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the modified basis function are not understood. Do they approximate with the
same power as linear splines? Surely they not do as well as quadratic ones. My
next remark relates to the basis functions being used. As noted in Section 3.9,
the one-sided truncated power basis is well known to be very badly conditioned
whereas the classical B-splines are very well-conditioned. Why not use the
latter? Updating might even be easier.

The idea of simplifying the model by removing knots (recombining pieces)
strikes me as very important. This idea has recently been discovered by
approximation theorists in connection with general spline fitting. The papers
[8]-[10] are representative.
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114 DISCUSSION

(especially Patricia Smith). The tactics of MARS are specific to least-squares
estimation of a regression function, but the general strategy is much more
widely applicable.

In Algorithm 2, the residual sum of squares could be used for LOF. This
would allow the entering of new basis functions to be broken up into two steps:
decide which basis function next to enter into the model; enter the selected
basis function. Using the “¢ to enter” algorithm from stepwise regression
would then eliminate the need to fit the various candidate models in the course
of determining the next basis function to enter.

Algorithm 3 could be divided into three tasks: decide which basis function
next to remove from the model; remove the selected basis function; determine
the final model. In the first two of these steps, the residual sum of squares
could be used for LOF. Using the “¢ to remove” algorithm would then
eliminate the need to fit the various candidate models in the course of
determining the next basis function to remove.

With these changes, MARS could be extended to handle logistic regression
in a more natural manner. The “¢ to enter” step in Algorithm 2 could be
replaced by an algorithm based on Rao’s score test and the “¢ to remove” step
in Algorithm 3 could be replaced by an algorithm based on Wald’s test. The
actual maximum likelihood fitting (based, say, on the Newton-Raphson algo-
rithm and taking advantage of the concavity of the log-likelihood function)
would be applied M, . times in Algorithm 2, once after each application of the
score test and M, . times in Algorithm 3. The final model selection could be
based on a variant of AIC, modified along the lines of (32).

Consider now the estimation of an unknown density or probability function
f on a set 2. In order to guarantee positivity, we can model log(f) as a
member of some adaptively selected space . that does not contain the
constant functions. Letting B,,..., By be a basis of ./, we can write the
estimate of f as f = exp(T,0, H, — c(8)), where 8 = (8,,...,0,)" and c(8) is
the normalizing constant. This has the form of an exponential family. If 2'= R
and the functions in .~ have linear tails, then f has exponential tails. The
selection of . could be done by applying the general strategy of MARS.
Ignoring the model selection, we can choose 6 by maximum likelihood. The
asymptotic theory of such estimates, with % a compact interval in R and
B,,..., B consisting of B-splines and without model selection, has been
treated in Stone (1990). The numerical behavior of such estimates, modified to
incorporate stepwise knot deletion based on Wald’s test and a variant of AIC,
is studied in Kooperberg and Stone (1990).

Consider next a random pair (X,Y), where X is an n-dimensional random
vector and Y is a %4valued random variable. Let f(y|x) denote the conditional
density or probability function of Y given that X = x. Consider an estimate
f(ylx) of the form F(ylx) = exp(T ,6,(x)B,(y) — c(8(x))), where B,,..., Bg
are suitable basis functions of a possibly adaptively selected space . of
functions on %. [The functions in . should be piecewise linear for c¢(-) to be
computed rapidly.] We could model 6,(-),...,0,(:) in turn as members of
possibly adaptively selected spaces %), ..., #%, respectively. Letting Hj,
1 <j <dJ,, be a basis of #,, we can write 6,(x) = h,(x;B,) = L B, H;,(x).
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This leads to an estimate of f(y|x) having the form
(O Fol) = e T T AuHu0B(5) - cbixiB))).  ye 2,
Eoj .

where B is the JK-tuple consisting of B 1 <k <Kand1l<j<d,insome
order. This estimate has the form of a multiparameter exponential family, so
the corresponding log-likelihood function is again concave. The asymptotic
theory of such estimates, with 2 a compact interval in R, #; = --- = H#%
and bases consisting of B-splines and without model selection, has been
treated in Stone (1989). It remains to investigate the numerical behavior of
such estimates, especially as modified to incorporate the strategy of MARS.
Perhaps the resulting technology should be referred to as multivariate adap-
tive response splines (MARES).

Suppose, in particular, that 2= {0,1}. Then we can let . be the one-
dimensional space having basis B,(y) =y. In this context, (1) reduces to
logistic regression. Similarly, by letting %/ be a finite set of size 3 or more, we
can apply the strategy of MARS to the polytomous extension of logistic
regression. ,

The more general setup given by (1) allows for the estimation of the
conditional variance and conditional quantiles of an arbitrary random variable
Y given X as well as estimation of the conditional mean of Y given X, which is
treated in the present paper.

The general strategy of MARS is also applicable to time series.
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