+ yYl+A; pd,i=1,...,k,
’ i=1

— o, otherwise,

where

c* =

NS

k
;1ni[1 —1In(n,;)].
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Proor. Observe that the matrix of partial derivatives with respect to the
p X p matrix Z are given by

d d 1.
d—Z—tr(AZ) =A and d—Z—lnIZI =(2) [if IZ| > 0, Dwyer (1967)].

Then

k
CX(W,A) = inf| T tr(WA) — /(A,A)
. i=1

1[ * , 3
inf [ X tr((¢; + 9/ +A)A) - X n;In|A[]].
A: A, sym. 2 i=1 i=1

and p.d.
The quantity in brackets is a convex function of symmetric p.d. A and is
differentiable over the restricted region. Setting the partial derivatives of the
quantity in brackets equal to zero results in the equations

(llfl + l/li’ + AZ) = niA,i—l or Al = nz(lﬁl + lpil + Ai),—l.

This easily yields the desired result since these A; are symmetric. O

Note that all ¥ in {W¥: ¢, + ¢/ = M;, i = 1,..., k} yield the same value for
Z*(W, A). Thus, using components ;, ¢/ or (; + /) /2 will yield the same
solution. Since our interest is in symmetric matrices, when considering dual
problems we will always let ¢, represent the symmetric matrix which yields
the desired solution.

To apply Theorem 2.1 we will need to be able to find the form of the dual
cone K *. The following lemma [Rockafellar (1970), page 146] will be useful.

Lemma 2.2. If K;,..., K, are convex cones such that N[ ri(K;) # 0,

then
*

i=1 i=1
where + indicates the sum (A + B ={a + b:a €A, b € B)).

If H denotes the cone of symmetric p X p n.n.d. matrices, then the dual
cone of H (in R?*) need not contain only symmetric matrices. However, if we
restrict ourselves to matrices in the dual which are symmetric, then the
resulting subset will be the set of symmetric nonpositive definite (n.p.d.)
matrices.

LEmMmaA 2.3. If H is the cone of symmetric p X p n.n.d. matrices and Z is
the set of symmetric p X p matrices, then

H*NZ={y<cZ:¢yisn.p.d.}.
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Proor. Since H* = {i: tr y’A < 0V A € H}, it easily follows that ¢ € H*
iff y + ¢’ € H* N Z. Thus,

H*NZ={4eZ:tryA <0,VA € H)
={¢y €Z:tr yOANO' <0,V A € H,V O orthnormal}

= {(/; €Z: sup tryOAO' <0,VA EH}
O orth

p
- {¢ €Z: Y A(P)A(A) <0,VA € H} [Farrell (1985), page 323]
i=1

={y€Z:2(yp) <0} ={y€Z:¢yisnpdl},

where A,(-) denotes the ith largest characteristic root of the symmetric
argument. O

We can now identify the structure of the dual cone of K.

THEOREM 2.2. Let K denote the set of vectors A =[A,,...,A,] whose
elements, symmetric p X p matrices, are antitonic with respect to < . Let
G={G,j) l=1,...,m} be a minimal set of pairwise orderings which
generates the partial order < . For each element (i, j) of G, let H,; be the set
of vectors of matrices of the form

(2.5) \I’(ivf)=[0---0 g, 0---0 0...0]"

where §; = —y;, 0’s are in all other positions and ¢, + ¢/ is n.p.d. Then the
dual cone of K is

K*= + H,.
@, )eaG

Proor. By Lemma 2.2, it will suffice to show that H,; is the dual of the
convex cone

K= {A: A, symmetricV [, A; > Aj}'

To use Lemma 2.3, we need to show that every element in K N Z* is of the
form (2.5), where ; is a symmetric p X p n.p.d. matrix and Z* is the set of
vectors of length %2 whose elements are symmetric p X p matrices. For the
elements in K, ;, only the ith and the jth coordinates have restrictions. Thus,
clearly all coordinates for the elements in K% must be 0 except in the ith and
Jth positions, and

K NZt={W:tryA; + tr @Aj <0,YA€K,,
; and ; symmetric, ¢, = 0 [ # i, j}
= {W:try;(A; — A)) + tr(y; + ¥;)A; <0,
VAeK,

ij?

¥; and ¢; symmetric, ¢, = 0, [ # i,j}.
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However, it can fairly easily be shown that for ¥ to be in K} * N Z* ¢, must
equal —¢;. Thus,

KXnzk={w:try, (A, - A;) <0,VAEK,,
¥; = —; symmetric, y, = 0, 1 # i, j}.

But then by Lemma 2.3, §; must be n.p.d. which implies the desired result. O

We note that if p = 1, (2.5) is a multiple of an elementary contrast. Thus,
the dual cone, K * is the direct sum spanned by elementary contrasts between
those elements whose subscripts appear in the minimal set G.

The original MLE problem now fits nicely into the dual formulation dis-
cussed in Theorem 2.1 with

1
(2.6) sup Z lnIA | — tr(AiAi)
A€eK ;=1
A; pd.

being the primal problem and

k

n;
(2.7 sup Y —In|y, + ¢/ + A +c*
YeK* i=1 2
Y+ +A, pd.

being the dual problem, where c¢* is the constant given in Lemma 2.1 and does
not depend upon A.

Both problems will have solutions since conditions (i) and (ii) of Theorem
2.1 are satisfied. Of course, there is a strong connection between the solutions
to these two problems. The key in relating these solutions is condition (d) of
Theorem 2.1. As mentioned after the definition of <* in Lemma 2.1, all ¥
such that ¥ + ¥’ is a fixed vector yield the same value of ¢*. Thus, a ¥
which maximizes (2.7) is not unique. However, if ¥ is a solution, the vector
with the ith element being (¢; + /) /2 will yield a unique solution within the
set of vectors of symmetric matrices. It can be shown that the only symmetric
subgradient of —¢ at A is given by

541~ ‘E‘Afl

(2.8) :
np _
A~ 5 A

Thus, by condition (d) of Theorem 2.1, if A solves the primal problem, then
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the unique symmetric solution to the dual problem must be

'?Al—l - EAI
(2.9) V=

ng, . 1

—2——A,z1 - EA'“

Moreover, from Theorem 2.1 the conditions ¥ e K* and LE te(A) =
must also hold. Conversely, if Aisa vector of symmetric p. d matrices in K
such that the ¥ defined in (2.9) satisfies ¥ e K*and Lf_, tr(A,f,) = 0, then
A must be a solution to the primal problem and ¥ must solve the dual
problem.

3. The pairwise problem. The pairwise problem with the single con-
straint A; > A, can be nicely solved in closed form and also serves to illustrate
the relationship between the primal and dual problems. More importantly, as
we will illustrate, it is possible to implement an algorithm based only on the
pairwise problem which is guaranteed to correctly converge to the solution
corresponding to any partial ordering. Although the pairwise problem has been
discussed in other contexts [see Klotz and Putter (1969), Amemiya (1985) and
Anderson, Anderson and Olkin (1986)], we give an easy verification of the
solution which also illustrates the duality aspect. The following procedure
obtains the MLE of A subject to the restriction A; > A,.

1. Choose a nonsingular matrix B which simultaneously diagonalizes S, =
A,/n, and S, = A,/n, [see Rao (1973), page 41] so that
BS,B'=C and BS,B'=D

where C = diag(cy,...,c,) and D = diag(dy,...,d)).
2. Let € and D be dlagona.l matrices with correspondmg ith diagonal ele-
ments

(c;,d;), ife; <d,,
(5i,(ii) = {[nic; + nyd; nic; + nyd; .
‘, , otherwise.
n,+n, n,+n,

3. The MLE’s are then given by
=B'C"'B and A,=B'D'B.

The MLE’s of 3, and 22 subject to 3, < 3, arethen $, = A;! = B-1(B'"!
and 3, = A;! =B DB'". Note, that if no pooling takes place $,=8, as
would be expected From earher discussion we know that if (A, A,)’ solves the
primal problem, then the unique symmetric solution to the dual problem is
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given by
ng . 1 n _
— A1 - -4, —BY(¢-C)B"!
W = 2 2 ] 2
| n, 1 o re H—D\B ! '
_fA-1_ Z —B~ - !
5 Azt 54 5 B )

Note that the ith diagonal elements of n,(C — C) and n2(D D) are both
zero if ¢; < d;. If not, then the ith diagonal element of n(C-0C)is
. nic; + nyd;
ny(é; —¢;) =n, Thi+n,
( nic; + nyd;
—ng| ——2=
n,+n,

= - di) = —ny(d; - d;),

which is the ith diagonal element of — —ny(D - D). Moreover, since D D is
clearly n.n.d., it easily follows that ¥ € K*. Clearly A liesin K and ¥ and A
satlsfy condltlon (d) of Theorem 2.1 by the way W is defined. Thus all that
remains is to show that A and ¥ satisfy condition (c) and, by Theorem 2.1, we
will have proven that A is the solution to the primal problem and ¥ is a
solution to the dual problem. To verify condition (c), note that

k
Y tr(Ad) = % tr{B'¢-1BB-(C - C)B'"Y)
i=1
—tr{B'D'BB~{(D - D)B""}}

1 A .
= 5 r{B'[n.I + nyl = (n,CC + 0, D7'D)| BT}

But inspection shows that n,I + n,I — (n,C~'C + n,D~'D) = 0, which en-
sures the desired result.

4. The general problem. The MLE bears a resemblance to a least
squares-type estimator which is worth exploring. Consider the vector space V
whose elements are £ X 1 vectors of real p X p matrices. An inner product is
placed on V by defining

k
(A,B) = ¥ tr(A}B;) = tr(A'B),

i=1
where A and B are arbitrary elements of V. We let |A[| = (A, A)*/? denote the
standard norm corresponding to { - , - ). The set —K = {B € Z*: B is isotonic

w.r.t. <} is a convex cone in the space V. For comparison with the MLE
problem, we again assume that the n;S; are distributed independently as
Wishart(n;, %) matrices. Now, the solution to

41 in nl/2(s —
(4.1) Jmin_|[n'/%(8 - 3)|

is guaranteed to exist uniquely [Luenbergef (1969), page 51], where n'/2B =
[nY?B,,...,n¥/?B,]. It is well known that the solution to (4.1) is uniquely



MAXIMUM LIKELIHOOD ESTIMATION 861

characterized as the only element X* in —K such that
(4.2) tr{{n(S-=%*)]'S*} =0 and tr{{n(S-32%|T}=20 VIekK
[see Robertson, Wright and Dykstra (1988), page 17]. The MLE of X can be

characterized by analogous properties based upon the duality relationship.

THEOREM 4.1. The MLE of X subject to the constraints that X be isotonic
with respect to < is characterized as the unique element ¥ in —K such that

~

(42) te{[n(S — £)]$) =0 and w{[n(s -$)|T}20 Vrek.

Proor. If £ denotes the MLE, £~ must be the solution to the primal
problem (2.6). Moreover, by condition (d) of Theorem 2.1, %n(ﬁ — S) must
then be a solution to the dual problem (2.7). But, (4.2)" is then just conditions
(c) and (b) of Theorem 2.1. O

In the event that p = 1 so that only variances are involved in the ordering,
(4.2) is equivalent to (4.2)' [Robertson, Wright and Dykstra (1988), page 21]
and the MLE and least squares solutions to (4.1) are identical. While for any p,
the least squares estimator X* has the desirable property that

(4.3) In'2(8 - 2)|| 2 [n'/2(2* - 2)|

if ¥ € —K [Robertson, Wright and Dykstra (1988), Section 1.6], this is not
necessarily true for the MLE £. However, indications are that (4.3) usually
holds for the MLE as well (see Section 5). A condition that will guarantee that
$ is at least as close [in the sense of (4.3)] to X as is S for every value of ¥ in
—K is given in the following theorem.

THEOREM 4.2. If |n'/2S| > |[n/2%||, then |nY/%(S — )| > |In/2E — )|
for every ¥ € —K.

Proor. Note that
Int2(s - 3) I =[nv2(s - £ + £ - 3)[°

=ln2(s - £)|° + 022 - 5)[*
+ 2(n"%(S - £),n"%(% - 3))

> (n%(8 - £),n/28) — (n/%}(S - £),n2%)
+2mV2(S - £),n28) +|n2(8 - )|

= @28 - £), 08 + £)) +[n'2(E - )"

= |In128]* —[n1/28 | + [n'/2(% - E)||2

from which the result easily follows. O



862 dJ. A. CALVIN AND R. L. DYKSTRA

The previous condition can be easily checked if £ can be computed. Thus, if
the norm of n/2S exceeds the norm of n/2%, we are guaranteed that £ is
closer to the true X than is S, even though X is unknown.

THE ALGORITHM FOR THE GENERAL ISOTONIC PROBLEM. The form of the
solution to the dual problem given in (2.7) suggests an algorithm for comput-
ing the solution to the general isotonic problem which depends only upon the
pairwise procedure discussed in Section 3. The key is that the solutions to the
dual pairwise problems can be conceptually combined with the data A,,..., A,
in constructing the MLE’s. Moreover, the primal-dual machinery given in
Theorem 2.1 provides an elegant proof that the proposed procedure must
converge correctly.

Let G ={(,,j,): s=1,...,m} denote a minimal set of pairwise order
restrictions which generate the partial order, where by the sth constraint we
will mean the antitonic constraint A; > A;. The vectors of matrices A™* , Ams
and W™° will represent the data adjusted for past solutions, the prlma]
solution and dual solution associated with the rth iteration and the sth
constraint, respectively. The algorithm can now be stated as follows:

0. Initialize by setting ¥®*=0fors=1,...,m,A*" = A, r=1and s = 1.
1. Let

A = {Ar—l,m + 2\'I‘Ir—1,m _ 2{1‘,7’—1,3, g = 1’
Arsl g ofprs—l _gpr-Ls g5,

Solve the sth pairwise constraint using the pseudodata A™°.

2. Let s=s+ 1.If s <m + 1, then go to 1.

3. Check for convergence. If convergence criterion is not met, set s = 1 and
r=r+ 1and go to 1.

Thus, with each iteration, the data is being updated by the duality relation-
ship suggested by the Fenchel duality theorem. The new A™° is updated from
the previous pseudodata by adding twice the latest dual solution and subtract-
ing twice the previous dual solution to the current constraint. The addition
provides the new pairwise solution and the subtraction allows for the possibil-
ity that because of the other adjustments, the data for the current constraint
may have been overadjusted. One may define convergence either in terms of
the log-likelihood function or in terms of the inner product used for
the dual space. In Section 5, we define convergence to have occurred when
Inl/2(ELm — $-1L.m)|| < 0.1. Clearly, this algorithm only has utility if it con-
verges with reasonabie speed to the MLE. Fortunately, the convergence rates
appear to be quite fast and the primal-dual format leads to an elegant proof of
the convergence.

THEOREM 4.3. The previous algorithm for the solution to the general
isotonic problem converges to the unique MLE and the convergence is mono-
tonic in the log-likelihood function.
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Proor. See the Appendix. O

We have now developed an algorithm for the maximum likelihood estima-
tion of a set of covariance matrices. The concluding section is devoted to
studying the speed of the algorithm and producing the REML estimates from
the data in (1.5). A possible convergence criterion is also given.

5. Multivariate variance components models. As demonstrated in
Section 1, multivariate variance components models for balanced data form a
set of well-used models for analyzing multivariate data [see, additionally,
Dahm, Melton and Fuller (1983) or Gregory, Swiger, Sumption, Koch, Ingalls,
Rowden and Rothlisberger (1966)]. However, rather than discuss the applica-
tion of the previous results to the general multivariate variance component
model, we thought it would be more insightful to demonstrate the results for
two simple models.

5.1. The two-factor random effects model without interaction. The two-
factor model without interaction and its associated sufficient statistics are
given in (1.2) and (1.3). The random matrices A,, Ay, Ay are distributed
Wishart (n, = A - 1, EMS, = 3 + BN3,,), Wishart (nz = B — 1, EMS, =
g+ AN3p), and Wishart (ny;=ABN — A - B + 1, EMS, = 3), respec-
tively. Note that all three Wishart matrices are functions of contrasts of the
data and are location invariant. Thus, estimating 3, ,, 35, and 3; by maximiz-
ing the likelihood associated with the three independent Wishart matrices
produces restricted maximum likelihood (REML) estimates for the multivari-
ate variance components model [see Patterson and Thompson, (1974)].

By defining 3, = EMS;, 3, = EMS; and 3; = EMS, and letting n; be the
appropriate degrees of freedom, it is clear that the random matrices for (1.2)
produce an estimation problem within the framework of the previous sections.
The order restrictions correspond to a simple tree structure and the set of
minimal pairwise orderings is G = {(1, 2), (1, 3)}. It is interesting to note that
for this ordering, each cycle of the general algorithm in Section 4 will yield a
set of estimates which is in the parameter space, but only the limiting value
maximizes the likelihood.

With the use of an iterative estimation procedure, some information about
the speed of convergence is needed before one can be comfortable using the
procedure. A small simulation study was run to determine the number of
cycles needed for convergence for (1.2). Six different sets of covariance matri-
ces (see Table 1) and three sets of model sizes were studied for each model.
With each of the 18 combinations, 1000 independent sets of independent
Wishart matrices were generated and the general isotonic algorithm was used
to estimate the EMS’s under the defined order restriction. The algorithm was
considered to have converged when ||n'/%(Z4™ — 3!=Lm)|| < 0.1. The results
of this study are summarized in Table 2. As can be seen from the table, in
most cases the number of times that the Wishart matrices do not conform to
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TaBLE 1
Covariance patterns Tables 2 and 3

Covariance

pattern DN 3p b
1 021 I 041
2 03I + 0.1J 0 I
3 0.3I + 0.1J I+ 0.5J 0.51 + 0.3J
4 a,, = 0.5 7, =070 1
5 g = O.7|‘>’J| o, = —0,5|f*J| 0, = 0.9l
6 ;= 0.2 0, = 0.1 a,, = 28,_, + 0.94!

Note: I represents the identity matrix, J is a matrix of all ones and & is the indicator function.

the order restriction is quite large. The only time this is not true is when all
three degrees of freedoms are large, so that estimation of the covariance
matrices is quite accurate. The last two columns of the table show that when
the estimators disagree, the REML estimate is nearly always closer to the true
value of the parameters than is S. Note that when A is in the parameter
space, S = £. Thus, ¥ can only be closer when A does not conform to <.

However, Theorem 4.2 is not always a reliable indicator of when that is the
case. More importantly, the distribution of the number of cycles needed for

TaBLE 2
Results from the simulation study of convergence rates for two-factor random effects model without
interaction (1000 independent trials for each model size, covariance pattern combination)

No. of cycles

No. of times
Model si to converge

SIZ€S Covariance A does not 3 closer Theorem 4.2
a b n p pattern conformto < 1 2 3 4ormore than S satisfied

5 53 3 1 558 39 519 0 0 558 310
2 999 0 939 60 0 997 969
3 574 25 547 2 0 570 69
4 736 15 709 12 0 734 351
5 577 11 532 34 0 464 47
6 865 4 693 168 0 864 334
515 1 4 1 875 29 846 0 0 875 489
2 1000 0 417 583 0 1000 962
3 878 10 866 2 0 852 82
4 909 3 776 130 0 908 362
5 764 13 586 165 0 586 56
6 967 3 575 389 0 956 329
20 20 1 5 1 2 0 2 0 0 2 0
2 1000 0 1000 O 0 1000 1000
3 1 0 1 0 0 1 0
4 1 1 3 0 0 4 1
5 43 2 41 0 0 42 5
6 31 0 31 o0 0 31 1
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convergence is such that all sets of data allowed convergence in less than five
cycles. Thus, the general isotonic algorithm is a viable estimation procedure
for this model.

5.2. The two-factor random effects nested model. The second model we
consider is the two-factor random effects nested model, which is the model
proposed for the data from Calvin and Sedransk (1991). The set of sufficient
statistics for the model [see (1.4)] is {Y.., A,, A, Az} where Y... is the grand
mean and A,, Ap and A are the standard sums-of-squares and cross-
products matrices. The random matrices A,, Ay, Ay are distributed
Wishart (ny=A -1, EMS, =35+ N3%p+ BN3,), Wishart (nz=A(B - 1),
EMSp =35+ N3p) and Wishart (n; = AB(N — 1), EMSy = 35), respec-
tively. The order restriction corresponds to a simple linear ordering where
3, = EMS, 3, = EMS; and 3, = EMS, and G = {(1,2),(2,3)}. A study of
the convergence rate for this model was also performed. The simulation
procedure used for (1.2) was also used for (1.4) and the 1esults are in Table 3.
Again the results show that a large proportion of the Wishart matrices do not
conform to the order restriction and the general isotonic algorithm generally
converges in a small number of cycles. Thus, it appears that the isotonic
procedure provides a computationally inexpensive procedure for accurately
computing restricted maximum likelihood estimates of covariance matrices in
the multivariate variance component model setting.

TABLE 3
Results from the simulation study of convergence rates for two-factor random effects nested model
(1000 independent trials for each model size, covariance pattern combination)

No. of cycles
to converge

Model si No. of times
0aelSIZ€S Cgvariance A does not Y closer Theorem 4.2
a b n p pattern conformto < 1 2 3 4ormore than S satisfied

5 5 3 3 1 947 2 945 O 0 943 822
2 995 2 570 422 1 991 945
3 939 2 937 0 0 902 577
4 805 8 733 63 1 764 204
5 897 4 825 60 8 851 441
6 905 5 664 194 42 904 588
10 5 2 4 1 976 1 975 0 0 976 891
2 1000 0 656 344 0 1000 993
3 914 2 912 0 0 899 436
4 757 24 658 175 0 742 181
5 864 6 784 174 0 842 362
6 933 2 615 270 46 933 574
20 20 2 5 1 126 4 122 0 0 126 96
2 1000 0 1000 O 0 1000 1000
3 39 0 39 o0 0 39 1
4 7 0 7 0 0 7 4
5 128 8 120 0 0 128 23
6 32 1 31 O 0 32 14
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5.3. Analysis of the sample data from Section 1. Display (1.5) contains
three mean square matrices from a two-factor random effects nested model
which do not fall in the parameter space. These matrices were used to
construct the A vector and along with the appropriate degrees of freedom
df, = 6, df 5 = 7, df ; = 14) were used as input to the algorithm in Section 4.
The resulting REML estimates of the covariance matrices are

s :[512.24 343.25] s _[58.76  66.96
47 34325 230.01 5~ 66.96 449.96

3 - 255.57 47.96]
E 4796 63.49]

The major adjustment is to the diagonal of 3 4. We also note that since the
initial estimates were not in the parameter space, the REML estimates are on
a boundary and the rank of X, is one.

APPENDIX

ProoF oF THEOREM 4.3. Let us first show the monotonicity property
LRI~ ALY > f(ABT AT > o > Z(ABT, AB ™)
> /(Al+1’l Al+1,1) >

Recall the relationship 2Whi = n$t/ — AbJ; or equivalently, AL/ + 2¥h/ =
nt/ = nAb/7. Now, note that if j > 1 and K; is the cone in V N Z* where
the jth constraint is satisfied,

(AT, AVT) = sup /(A,AYY) = — sup /*(W,AYY)
A€K, YeK}

— sup Z—ln|A”+2¢//|+c*
YeKrxi=1

= — sup Z lnlAlJ Uy 2gbi=t — 2@}~ b + 2] + e
YeKr*i=1

=y . o .
- '21 ?L In| AL7=1 +' 241771 + ¢*  (since W™/ € K¥)
i

— _/*(\i,l,j—l,Al,j—l) = — sup /*(\F’Al,j—l)
YeK}x

IA

sup Z(A,AHI"1) = £(AI1 ALY,
A€K,_,

The case for j = 1 works similarly. Thus, the convergence is guaranteed to be
monotone in the log-likelihood, which will hopefully lead to quick convergence.
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Now, to prove convergence, consider a maximal index for the antitonic cone,
say i,. That is, (iy, j,) € G for some j,, but (j,i,) € G for any j. Then one
must have zplOJ <A, (in the Lowner sense), otherwise W'/ would not solve
the dual problem. In a similar fashion, one can argue that all the W '/ are
uniformly bounded in the Lowner sense, which implies that all the elements of
the z//l '/ are uniformly bounded. From this, it easily follows that all the
elements of the A%/ and El J are also uniformly bounded. Finally, note that
(AP AbY) s bounded below, or equivalently that ¢ *(¥’/ A7) is bounded
above. This easily follows since In|A,| is bounded above, if all elements of A,
are bounded.

From this, one can argue that if {,} is any subsequence of positive integers,
then there exists a subsubsequence {/,} such that

Wiwni > Wi and Wb — Wl 50 asl, —
for some vector of matrices, ¥/, j = 1,..., m. Now, since
n¥b/ = A+ 2Whl 4+ 2Wh2 4 o 4 2WhI 4 2oLt L ol

it follows that

nfii —n$hem 50 asl, > oV,
However, £+ is in —-K; and

n¥iJ 5 A+ 2¥l + - +2¥” =nf, Vj,
so that £ e N7, — K; = —K, since the K; are closed. Thus, A=3%1eKk.
Similarly,
m m
= Z Z ‘\Illh”j e K*’

by closure properties. Finally, note that
0 = tr((Wiw I YA I) - tr((¥/)A),
so that

= f‘, tr((W/)A) = tr(( f‘, ‘Fj)x) = tr(¥'A).
s i

Since nA-'=n¥=A +2r W =A+ 2%, —-W¥ is a subgradient of
—<(A,A) at the point A (see 2.8). Thus all four conditions of Theorem 2.1
hold for A and ¥ and we know that A must solve the primal problem and ¥
must solve the dual problem. The solution A is unique by the strict concavity
of the objective function in the appropriate region. While the solution to the
dual problem is not unique, ¥ is the unique vector of symmetric matrices
which solves the dual problem. Moreover, since every subsequence of {A-7}
contains a sub-subsequence converging to A, the sequence {A>/} must con-
verge to A.O
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