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This article reviews a set of key developments in nonparametric function
estimation, many of them due in part or in large to Professor Friedman, which
have radically changed the scope of modern statistics. MARS is an impressive
addition to this set. There is a growing practical interest in innovative adaptive
function estimation techniques. For example, I am aware of the need for
sophisticated covariate adjustment in connection with survival analysis of a
large clinical trail, where N = 27,000 and n > 200; the thought of sending
these data to MARS for analysis will have undoubted appeal!

1. General comments. With any adaptive regression technique, it is of
interest to know the kinds of functions which cause greatest difficulty. MARS
is coordinate-sensitive. A rotation of the coordinate axes in the examples in
Sections 4.2 and 4.3 will destroy the simple additive and low-order interactive
structure. Will this substantially degrade the performance (ISE) of MARS?
Perhaps the effect could be ameliorated by allowing linear combination splits
in the algorithm. A natural set of split coordinates would be those obtained by
successive orthogonally restricted regression of residuals r at the Mth order
model on the covariates: The linear combination ¢, determining the first split
coordinate solves the least-squares regression of r on covariates, the linear
combination c, determining the second split coordinate solves the least-squares
regression of r on covariates but subject to the orthogonality constraint
csc; = 0 and so on. The relevant formulas are available in Seber ([4], pages
84-85). Algorithm 2 only requires a minor change to incorporate consideration
of linear combination splits. Obviously it would no longer make sense to have a
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constraint on the order of interaction 2 < K,,, but it would perhaps be natural
to put a constraint on the number of split coordinates to be examined. The
rapid updating formulae in equation (52) does not apply but for split coordi-
nate and knot optimization it should be adequate to compute the lack of fit in
the innermost loop of Algorithm 2 by leaving a;, ay,...,a,_; provisionally
fixed and minimizing only over a, and a, . ;. Optimal coefficients can be
evaluated after completing the inner loop.

With a modification of this type and with more elaborate function estima-
tion algorithms, the problem arises of how to interpret /visualize the nonpara-
metric regression surface f. The output will not be a simple sum of first,
second and higher order interaction terms, so the attractive decomposition in
equation (24) will not be available. However, numerical integration can of
course be used to obtain a decomposition in terms of variables of interest. For
example, if the x-variables are split as x = (x,, x,), then

fA(x) =f1(x1) +f2(x2) +fA12(x1ax2)’

where fy(x;) = Jx, f(x) dx, fz(xz) =Ll f(x) = fxldx and fiy(x;, x5) =
f(x) = fix;) — fo(xy). The percent variance explained by these orthogonal
components would be of interest.

A further visualization tool, focusing on isolating local collinearity-type
effects, could be obtained by applying multivariate statistical density explo-
ration procedures, such as clustering and principal component projections, to
the x-distribution associated with specified levels of f. For example, the
analysis of the distribution of x-values for which a < f(x) <b would be of
interest. Function visualization is an area where there is a growing need for
better statistical tools.

The MARS algorithm offers considerable power particularly in situations
where there are additive low-order nonlinear interactions. One of the motiva-
tions for MARS given in the paper is dissatisfaction with the lack of continuity
in CART. I will finish by briefly describing an alternative continuous modifica-
tion to CART which retains some of its algorithmic and interpretative simplic-
ity.

2. Smoothed CART by finite elements. The CART model in (17) is
represented as

. M
f(x) = X a,B,(x),
m=1

where B,, =1, the indicator function for an n-dimensional rectangular
region R,,. Replace the indicator function by a smooth element I, (x,s) > 0
whose support is allowed to extend beyond R,, and define a smoothed CART
model by

M
f(x;s) = L apnByu(x;s).
m=1
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Here B, (x;s) is forced to satisfy a local partition of unity by setting

B (r:s) = I (x38)
m(x,s),—m,

so LM _(B,(x;s) = 1. I require that I,(x,s) > 0 for x € R,,. I have intro-
duced a parameter s which gives control over smoothness. Models of the
previous form connect with mixture models used in the interpretation of
multichannel image data; see Smith [5], Choi, Haynor and Kim [1] and
O’Sullivan [2], for example.

Laplacian finite elements based on triangular grids have been extensively
analyzed in the approximation theory literature; see the references in
Schumaker [3]. With the rectangular grids of CART, a reasonable choice for
I(x; s) is defined by tensor products of coordinate functions.

n
Im(x;s) = qwmj(xj;s)’
j=

where w,, (x;;s) is a smooth nonnegative function whose support for s > 0
will extend beyond the projection of R,, onto the jth coordinate. Specifically,
suppose the set of split points on the _]th variable are t‘k) fork=1,2,...,K;
and the projection of R, is [¢{*=), {{*»*D) Then w,, ( s) can be a B-sphne
basis element, of any spe01ﬁed order supported ont [tjk m LD, glkm+1+IsD] A
[£V, #$%7]. Here [s] is the closest integer to s. If we use cubic order elements,
then f will have continuous second-order mixed partial derivatives.

The smoothed version of CART, call it SCART (‘“‘scairt” is the Irish word
for a bush or bushy place!), is easily computed. Let 0 < p < 1 be given. The
algorithm applies partitioning and pruning as in CART with a couple of minor
modifications: (i) For M fixed, the tree predictions are f(:;s) with s = pK;
and the coefficients a,, optimized by least squares (likelihood can also be
used). (ii) At stage M, the selection of the potential split point for R, is done
to improve the local fit. Thus if r are the residuals from the Mth order model,
then the algorithm just applies the CART splitting rule to components of these
residuals lying in R,,. The local support of I,,(x; s) must be exploited for rapid
computation of f. Cross-validation is used to compare trees for different
values of p. A preliminary least squares version of SCART with piecewise
linear elements was developed and applied to some of the examples in the
paper—those used to compute Tables 4, 7, 9 and 11. The ISE was evaluated
and compared to that achieved by MARS. MARS is a clear winner for the
additive model in equation (56) and the additive model with the single low-order
interaction in equation (61). For example, with N = 200, the ISE obtained by
SCART was on the order of 0.17 so MARS is 90% better here. SCART wins on
the, alternating current impedance example in equation (63a) with a 50% or
better improvement in the ISE at all sample sizes. A smaller improvement
between 10-30% is achieved by SCART on phase angle data in equation (63b).
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I suppose the message here is that no single adaptive regression technique
can perform uniformly best on all examples, which echoes the point made by
Professor Friedman in Section 2.
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I like MARS. It looks like a good tool for pulling out the most useful parts of
large interaction spaces. Most of my comments are directed at accounting
issues: How many degrees of freedom are used in knot selection? How can the
cost be lowered? At the end, there are some comments on how one might apply
MARS to models for which fast updating is not available.

My main interest in MARS stems from work in computer experiments. In
these applications, smooth functions of fairly high complexity are evaluated
over high dimensional domains with no sampling error. I plan to use MARS on
such functions evaluated over Latin hypercube designs [McKay, Conover and
Beckman (1979)]. Some theory for linear modeling of nonrandom responses
over such designs is given in Owen (1990).

When there is no noise, one expects that a larger number of knots might be
warranted. It then becomes worthwhile to lower the price of a knot somehow.

Degrees of freedom in broken line regression. Consider the broken
line regression model

(1) Y, =by+bit;+B(t;, —0), +¢, i=1,...,n,

where ¢, <t, < -+ <t, are nonrandom with Y ¢, = 0 and L ¢? = no?, ¢, are
independent N(0, 1) and b, b,, B and 6 are parameters. Taking B8 = 0 in (1)
yields a one-segment model. Taking 8 # 0 and ¢, < 8 < ¢, yields a two-seg-
ment model. This model has been studied by Feder (1967), Hinkley (1969),



