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AN OMNIBUS TEST FOR DEPARTURES FROM
CONSTANT MEAN!

By DANIEL BARRY AND J. A. HARTIGAN

University College, Cork, Ireland and Yale University

Observations y; are made at points x; according to the model y; =
F(x;) + e;, where the e; are independent normals with constant variance.
In order to decide whether or not F(x) is constant, a likelihood ratio test is
constructed, comparing F(x) = u with F(x) = p + Z(x), where Z(x) is a
Brownian motion. The ratio of error variance to Brownian motion variance
is chosen to maximize the likelihood, and the resulting maximum likelihood
statistic B is used to test departures from constant mean. Its asymptotic
distribution is derived and its finite sample size behavior is compared with
five other tests. The B-statistic is comparable or superior to each of the
tests on the five alternatives considered.

1. Introduction and summary. Let (x;,,y,),i=1,2,...,n + 1, satisfy
= F(xz) + e,

where x; € [0,1] for each i, F is a regression function and the errors {e;} are
uncorrelated with mean zero and variance v. Parametric estimation of the
regression function F(x) assumes a particular functional form for F depend-
ing on a small number of unknown parameters. Nonparametric estimation
assumes only that F is a smooth function of x [see Prakasa Rao (1983) for an
extensive review of nonparametric regression estimation].

In this paper we consider testing the hypothesis that F is a constant
function, i.e., that the X and Y variables are independent. If the independence
hypothesis is rejected, the procedure provides a spline estimate of F; rejection
of independence indicates that attempts at parametric modelling (possibly
involving the collection of more data) might prove successful.

Schoenberg (1964) proposed estimating F by F', which minimizes

> (y - f?’(aci))2 + c'/:ﬁ’(x)2 dx,

whose ¢ is a nonnegative constant to be specified. Fisa piecewise linear
function; ¢ = « implies that ¥ is constant, ¢ = 0 implies that F' interpolates
the data and intermediate values of ¢ imply a compromise between these two
extremes. This is one of a class of spline estimates.

Wahba (1978) has shown that the estimate F' is equivalent to the Bayes
estimate of F' where the errors {e¢;} are assumed i.i.d. N(0,v) and the prior
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specifies that F is drawn from a Brownian motion with unknown mean px and
scale v,, where v, = v/c.

We describe a data based procedure for choosing a value for ¢, first proposed
in Barry (1983) and later considered in Wahba (1985). The smaller the value of
¢ chosen by the data, the stronger is the evidence against independence. Our
test is a likelihood ratio test of the hypothesis H,: v; = 0; unusual theoretical
features of the test arise from the presence of an infinite number of nuisance
parameters in the fitted function F. In Section 2 we describe a similar idea
proposed by Yanagimoto and Yanagimoto (1987) to test the adequacy of the fit
of a simple linear regression model. The advance in this paper is that the
asymptotic distribution of the test statistic is derived, and that comparisons by
simulation with a range of alternative test statistics are presented. Cox and
Koh (1986) and Cox, Koh, Wahba and Yandell (1986), introduce the theory of
locally most powerful tests of H,: v; = 0 and extend the method to a broad
class of spline models.

The assumption of i.i.d. normal errors is certainly open to question, and the
technique may well be seriously affected by one or two outliers in the data; the
results would be to estimate F(x) to be very different at the outlying points
and to conclude that F deviates from constancy. It is suggested that, before
applying the technique, some method of identifying and downsizing outlying
values be used.

The test statistic B is described in Section 2. In Section 3 we derive the
asymptotic distribution of the test statistic under the hypothesis that F is
constant for equally spaced x-values. Section 4 contains a simulation study
comparing the power of the test developed in Section 2 with that of some
well-known tests of independence, for a variety of departures from indepen-
dence. The B test is comparable or superior to its competitors for each of the
alternative hypotheses.

Note. When the range of notation is from 1 to n, it will be suppressed for
ease of notation.

2. The test statistic. Suppose we have data (x;,5;,), i = 1,2,...,n + 1,
where

O<x, <x3< -+ <x,,;<1
and
y; = F(x;) + e, i=1,2,...,n+1,

where F: [0, 1] - R is the regression function of Y on X. We wish to test the
hypothesis that F' is a constant function.
Let us assume the following probability model:

1. F(x) = u + Z(x), where (a) u is unknown; (b) Z(x) is a zero-mean Gauss-
ian process with Cov[Z(x), Z(y)] = v; min(x, y);
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2. The errors {e;} are i.i.d. N(0,v) independent of F.
Fori=1,2,...,n, define
W =Yi+1 ~ Y-

Then, under the probability model specified in (1) and (2), w = (w,, w, ..., w,)
has a multivariate normal distribution with mean 0 and
Var(w;) = vy(x;,; — x;) + 2v
and
_ [ -, L—Jjl=1,
Cov(w;, w;) = {0, li —j| > 1.

For a = v, /v, let L,(a,v) be the log likelihood for « and v based on w. Let
0,(a) be the MLE of v given a. Define

Q.(a) = 2L,(a,d,(a))

and let &, be the value for which @,(a) is a maximum.
Clearly,

a=0 e v, =0
= F is constant,

and so, to test the hypothesis that F is constant, we propose the test statistic
B, = Q,(a,) — Q,(0).

Yanagimoto and Yanagimoto (1987) follow a similar course but start from a
model which specifies

F(x) =a+ Bx + Z,(x),

where a and B are unknown and Z,(x) is an integrated Brownian motion
process. Their paper also includes simulation of the null distribution of the
likelihood ratio test statistic and an example of the use of the test in practice.

In this paper we show, for x; evenly distributed, that B, is asymptotically
distributed as

VK
———Z2+ log| ————
s;p rzl K+ 72r2 " og[ sinh(VK) |’
where the Z, are i.i.d. N(0,1).

3. The distribution of B, when F is constant. It follows as a special
case of the calculations in Wahba (1985) that

Q,(a) = —nlog{y”(I - A)y} + log|I - A|*,



OMNIBUS TEST FROM CONSTANT MEAN 1343

where

T
y = (yl’yz"“’yn+1) ’

1 -1
A=|I+ —H)
a
where H = (h;;) is an (n + 1) X (n + 1) symmetric tridiagonal matrix with
hiver=—1/(x;41 — ), l<ix<n,
1/(x; —x;_y) +1/(x;4, — x;), 1<i<n,
hyi=1{1/(x5 — ), i=1,
1/(xn+l_xn)7 l=n+1,

and |I — A|" is the product of the positive eigenvalues of I — A.
We now specialize to the case where

1
n+1’
The model may be expressed as the ARIMA model,

xi+1_xi= l=1,2,...,n.

v
Yiv1—Yi=¢€.1— € +m;, wheree, ~N(0,v),n, NN(O’n _: 1)'

(n+1)a,
L (n+ 1A +a

(n+ 1)aA, }

Qu(a) = —n log{ (n+ 1A, +a

r

Zf} + Y log{
r=1

where

Tr
A= 2(1 - cos( )),
n+1

2 \2ril wr 1
Z, = i — = ||y =1,2,...,n.
(o] Eelmmlgle v

The Z, are Fourier coefficients for the series y,,,; — y; and are independent
with mean 0 and variances v(1 + a/[(n + 1)A,]); the expression @, («a) arises
from maximizing twice the log likelihood of the Z, over v. We will consider the
behavior of sup,@,(a) — Q,(0) when a =0, and the Z, are independent
N(Q, v).

For convenience, we express @, in terms of K = (n + 1)a and write

Q,,(K)=—nlog{i tr zz}+ilog{ L

r=1 r+K r=1 ur+

where u, = (n + 1)?A,. Note that the sequence u, is positive and increasing.
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THEOREM 1. Let K, be the value which maximizes Q (K). Then K n = 0,(1),
that is,
limsupP{K'n >K,} >0 asK,— o,

n—oo

Proor. We show separately that

(D) limsupP{K, > 5n% =0
and
(2) limsupP{K, <K, <5n?} >0 as K, - .

Proor oF (1). It suffices to show that

limsupP{ sup Q,(K) — Q,(0) > 0} -0.

n—o K>5n?

Now,

Q.(K) - Q,(0) —nlog{[z s Zf]/223}+21°g(uu+rx)

u,+K

= _nlog{[z :—':{Ezf]/z Zf} +) log( uu+KK)

Since u,K/(u,+ K)<u, and K/(u,+K)>K/(u, + K) > 5n%/(u, +
5n?),
2

5n? Yu.Z
Q.(K) - Q,0) < —nlog(u—m) - nlOg{”—z_Zz_} + ) log(u,),

1 X 0 | 5n2 . TAZE 1 5 log A
— - —log| —— | - + — .
S T 1Q(K) - Q0] < —log| 7 | ~ log—7mm + - X log,

Since u,/n? > 4,
5n? 5
- log—.

log——
Ogun+5n2 9

Also

1 1 =

—~ Y loga, - ;j; log(2 — 2cos x) dx = 0.
Finally, V, = YA, Z2/Y Z? - 2 in probability as n — «, since

VvV, = 2(1 - [Z cos

mr

mr 2] 2 -
+1Z, Y Z2| and Zcosn_'_1 0.

n
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Thus,

1 9
P{ sup —(Q,(K) — Q,(0)) <log— < 0} -1 asn — o O
K>5n? 10

Proor or (2). It suffices to show that

limsupP{ sup QLK) > 0} -0 as K, > .

n—ow K,<K<5n?
Now,
u u 1
"(K) = T 72 " _K2| - >0
@(K) n[z (u,+K)2Zr]/[Z u,+2 r] D u,+K
is equivalent to
Y W.(K)Z? >0,
where
u, U, 1 1
VV,.(K) = 2 '—Z .
(u,+K) u,+K|n“~ u,+K
Hence,
5n2
P{ sup Q,’L(K)>0}s Y P{ sup ZW,(Z)Z,2>0}
Ko<K<5n? K=K, ‘K=<l<K+1
5n2
< Y P{Y A(K)Z?> 0},
K=K,
where

A(K)= sup W().
K<l<K+1

We will prove the following lemma later.

LEMMA 1. There exist positive constants D,, D, and M, such that

(3) Y A(K) < -D,K"'?
and
(4) Y A%(K) < D,K™%72

for K, < K < 5n?, whenever K, > M,,.

Hence, by Chebyshev’s inequality, we have for any even integer s- that
E|TA(K)(22 - 1)[

P{Y A(K)Z%> 0} < (EA(K))
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Whittle (1960) shows that

s s\2/s\ 5/2
E|T a(K)(22 - 1)[ < ¢ T (Bla )22 -1)))
for some constant C depending on s. Hence,
TA2(K) 17
P{Y A(K)Z2>0}<C, —()2 ,
(ZA(K))
for some constant C, depending on s.
Taking s = 8 and using Lemma 1 gives
P{Y A (K)Z?> 0} < C,/K?,

whose C, is a constant. The required result now follows, since

> 1
Y F_)O as K, - o.
K=K,

Proor or LEMMA 1.

ProoF oF (3). Let N=n + 1;

1 K 1 u 1
W.(K) = - - — .
L W.(K) Zu,+K Z(ur+K)2 n[zu,+K [Zu,+K
Since u, increases with r,
1 1 1 1 N

N N
dr-— — < < dr = .
[o u, + K K<L ur+K</o u, + K T (K + an?K)
Also,

1 N .« dx 1
Z (u,+K)* 2;'/;) [2N2%(1 - cos x) +K]2 - K?
_ 2N°+NK 1
(K% +4N2K)**  K*
Hence,
5 W) < N - (2N3K + NK?) L1
’ (K2 + 4N2K)"®  (K%+4N2K)**? K

1 NK N 1
_N[N (K2 + 4N2K)‘/2H(K2 +4N?K)"? E]
2N® + NK 2 NVK

-1( 2+A VA 2
= —_—— —_ + —
K\|(4+A®** 4+A VK

}, where A = K/N?2,
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Since (2 + A) /(4 + A)*/2 — VA /4 + A is bounded above 0 for 0 < A < 5, we
have that, for K, large enough, there exists a constant C; > 0 such that

Y W(K)<-C,/VK, K,<K<5n?

For0 <6 <1,
W.(K) — W.(K +8) =6W/(K + 6*), where0 <5* <39,
where
—2u, u, 20+ u, +u,
Wr,(l)=—'_—3+—2 2 P
(u,+1)° 5 (u,+1)(u, +1)
Hence,
|W,(K) ~ W,(K +8)]
<|W/(K + 8*)|
2u, u, 204+ u, +u,
(5) <———+—Y) 3 3
(ur+K) n s (ur+l) (us+l)
2 1 1 1 1 1
< ——7+ = + — :
<(u,+K)2 nz(us+K)2 u,+K[nZus+K]

Forr=1,2,...,n,
A(K)=W,(K+34,) forsomes, [0,1].

Hence,

|Z 8,(K) - EWAK)|< L |WA(K) - W(K +35,)|
1 1 1 )\
<32 (u,+K)“’+5(Z u,+K)
3(N3 + NK) N
= 3/2 + 2 2
(K2 + 4N?K) (K*+4N°K)

1 3(1+A4) A3/2 ,
- K32 (4+A4)%2 YT 44 where A = K/n
< K32 for0 <A < 5.

This proves (3).

ProOF OF (4).

Y A%(K) <2Y WXK) +2Y (W,(K) — A(K)).
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From (5),
|W,(K) - A,(K)| < 4.

Therefore,

. 16
T (W) =~ 8,(K))* < 4% [W.(K) = 8,(K)| < 257

Also,
u? u? 1 ) I
" WA(K) < — + —| =
L WA(E) Z:(ur+K)“ (ur+K)2[nZur+K]
1 1 1 7P
<) ——+ =
LT E) n[zu,+x]
4
=gz
Hence,

40
Y A%(K) < K%
and this combined with (3) proves (4). O

THEOREM 2. Let Z,,Z,,...,Z,,... be a sequence of iid. N(0,1) random
variables. Define

Q.(K) - —nlog{z i—z;"} > log(ur“;K)

oL u,tK m1
and
M,(K) = Q,(K) - Q(0).
Define

[

K VK
M(K) =Y mz, + log[m} for K> 0, M(0) = 0.

r=1
Then for any fixed K, < ,
sup |M,(K)—-M(K)|->p0 asn - x,

0<K<K,

ProOF. Define

1) - —nin] [ ] 22+ £ o 20 |

K+ m2r2°7r
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We show

(a) sup |M,(K)-H,(K)|—»p0 asn— o,
0<K<K,

(b) sup |H,(K)-M(K)|>p0 asn— .
0<K<K,

ProoF oF (a).

w2r? u
2 r Z2
X K+w2r2zr]/[2 K+u, ]}

w2r?

K + 72r?

M(K) - H(K) = -n 1og{

ur
+3 log( +K)—log

u,

=C, + D,, say.
Introduce positive constants R, and R, such that

|m2r? —u,| < Ryw*r*/n?

and
mr2 <R,u,.
Then,
w2r? u w2r? u
- — 2| mi ————2Z} — 272
|Cn|5n2(w2r2+K u,+K)Zr mln[z T A KT~ u v KT
KR, mtrt w2r? u,
Z2 . Z2, Z2
< L (722 + K)(u, + K)om0 D i g LD Vi
K,R,R,
<— >0 asn > x,
n

For D,, let ¢(u) = log(u/(u + K)). Then, for § > 0,
d(u+8) — ¢(u) =8¢6'(u,) forsome u, € (u,u +98),

where

L 3 K K6
o' (u) = vt E) |p(u +8) — d(u)| < v K

Hence,
|D,| < KY |w?r? - u,|min[7?r*(7?r? + K),u,(u, + K)]
KR,
n2
K, R,R}
< —
n
Hence (a) is proved.

< Y mirt min[w2r2(1r2r2+K),u,(u,+K)]

-0 asn — o,
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Proor oF (b). From Jolley (1961),

log[VK sinh(VK)| = Zlog(;—:i).

r=1 2 2+K
Hence,
w2r? VK ® K
I log{ ——— ) = log|l + —
= °g( “+K) g{ sinh(ﬂ?)} Zg( =)
K, = 1
S? =Xn:+1ﬁ—>0 asn — o,
Also,
.
1 — L VA
Og{[z 2r2 + K r]/z r}
K
=1 - —_ 72 2
og{l [Z SR r]/ZZr}
K 5 . 1
= Zmzr ZZ,_-FOP(?) fOI‘KSKO
1
Z +K n+0p(—r:§/—2).
Hence

® 1 1
= Z:+ 0= +0,|—=],
E1K+7722 4 ”(n) p(ﬁ)
since
<) K K 00 Z2
72 < — — =0,|—| forK<K
rzn:+1K‘*"""'2 T L r p( ) o

This proves (b). O

THEOREM 3. Let K be the value which maximizes

)

K VK
M(K) = rgl mzr + log[m}

Then
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Proor. Since M(0) = 0,

P{Ii’zKO}sP{ sup M(K)>0}s 5 P{ sup M(1) > 0}
K=K

K>K, o K<l<K+1
Now
> K sinh(VK)
M(K)>0 ———=Z2> log{ ———},
(K)>0 = L gropt °g{ V& }

and since K/(K + 7%r?) and log{sinh(VK)/ VK} are increasing functions of
K, we have

N od od K+1 sinh(VK)
R 72 2
P{K > K,} < K§K0P{ ¥y 17 wzrzz, > log{ TR }}

Using Chebyshev and Whittle as in the proof of Theorem 1 gives that, for any
even integer S > 2,

> K+1 sinh(VK )
P 72 —t
{,§1K+1+72rzz’>log{ VK }}

sinh(VK) ® K+1
1°g{ VK }_r§1K+1+772r2}

for some constant B,
B B (K +1)%?
(K +1)%* 1}/ 1(K+1+172r2)2

[ 1 {sinh(\/z?)} = (K+1)Y? ]2}5/2
log -

r=1

s/2

8

1

VK+1 VK T (K+1+7%r?)

Standard arguments show that

i 1 sinh(VK) )

Klinw vK +1 o8 \/I? -
=2 (K+1D)Y? 1
lim 5 < 1

Koo 2y (K+ 1+ 7%r?)
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and
= (K+1)Y?

.
i El (K +1+7%r?)

1
< =.

2
Hence, for K, large enough, there exists a constant C such that

N * 1
P{K = KO} <C _K_S7Z .
K=K,

Taking S = 8 gives the result. O

TueoreM 4. Let K, maximize M, (K). Let K maximize M(K). Then
B, =M/(K,) and

B,-M(K) -, 0 asn— .

Proor. If M(K) > M,(K,), then
M(R) - M,(R,) = M(K) - M,(K) + M(K) - M,(K,)
<M(K) - M (K).

Hence,
|M(R) - M,(K,)| <|M(K) - M,(K)|.

Similarly, if M(K) < M,(K,), then
|M(K) - M(K,)| <|M(R,) - M,(K,)|

Hence,

|M(R) - M,(K,)| <|M(K) - M(K)|+|M(K,) - M,(K,)|.
Given ¢ > 0, we have for each K, > 0 that

P{|M(R) - M,(R,)| > ¢} < P{ sup |M(K)-M,(K)|> g}

0<K<K,
+ P{K > K} + P(K, > K,).

Taking limits first as n —» «© and then as K, —» » gives the theorem by
Theorems 1, 2 and 3. O

Table 1 gives estimates of the 10, 5 and ‘1 percentiles of the null distribution
of B,, for various sample sizes. The estimates for n = « were calculated using
M(K). All the estimates are based on 10,000 iterations. The table also shows
the number of iterations for which K ., = 0. The asymptotic distribution is
achieved quite closely at n = 40. .

The maximum likelihood estimate of K was obtained by a repeated bisec-
tion method search. Almost all the likelihood curves have a single maximum.
Each p-value required a computation of M(K) of order n log n, for each of
approximately 40 K-values, for 10,000 repetitions.
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TABLE 1

The null distribution of B,, showing, for various sample sizes, estimates of the 10, 5, and 1

percentiles and the proportion of zero values based on 10,000 repetitions.

Sample size (n) % of zero values 10% 5% 1%
5 58.9 1.47 2.25 3.89

10 61.3 1.35 2.37 5.05

20 62.9 1.16 2.18 4.87

40 64.6 1.05 1.99 4.65

60 64.9 0.99 1.93 4.35

100 65.0 1.00 1.92 4.32

200 64.6 1.02 1.88 4.30

400 65.0 1.02 1.92 4.36
Infinity 64.9 1.01 1.91 4.36
Standard errors 0.50 0.04 0.06 0.20

In general, the x;’s will not be equally spaced; in this case the log likelihood

has the same form except that the A,’s depend on the spacing. Similar
asymptotic calculations should be possible in this case also, under suitable
conditions on the spacings of the x;’s.

If the x’s are not very unequally spaced, we would expect the test statistic

calculated as if the data were equally spaced to perform about the same as the
likelihood based test statistic. We have not examined this conjecture in detail.

4. Simulation study. In this section we report on the results of a

simulation study comparing the power of six tests of independence:

1.

2.

o

The B test (B), as described in Section 2 and using critical values obtained
in the simulation study of Section 3.

The runs test (R). Let d;, =y, — ¥, i=1,2,...,n + 1. Let D be the num-
ber of runs in the sequence d,,d,,...,d, ;- Small values of D constitute
evidence against the independence hypothesis. Critical values were obtained
from Table 18 of Lindley and Scott (1984).

Pearson’s correlation coefficient (P). p-values were calculated, conditional
on the x’s.

Spearman’s correlation coefficient (S).

Von Neumann’s ratio (VN). Define

Ll (yYivr — yi)2
):?:11(}’;' - 5’)2

VN =

Small values of VN constitute evidence against independence. Critical val-
ues were obtained using the f-approximation suggested by Bingham and
Nelson (1981). It can be shown that

Q.(x) — Q,(0) = —nlog[(n + 1)VN] + ¥ log[(n + 1)A,].
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6. Nyblom and Makelainen (NM). In the context of testing for autocorrelation,
Nyblom and Makelainen (1983) propose the test statistic

pas by e Rl
LNy - 5’)2

and give critical values for rejecting independence for large values of L.

L

The following five test functions were used:

(a) F(x) =x, 0<x<1;

(b) F(x) =2e%/(1+e%*) -1, 0<x<1;

(c) F(x) = 64x3(1 —x)®°, 0<x<1;

(d) F(x) = (1 +sin(37x))/2, 0O0<x<1;
(15x/6), 0<x<0.2
(5 — 10x) /6, 02<x<0.4,

(e) F(x) ={ (-9 + 25x) /6, 04<x<0.6,
(-18 + 20x)/6, 0.6 <x < 0.8,
(-2 + 5x) /6, 08<x<1.

Each function is continuous and ranges from a minimum of 0 to a maxi-
mum of 1; only (a) and (b) are monotonic.

Two values for n + 1 were used: n + 1 = 20 and 100. Four values for the
standard deviation of the error distribution, (SD) were used: 0.1, 0.5, 1.0
and 2.0.

For each combination of F, n and SD, 100 datasets were generated by
setting

2i -1
T o+ 1)’

y;=F(x;) +e;, l<i<n+1,

where {e,} are i.i.d. N(0,SD?). The proportion of results significant at the 5%
level for each of the six test procedures is given in Table 2.

The standard errors for differences between two percentages in the table
never exceed 2%. (Note that the test statistics were each computed on the
same data sample in order to reduce the variance of the difference between the
percentages exceeding critical values.)

Reviewing the different alternatives, Runs and Von Neumann are distinctly
inferior for detecting linear departures, with the other methods comparable.
The same result holds for the logistic function. For the beta function, the B
test is markedly superior. For the sine function, the B test is comparable to
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TABLE 2
Showing, for various values of N and SD and various choices of F, the percentage of 1000
iterations for which the 5% critical values were exceeded using the B test (B), the runs test (R),
Pearson’s correlation (P), Spearman’s correlation (S), Von Neumann’s ratio test (VN), and the
Nyblom-Makelainen procedure (NM).

SD
N 0.10 0.50 1.0 2.0 Test
(@) F(x)=x
20 100.0 58.2 18.8 8.5 B
. 99.2 13.7 4.4 3.5 R
100.0 69.3 22.0 79 P
100.0 65.1 21.2 9.1 S
100.0 29.5 10.0 7.2 VN
100.0 67.8 21.2 8.3 NM
100 100.0 100.0 75.3 27.0 B
100.0 52.7 13.6 6.0 R
100.0 100.0 82.1 31.6 P
100.0 100.0 78.2 28.7 S
100.0 80.5 21.2 9.5 VN
100.0 100.0 80.4 29.9 NM
(b) F(x) = 2exp(5x)/(1 + exp(5x)) — 1
20 100.0 53.3 16.8 7.8 B
98.7 14.3 3.8 2.3 R
100.0 574 18.2 7.7 P
100.0 54.4 16.8 8.1 S
100.0 32.0 9.5 5.2 VN
100.0 58.4 17.8 8.2 NM
100 100.0 99.8 70.8 22.4 B
100.0 46.4 124 7.0 R
100.0 99.8 73.5 25.2 P
100.0 99.7 69.5 21.7 S
100.0 77.3 21.3 74 VN
100.0 99.8 72.0 23.7 NM
(¢) F(x) = 64x3(1 — x)®
20 100.0 58.1 14.7 7.3 B
99.8 184 49 1.8 R
0.0 1.5 3.2 54 P
0.0 14 4.1 5.4 S
100.0 48.9 14.3 74 VN
97.1 6.4 4.7 5.6 NM
100 100.0 100.0 64.1 16.8 B
100.0 69.5 18.0 8.4 R
0.0 2.2 3.0 4.5 P
0.0 3.0 3.0 4.2 S
100.0 91.5 28.2 9.6 VN
100.0 92.1 17.9 7.0 -NM
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Table 2 (Continued)
SD
N 0.10 0.50 1.0 2.0 Test
(d) F(x) = 0.5(1 + sin(87x))
20 100.0 35.2 10.2 5.8 B
99.6 20.0 4.1 2.8 R
0.0 1.4 3.8 4.4 P
0.0 1.8 39 4.3 S
100.0 38.1 12.2 59 VN
0.1 3.5 44 4.6 NM
100 100.0 100.0 79.6 24.1 B
100.0 78.4 18.9 7.5 R
0.0 1.3 4.0 4.9 P
0.0 1.9 3.6 4.0 S
100.0 96.7 32.4 9.5 VN
100.0 99.9 36.0 8.7 NM
(e) F(x) = sawtooth
20 100.0 15.6 9.0 6.3 B
58.7 6.3 3.1 24 R
32.9 10.6 7.0 5.0 P
43.9 10.7 6.8 5.8 S
100.0 16.4 74 6.1 VN
74.3 12.5 7.3 5.8 NM
100 100.0 85.1 27.5 10.5 B
100.0 26.3 10.6 6.0 R
100.0 446 14.5 8.7 P
100.0 41.3 14.2 8.1 S
100.0 51.0 14.3 8.1 VN
100.0 63.1 18.3 8.4 NM

Von Neumann’s test, and superior to the rest; it beats von Neumann’s test for
larger sample sizes. A similar conclusion holds for the sawtooth function.

Acknowledgment. We thank one of the referees, who noticed a signifi-
cant error in our original definition of the sawtooth function.
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