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Let (X, Z,),(X,, Zy),...,(X,, Z,) be iid as (X, Z), Z taking values in
RY, and for 0 <p <1, let £,(x) denote the conditional p-quantile of Z
given X =x, ie., P(Z < £,(x)|X = x) = p. In this paper, kernel and near-
est-neighbor estimators of ¢,(x) are proposed. In order to study the
asymptotics of these estimates, Bahadur-type representations of the sample
conditional quantiles are obtained. These representations are used to exam-
ine the important issue of choosing the smoothing parameter by a local
approach (for a fixed x) based on weak convergence of these estimators
with varying % in the k-nearest-neighbor method and with varying A in
the kernel method with bandwidth %. These weak convergence results lead
to asymptotic linear models which motivate certain estimators.

1. Introduction. Let (X, Z,),(X,, Z,),... be two-dimensional random
vectors which are iid as (X,Z), and for 0 <p <1, let £,(x) denote the
conditional p-quantile of Z given X = x. We consider the problem of estimat-
ing ¢,(x) from the data (X, Z)),...,(X,,Z,), and study the asymptotic
properties of the kernel and nearest-neighbor (NN) estimators as n — «.

Usefulness of conditional quantile functions as good descriptive statistics
has been discussed by Hogg (1975) who calls them percentile regression lines.
The problem of conditional quantile estimation has been investigated by
Bhattacharya (1963) following the fractile approach, and is also included in the
general scheme of nonparametric regression considered by Stone (1977). More
recently asymptotic normality of estimators of conditional quantiles has been
proved by Cheng (1983), who considered kernel estimators in the fixed design
case, and by Stute (1986), who considered NN-type estimators in the random
design case. However, both of these authors took the bandwidth %4, to be
O(n~1/3) which kept the bias smaller than the random error by an order of
magnitude, and thereby made the rate of convergence slower than optimal.

In this paper, we obtain Bahadur-type representations [Bahadur (1966)] of
NN and kernel estimators of conditional quantiles in order to study their
asymptotics (Theorems N1 and K1). Bias terms show up in these representa-
tions because of our choice of k& =k, = O(n*/®) in the kE-NN method and
h =h, = O0(n"1/5) in the kernel method (with uniform kernel), for the pur-
pose of achieving optimum balance between bias and random error. Using
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these representations, we prove weak convergence results (Theorems N2 and
K2) for the NN estimators with n~*/5k varying over [a, b], 0 < a < b, and for
kernel estimators with n'/®h varying similarly. The results are analogous to
the one obtained by Bhattacharya and Mack (1987) for NN regression estima-
tors with varying %2 and lead to asymptotic models similar to theirs. The
conditional quantile appears as a parameter in these models along with
another parameter which governs the bias. Consideration of best linear unbi-
ased estimators in these models provides a different approach to the choice of
smoothing parameters.

2. The main results. For the random vector (X, Z), let f denote the pdf
of X and g(-|x) the conditional pdf of Z given X = x, with corresponding
conditional cdf G(-|x). We want to estimate £,(x,), the conditional p-quantile
of Z given X = x,. Since p € (0,1) and x, will remain fixed throughout our
discussion, we shall write £,(x,) = £.

The following regularity conditions are assumed.

1. (@) f(x,) > 0.
(b) f"(x) exists in a neighborhood of x,, and there exist ¢ > 0 and A < »
such that |x — xo| < ¢ implies |f"(x) — f"(xy) < Alx — x|
2. (a) g(&|xy) > 0, where G(¢|x,) = p.
(b) The partial derivatives g,(z|x) and g,,(z|x) of g(z|x) and G, (z|x) of
G(z|x) exist in a neighborhood of (x,, £), and there exist ¢ > 0 and
A < o such that |x — x| < ¢ and |z — ¢| < ¢ together imply

lg.(2lx)| <A, |g.(zlxe)| <A,  |g..(2lx0)| <A,
|gxx(z|x) - gxx(zle)I < Alx - xOI’ IGxx(zlx) - Gxx(zle)l < Alx - xOI‘
By condition 2, ¢ is uniquely defined by G(¢|x,) = p.
Now let {(X,,Z,), i = 1,2,...} be iid as (X, Z), and let Y, = |X;, — X,|, so
that {(Y}, Z)), i = 1,2,...} are iid as (Y = |X — x|, Z) with the pdf fy of Y,

the conditional pdf g*(-|y) of Z given Y = y and the corresponding conditional
cdf G*(-|y) given by

fr(y) =f(xo +5) +f(x - ¥),
(1) g*(zly) = [f(xo +¥)g(2lxo + ¥) + (%o — ¥)&(2lxo = ¥)] /¥ (),
G*(zly) = [ f(xo +¥)G(2lxo +y) + f(xo = ¥)G (2l = ¥)] /fr(¥).
Note that
8%(210) = g(zlxo) = g(2),  G*(2/0) = G(zlx,) = G(2).

Here and in what follows, we write g(z|x,) = g(2) and G(z|x,) = G(z) for
simplicity.

Let Y,; < -+ <Y, denote the order statistics and Z,,,..., Z,, the in-
duced order statistics of (Y, Z)),...,(Y,,Z,), ie, Z,,=Z, if Y,, =Y,. For
any positive integer £ < n, the k-NN empirical cdf of Z (with respect to x,) is
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now defined as

(2) Goi(2) = k7! ka.: W(Z,; <z),

i=1

where 1(S) denotes the indicator of the event S. The £-NN estimator of ¢ can
now be expressed as the p-quantile of G, i.e.,

£, » = the [ kp]th order statistic of Z,,,,..., Z,,
= inf{z: Gu(2) > [kp]/R).

The kernel estimator of ¢ with uniform kernel and bandwidth 2 can also be
expressed in the same manner, viz.,

énh = inf{z: énKn(h)(z) 2 [Kn(h)p]/Kn(h)}’

(3)

@ K, (h) = ¥ 1(Y, < h/2) = nfy (h/2),

i=1

ﬁ'y,n being the empirical cdf of Yj,...,Y,. The kernel estimators are thus
related to the NN estimators by

(5) gnh = énKn(h)’

where K ,(h) is the random integer given by (4).

We now state our main results in the following two theorems of which
Theorem N1 gives a Bahadur-type representation for the £2-NN estimator ¢,,
of ¢ with & lying in

I(a,b) ={k:ky=[n*%a] <k <[n*%b] =%k}, 0<a<b,

and Theorem K1 gives a corresponding representation for the kernel estimator

~

£, with h lying in
J(c,d) =[n"5%,n"%d], 0<c<d.

THEOREM N1.

A

k
b —E=B(E)(k/n) + (kg(&)} "L [U(Zx>¢) - (1-p)] + R,
i=1

where
B(€) = — [ f(%0)Gur(£lxo) + 2 (20) G, (£1%)] /{24 F3(x0) £(£)},
Zx =G ' G*Z,Y,;), l<i<n,n>1,
and

max |R,,|=0(n"3%logn), a.s.
kel(a,b)
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TueoreMm K1.

En — €= B(&) F2(xo) % + {[nhf(x0)]g(£)) "
[rhf(x0)]
X '2—11 [I(Z:i >¢)-(1 _P)] + R},

where B(¢) and Z ¥, are as in Theorem N1, and

12
sup |R*|=0(n"3%5logn), a.s.
nh
hed,(c,d)

REMARKS.
1. Let &= o{Y},Y,, ...} denote the o-field of Y;,Y,,... .Then Z,,,...,Z

are conditionally independent given &/, with Z,; having conditional c?ﬁ'
G*(-|Y,;), as shown by Bhattacharya (1974). Hence G*(Z,,|Y,,), 1 <i <n,

are conditionally independent and uniform (0, 1) given 7, and therefore,
P[Z} <z,1<i<n]=EP[GXZ,]Y,;) <G(z),1<ix<n|]

= .lle(zi)'

Thus for each n, Z*,...,Z*, are iid with cdf G. Since G(¢) = p, it follows
that for each n, the summands 1(Z* > ¢) — (1 — p) in the above representa-
tions are independent random variables with mean 0 and variance p(1 — p).

2. The remainder terms in both theorems are O(n~3/% log n), a.s. In Theo-
rem N1, this corresponds to O(k~3/4log k) with 2 = O(n*/®), as one would
expect. The same explanation applies to Theorem K1, because [nhf(x,)] =
0O(n*®) for h = O(n=1/5),

3. Weaker versions of the above theorems were proved by Gangopadhyay
(1987). His remainder terms were o(n~?/?), a.s. in Theorem N1 and o,(n~?/%)
in Theorem K1.

3. Weak convergence properties of NN estimators with varying &
and kernel estimators with varying bandwidth. Consider the stochastic
processes {£,,,, k € I,(a, b)} and {¢,,, h € J,(c,d)}. The two theorems in this
section describe the weak convergence properties of suitably normalized ver-
sions of these processes, as n — ». The symbol — , indicates convergence in
distribution, i.e., weak convergence of the distributions of the stochastic
processes (or random vectors) under consideration and { B(¢), ¢ > 0} denotes a
standard Brownian motion.

TueoREM N2. Let T,(t) = £, 45, Then for any 0 <a < b,
{(n?®[T,(t) — &] —Bt%, a <t <b} > {0t 'B(t),a <t < b},
where B = B(¢) given in Theorem N1 and o2 = p(1 — p)/g%(¢).
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Proor. In the representation for én x given in Theorem N1, take %k =
[n*/5t] = n*/5t + £,(t) with 0 <¢,(t) < 1. After a little rearrangement of
terms, this leads to

2/5 2 _ p(1-p) ~1,-2/5 (ne ] >
n??[T,(¢) — £] - B(£)t* = @ Z i+ X R, (1),
Jj=1
where
(6) | W, - W(Zx>¢) -(1-p) l<icn,

Vp(1 - p) ’

are iid with mean 0 and variance 1 for each » in view of Remark 1. However, it
can be shown easily that Z 1R, () =0,(1). We thus have, with o=

Vp(1 - p) /8(§),
[n4/5t]
n?5[T(t) — €] — B(€)t2 =ot™n™2%/5 Z W, +0,(1)

uniformly in @ <¢ <b. Now use Theorq‘nsx 1, page 452 of Gikhman and
Skorokhod (1969) to see that {n‘2/5Z["/”Wm, a<t<b) - ,H{B®), a<
t < b}. This proves the theorem. O

In the kernel case, we can use a similar approach to establish the following
theorem.

TueorREM K2. Let S, (¢) = £, ,-us,. Then for any 0 < ¢ < d,
(n?P[8,(¢) — €] —yt?, e <t <d} - ,{rt7'B(t),c <t <d},
where y = Bf%(x,) and 7 = o/ /f(x,), with B and o as in Theorem N2.

REMARK. The uniformity of the order of magnitude of the remainder terms
in Theorems N1 and K1 was crucial in proving Theorems N2 and K2.

From Theorems N2 and K2, it follows that n%°[T(¢) — £] -,
N(Bt%, o%t Y and n?/5[S,(t) — £]1 >, N(yt% 72 ¢t~ 1) for each ¢, where N(u, 0?)
denotes a Gaussian r.v. with mean u and variance o2. Hence the asymptotic
mean-squared errors (AMSE) of T (¢) is n=%/5(8%t* + o%¢t~1), which is mini-
mized at ¢ = {02/(48%)}'/® and the AMSE of S,(¢) is n™%%(y2%t* + 72t71),
which is minimized at ¢35 = {72/(4y?)}'/°. However, these optimum ¢} and ¢}
involve unknown quantities involving the marginal distribution of X and the
conditional distribution of Z given X = x,. Although one could attempt to use
consistent (but possibly nonoptimal) estimates of B8, 02, y and 72 to approxi-
mate ¢t and ¢ in the spirit of Woodroofe (1970) and Krleger and Pickands
(1981), we shall take another approach in the next section by considering
linear combinations of k-NN estimators with varying & and kernel estimators
with varying bandwidth.
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_ 4. Asymptotic linear models and linear combinations of énk and
£,,- Neglect the remainder term in Theorem N1 to obtain the following
asymptotic linear model for {£,,, ko < k < & }:

(7) Ep=€+(k/n)°B+0b,,, ko<k<k,

where B and o are as in Theorem N2 and

k
Ank = k_l Z Wni’
1

in which W ;, 1 < i < n, are the iid r.v.’s with mean 0 and variance 1 given by
(6). Hence
E(A,;,) =0, Cov(A,;,A,,)=min(j ' k")
Due to the covariance structure of {A,,}, we have that
enn = (R(E+ D} %A1 A0}, ko<k<k -1,
€nk, = (k1)1/2Ank1

(7a)

are mutually uncorrelated with mean 0 and variance 1. This is exactly like the
asymptotic linear model for .-NN regression obtained by Bhattacharya and
Mack (1987). Following their approach, we take normalized differences in (7a)
to get

Vi = {k(k + 1)}1/2($nk+1 - gnk)
= u B+ (&) p(L-p)] e,  kosk<k -1,
Vnkl = (kl)l/zgnkl

= (B)Y%E+ uy B + (8(€) ' [p(1 = P ey

(7b)

where
u,, = [k(k+ D)2 2k +1)n"2% ky<k<k -1,
Uy, = kY2072,

(7c)

So, the BLUE (best linear unbiased estimator) of ¢ in the asymptotic linear
model given by (7a), (7b) and (7c¢) is

§A= gnkl - é(k1/n)2,

where

k-1 e -1
B = { ) uik} [Z UpiVor |-

k=kg k=kq

Using Theorem N2 and arguing in exactly the same way as in Bhattacharya
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and Mack (1987), the asymptotic distribution of the BLUE of ¢ is obtained as

n?5(€ — &) » ,N(0,0%(A + 1)b™1), = (5/4)[1 - (a/®)°] .

On the other hand, let [n*/%¢*] denote the optimum number of NN’s. Then the
ARE of ¢ with respect to ¢ (based on a comparison of asymptotic mean-squared
errors) is
(5/4)b(A +1)"'(48%/02)""".

It should be noted that we can choose b sufficiently large for any (a/b) < 1 to
make ARE’s arbitrarily large. However, due to practical limitation imposed by
k; = [n*/°b] < n, the choice of b is restricted by a finite quantity for any given
sample size.

The kernel estimators £, with n~/%c < h < n~1/5d also satisfy an asymp-
totic linear model similar to (7). For this, first neglect the remainder term in
Theorem K1 to obtain

(8) gnh = f + ﬁfz(xO)h2 + O'An,[nhf(xo)]’ h e Jn(c: d))

where B, o and A, are as in (7). In this model, the indexing parameter 4 is
continuous, but can be discretized by letting m, = [n*°cf(x,)], m, =
[n4/5df(x0)] and h(m) = m/{nf(x,)} for m = my, my+1,...,m,. Then

(9) fnh fnh(m) g + (m/n) ﬁ + O-A

for h(m) <h <h(m + 1) and my < m < m,. The asymptotics of the linear
combinations of £,, given by (9) are, therefore, essentially the same as in the
model given by (7). The details are as in Gangopadhyay (1987).

5. Proof of Theorem N1: Preliminary lemmas. The k-NN estimator
£,, of ¢ is the p-quantile of the empirical cdf G, of Z,,...,2Z,,, which are
conditionally independent with Z,, having conditional cdf G*(-|Y,;). It is,
therefore, natural to think of £,, as an estimator of the p- -quantile &,, of the
random cdf £~ 'L% G*(-|Y,,). The dlscrepancy between this random cdf and
the cdf G*(-|0) = G( ) of whlch £ is the p-quantile, is going to give rise to a
bias in addition to the random error in estimating ¢,, by §nk To facilitate the
examination of this bias and the random error, we introduce some notation.
Let

g*( 1Y) = g.:(+), G/*(.lyni) =G,("),

k k
(10) Bu() =TS 8u(), Gul) =R E G,

Then &,,, which is the target of én & is given by
(11) Goi(€nr) =P = G(£).

To examine the asymptotic properties of £,, — £, pand &, k —¢fork €1(a,b),
we now analyze the corresponding properties of G,,(:) — G,,() and G, k( ) —
G().
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Note that the Lemma 1 (stated below) implies that the order statistics
0<Y, < - <Y, s, are of the order of n~'/°. Consequently, for k €
I,(a,b), it should be possible to approximate the pdf’s g,, and the cdf’s G,,
defined in (10), by the first few terms of their expansions in powers of Y, ;,
i < [n*/%b]. To this end, we have the following lemmas.

LEmMMA 1. For B > b/f(x,) and for sufficiently large n,

P[Yn,[n4/5b] > n_1/5B] < exp[—2n3/5{Bf(x0) - b}2].

Proor. This is proved in Bhattacharya and Mack (1987). O

LEMMA 2. k71X %4Y2 = {12 f%(xy)} (k/n)* + R,,,, where

max |R,,|=0(n"%%), a.s.

& <[n?/%b]
Proor. Let0 < U, < --- <U,, <1 denote the order statistics of a ran-
dom sample of size n from uniform (0, 1). Then it follows easily that
(12) FE YA = (2£(50)) R U2 + Rys(D)
1 1
and

k k
LY U2 =k"1Y (i/n)® + R,,(2)
(13) 1 1

= (1/3)(k/n)* + R,,(3) + R,4(2).

By the law of iterated logarithm [see Csérgé and Révész (1981), page 157], it
can be shown that

max |R,,(2)] =0(n‘7/1°\/loglogn), a.s.,

k<[n?/5p]

and it is easy to show that max, (R ,,(1)| = O(n~*®), as. and
max, 455 R ,4(8)] = O(n~%?), a.s. Thus combining (12) and (13) the lemma
is proved. O

LemMMA 3. The following expansions hold for the conditional pdf g*(z|y)
and the conditional cdf G*(z|y):

g*(z2ly) = g(2) + p%a(2) +y°r(y,2),
G*(zly) = G(2) + 37°Q(2) +y°R(y,2),
where
g(2z) =g(zlxy), G(z) = G(zlx,),
q(2) = g..(21%0) + 2f'(x0)8.(2lx0) /F(%0),
Q(2) = G (2lxy) + 2f'(x0)G(2lxo) /f(x0),
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and there exist ¢ > 0 and M < = such that |q(2)|, |Q(2)|, |r(y, 2)| and |R(y, 2)|
are all bounded by M for 0 <y <eand |z — ¢| <.

Proor. The expansions for g*(z|y) and G*(z|y) follow easily by expanding
f(xy £ ), g(zlxy + y) and G(z|x, + y) about y = 0, and substituting them in
(1). The boundedness of |g(2)|, |@(2)], |r(y, 2)| and |R(y, z)| follows from
conditions 1 and 2. O

6. Proof of Theorem N1: Bias in £,,. Recall the target of £,, is £,,,
the p-quantile of the random cdf G,,(-) = k~'L*G*(-|Y,,), while ¢ is the
p-quantile of G(-). The leading term of ¢,, — £ is nonstochastic with probabil-
ity 1, which is determined in this section.

LEMMA 4. For every B, there exist N and C such that in the sample space of
infinite sequences {(1,2,), (5, 22), ...): 9,2 0, z; real}, Y, 455, < Bn~ /"
implies max, « 1, p)|€,p — €l < Cn™%/% foralln > N.

ProoF. Fix B < @ and 0 < a < b, and assume that Y, |+, < Bn™'/° By
(11), it is enough to show the existence of N and C such that for n > N and
k € I(a,b),

G.1(§ — Cn™%%) < G(&) < G,4(¢ + Cn™%%).
For this, choose N and C so that

(14) max( BN~1/3, CN~2/5) < min(e, 1),
and use Lemma 3 to obtain
(15) |G,.1(€ £ Cn=2/%) — G(¢ + Cn™%/%)| < MB?n~%/%,

for n > N. Moreover, since by condition 2, G(¢ + Cn~2%2/%) >
G(£) + 1Cn~2/3g(¢) and G(¢ — Cn~%/%) < G(¢) — 1Cn~*/3g(£) for Cn~%/% <
g, (15) implies

G, (§+Cn=2/%) > G(¢) + 3Cn~25g(¢) — MB?n=2/5,
G,.(£ — Cn~2/%) < G(¢) — 3Cn~2/5g(¢) + MB%n~2/%,
for n > N. The lemma is proved by choosing C > 2MB?/g(¢) and then
choosing N so as to satisfy (14). O
COROLLARY. For 0 <a <b, max,.; q yl€,x — £l = O(n™%/5), a.s.

ProoF. Take B > b/f(x,) and apply Lemma 4 using C and N appropri-
ately determined by B. Then

Y P| max (£, — ¢ >Cn %5
n=N Lkel(a,b)

IA

P[Y, (45 > Bn~'/%]

IA

»

n=N .
y exp[—2n3/5{Bf(x0) - b}2] < oo,
n=N

O
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We now determine the leading term of &, — ¢.

LEMMA 5. For 0 <a <b,

max |£,, — & - B(£)(k/n)*| = O(n™*%), as.,

kel (a,b)

where B(£) = —Q(EN24 f2(x,)g(e)) 1.

Proor. By (11) and Lemma 3,

k
G(g) = énk(gnk) = k_l Z [Gnt(g) + (fnk - f)gni(zni)]
1
k
=G(&) + k'L (3Y2Q(8) + YIR(Y,;, )}
1
k
+(§nk - §) g(f) + k_l Z {(g(zni) _g(g)) + %Ynziq(zni)
1

+Yn3ir(Yni’ zni)} )

where for each i, z,; lies between £,, and ¢, so that

(16) max max |z, —¢|< max [§,, — & =0(n"?%), as.
kel (a,b) L<i<k kel (a,b)

Hence

: : 1 Q(&)k™'EY,: + 2k LY, R(Y,,;, £)

nk ST

T 2g(8) + kTH{g(2) — 8(6)) + 1V 2a(2,) + Y2r (Y., 2,0)

_1Q®)[(1217x0)) '(k/n)* + Ruu(D)] + Rua(2)
2 g(¢) + R,(3) ’

where max,, ¢ 1 4. )R 41| = O(n)”%, a.s. by Lemma 2, max ¢ 1,(q, 5| R »4(2)]
= 0(n~3/%), a.s., by Lemmas 1 and 3, and max, ¢ ; , 5|R,4(3)| = O(n"%/®),
a.s., by (16), Lemmas 1 and 3, and condition 2. Since (k/n)? < n~2/562 for
k € I,(a, b), the lemma is proved. O

7. Proof of Theorem N1: Conclusion. The first representation of
§An » — &,p Tests on Lemmas 8 and 9, which run parallel to Bahadur’s proof
[Bahadur (1966)]. However, we start with a lemma which provides an exponen-
tial bound for deviation of sums of independent Bernoulli variables from their
mean and then prove another lemma dealing with fluctuations of G, ,(-) —

Gnk(. ).
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LEmMMmAa 6. Let U,,...,U

.n be independent Bernoulli variables with
P(U,,=1) = m,;. Then

n

n 'Y (U, — ;)

1

<i<n

> tn] < 2exp[—%ntﬁ/{ max m,; + tn}].
1

o

In particular, if t,/max, _,_,m,; = 0, then for large n,

> th < 2exp[—int,21/ max ,;

l<i<n

(b) P[

n_l Z (Uni - wni)
1

and if max,_; _,m,;/t, = 0, then for large n,

> tn} < 2exp[—int,].

(c) P[

n71 Z (Uni - 7Tnz)
1

Proor. The first inequality is a simplified version of Bernstein’s inequality
[see Uspensky (1937), page 205], from which the other two follow as special
cases. O

LEmMma 7. Suppose {,, are oFmeasurable random variables with
£k — €nrl < Cn=%/%log n = ¢,(C). Then for any v, there exists M such that

f n? max P“{Gnk({nk) - énk(fnk)} - {6nk({nk) - Gnk(fnk)H

no1 kelfa,b)

> Mn~3/5log n] < o,

Proor. Write U,,, = (Z,; < {,,) — UZ,; <&,,) and p,,, = G, ({,,) —
Gni(gnk) = E(Unkil‘Q/) Then

k
{énk(gnk) - Gnk(fnk)} - {Gnk(gnk) - C_;nk(fnk)} =k7! ;l(Unki - #nki)-

Choose B >b/f(x,), and for each n, let S, ={Y, s, <B~/%). Since
1{nk — énnl < €,(C)=Cn"2/%log n, Lemma 4 implies that there exist C’ and
N such that for n > N and for z lying between ¢,, and ¢&,,, |z — ¢ <
Cn=2?°logn + C'n"%® < 2¢,(C) holds on the set S,. Using Lemma 3, we
now conclude that when ~ is large, then on S,,,

max |u,l <&,(C)  sup g(2) +B’n"*®  sup |Q(2)]
1<i<[n?/%b) |z —¢| <2¢,(C) lz—¢| <2¢,(C)

+2B%n73/° sup |R(y,2)|
O0<y<Bn~ 15 |z—¢|<2¢,(C)

< 3¢,(c)g(¢) + MB2n~2/5 + 2MB3n~3/5 < 2g(&)e,(c),

since ¢,(C) = C,%®logn dominates MBZ?n~2/5 + 2MB3n~3/5. Now use
Lemma 6(b), replacing max; _; _ ,4/5)|# ;| by its upper bound obtained above,
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to conclude that for large n,

max P||k” IZ( ) >Mn‘3/5logn]
kel (a,b)
= max EP ‘k 1 Z( 2i = Mnki) >Mn‘3/5logn|.ﬁa/]
kel (a,b)

< 2exp[—M2a{5Cg(§)}_1 log n] + P(Sg).
To complete the proof, observe that ¥%_nYM*(Ce@ ™ < » for sufficiently
large M, and % _,P(S;) < by Lemma 1. O
We now define a, = n"%*5logn, b, =n'/® and divide the interval
[£,1 — @y, & + @, ]into 2B, equal intervals:
Jnk,r = [gnk + ran/bn’ gnk + (r + l)an/bn] = [nnk,r’ nnk,r+1]’
r=—b ~1,0,1,...,b, — 1,

noyecc

each of length a,/b, = n=3/°log n. Let
an(Z) = {Gnk(z) - CA;"nk(fnk)} - {énk(z) - C_;nk(gnk)}’

* =  sup |H,,(2)|= max sup |H,,(z)
(17) mk 'z_gnkl Sanl n I _bnerb"_l zEJnk,rl e |,
Hn* = max |Hn*k .
kel (a,b)

LEMMmaA 8. P[maxke,”(a,b)|§nk - fnk|> a,i.0]=0

PrOOF. &, <€, — a, implies

k
k_l Z {l(an < ‘fnk - an) - Gni(fnk - an)} = [kp]/k - Gnk(gnk - an)'

1
Fix B > b/f(x,) and let S, = {Y,, ,455,) < Bn~'/%}. Then by Lemma 3,

min {[kp]/k - C_;nk(gnk - an)} = %g(g)an

kel (a,b)

on the set S, when n is large. Hence for large n, by Theorem 1 of Hoeffding
(1963), we have

P| min f - ¢ < —a_,i.o0.| =0.
kEIn(a,b)( nk nk) n

In the same way,

P| max (¢, - > i.o.| =0,
[kel,,(a,b)(gnk €ns) 2 @, 10 ]

and the lemma is proved. O
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LemMa 9. P[H* > Cn~3/®logni.o]l =0 for large C.

Proor. It follows from the monotonicity of G, ,(-) and G,,() that for
z € Jnk,r = [nnk,r’ nnk,r+1]’
an(nnk,r) - ank,r < an(Z) < an(nnk,r+1) + ank,r,
where H,,(-) is given by (17), and
Xk, r = C_;nk(nnk,r+1) - C_;nk(nnk,r)'
Hence

Hn*k = sup 'an(z)l < max |an(17nk,r)' + max ank,r'
lz2=¢npl<a, —b,<r=<b, -b,<r<b,—1

Let S, ={Y, 45 < Bn~'/%} as in the previous proofs. Then by Lemmas 3
and 4,

ymax a,, . <2g(£)n"Plogn

on the set S, when n is large. Hence
P[H} > (M + 2g(¢£)}n"%5log n]
< P| max max |H, (1, ,)| >Mn=35logn| + P(S¢)
kel (a,b) —b,<r<b, ’

< 2n(b- m m P||H > Mn~3/5] + P(S?°).
n( a)kEI,ft-lx,b) —bnsarzxsb,, [' nk(nnk,r)l n Ogn] ( n)

But max_, _,_; 1,4, — &,4/< n"?5log n, and by Lemma 7,

Y n  max max P[|H,(n,,,)|>Mn=%%logn]| <=,

n=1 kel(a,b) —b,<r<b,

while X5 _, P(S;) < © by Lemma 1. This completes the proof. O

By Lemmas 8 and 9, we now have
p - GAnk(gnk) = énk(énk) - Gnk(gnk) + Rnk(l)
= (bur = £nr)Bnr(€) + Roi(1),

where ¢, lies between £,, and &, and

(19) max |R,,(1)|=0(n"3®%logn), as.
kel (a,b)

(18)

By the corollary to Lemma 4 and Lemma 8, max,c; , 5|é5% — & =
O(n~2/%log n), a.s. Consequently, Lemmas 1 and 3 now imply

(20) max |Z,, (&%) —g(£)| = 0(n"* logn), as.
kel (a,b)

Furthermore, it follows from Theorem 1 of Hoeffding (1963) that
(21) p— G (£,) =0(n"%Plogn), as.
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From (18), (19), (20) and (21), we have

kel}l?(-sz)l(énk - fnk) - {g(f)}_l[p - Gnk(fnk)]l = O(n_3/5 lOgn)’ a.s.

Since
k
p - C’;"nk(fnk) = k_l Z [1(an > gnk) - {1 - Gni(gnk)}]y
1

we now have the following representation:

: k
gnk = ‘fnk + {kg(g)}_l Z [l(an > gnk) - {1 - Gni(gnk)}] + Rnk’
(22a) 1
max |R,,| =0(n"3%logn), as.
kel (a,b)
This representation can be easily modified to two other slightly different
forms, viz.,

k

(22b) énk = fnk + {kg(f)}_l Z [I(Zni > §) - {1 - Gni(f)}] + Rnk
1

and
k

(22¢) £, =¢£,+ {k8(O)) L [UZE>6) — {1 - GO} + Ry,
1

‘where max, c; q )Rl = O(n~%°log n), as., in both (22b) and (22¢), and
Z¥ =G '.G,(Z,;) and G(-) = G(-|x,) is the conditional cdf of Z given
X = xo.

Combine Lemma 5 with (22c) and note that G(¢) = p to complete the proof
of Theorem N1. O

8. Proof of Theorem K1. The kernel estimator £, can be regarded as
the NN estimator £, (,, in which K,(h) is a random integer given by 4. A
formal substitution for 2 by K ,(h) in the representation given in Theorem N1
leads to

£ — E=B(E){K,(h)/n)?
(23) K, (h)
+HEK(h)g(&)) " L [UZ5>¢) — (A -p)] + Rk,
1

However, this is of no use unless we can show that

(@) supj ey (e, a))Rnk, )l converges at a fast rate, where J(c,d) =
[n~Y3%,n"15d],0 < c < d, and ‘
(b) in the first two terms of the RHS of (23), K,(k) can be replaced by the
leading term of its deterministic component without slowing down the rate of
convergence of the remainder term.
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To establish (a) and (b), we first examine the magnitude of {K (k) — nhf(x,)}
in the following lemma which is proved by routine calculations.
Lemma 10. Let A, (k) = K, (h) — nhf(xy). Then
sup |A,(h)|=0(n*®logn), a.s.
hed,(c,d)
From Lemma 10 and the fact that max, ¢ ; , 4R .l = O(n"%°log n), a.s.,

it now follows that

sup |R,x | =0(n"*5logn), as.
hed,(c,d)

We now consider the first two terms on the RHS of (23). Of these,
B K (h)/n)? = B(£) [A(x0) k2 + R,

where
wh = B(§) fz(xo)hz[An(h)/{nhf(xo)}] [2 + An(h)/{nhf(xo)}] ’
and by Lemma 10, '

sup |R,,|=0(n"*5logn), as.
hed,(c,d)

To examine the other term, let
U, =UZ%>¢) —(1-p), m,(h)=[nhf(x)].
Then

K, (h) m,(h)
(K (R)g(&)} " ¥ U,={m(h)g&)}™" ¥ U, +R.,+Rl,
1 1

m,(h)
nn= —{A(R) /K (W)Hm, (h)g(&)} " ¥ U,
1
(24) K, (h) m,(h)
Ry, ={1-A,(h)/K (W)H{m,(h)g(&)} | L U, - Zl U]
1

where U,,, ..., U,, are conditionally independent given 27, with E(U,;|.&/) =
0. Of the two remainder terms sup,c; . o|Rnul = O(n™3/°logn), as., by
Lemma 10 and Theorem 1 of Hoeffding (1963). Now let h,o<h, < <

h ., denote the jump points of m (k) = [nhf(xy)]in J,(c, d). Since for each j
and forall h,; <h <h, ;. .y,
K (h) m(h) K(hy) malhn;)
Z Uni - Z Uni < Z Uni - Z Uni + {Kn(hn,j+1) - Kn(hnj)}
1 1 1 1
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we only need to verify

Kn(hnj) mn(hnj)
(25) omax Y U,- Y U,|=0(n"%logn), as.,
<J=<v, 1 1
(26)  max (Ku(hy ji1) — Ku(h,;)} = O(n'Plogn), as.,

in order to conclude that in (24), sup, c ; . ¢)|Bnsl = O(n"*®log n), a.s. To
prove (25) and (26), note that h, ., — h,; < {nf(xe)}"' and v, <
n*/5(d — ¢)f(xy). Now K, (h, ;,,) — K, (h,;) is binomial (n, 7, ;) with 7, =
O(n~1), and (26) follows from Lemma 6(b). Finally, apply Hoeffding’s inequality
[Hoeffding (1963)], use Lemma 10 and the fact that v, = O(n*/®) to prove (25).
This completes the proof of Theorem K1. The details are as in Bhattacharya
and Gangopadhyay (1987). O
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