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ESTIMATING A REGRESSION FUNCTION

By SARA VAN DE GEER

Mathematical Institute, University of Utrecht

In this paper, an entropy approach is proposed to establish rates of
convergence for estimators of a regression function. General regression
problems are considered, with linear regression, splines and isotonic regres-
sion as special cases. The estimation methods studied are least squares,
least absolute deviations and penalized least squares. Common features of
these methods and various regression problems are highlighted.

1. Introduction. Consider observations y, € R, k = 1,...,n, which are
assumed to satisfy

yk=g0(xk)+8k, k=1,...,n,

with x, € R4, k= 1,...,n, e,...,&, independent errors and g, an unknown
function. The problem is to estimate g, given that g, € -, where - is some
class of regression functions on R?. For example, in linear regression, ¢ is the
class of all linear functions {g(x) = 87x: § € R} and in nonparametric regres-
sion, ¢ is, e.g., the class of all functions that have a fixed number, say m, of
derivatives. In this paper, we shall relate the speed of estimation to the
entropy of . A definition of entropy is given in Section 2. The estimation
procedures we shall consider are the method of least squares, of least absolute
deviations and of penalized least squares. These procedures differ with respect
to their loss functions, but we shall provide a general technique to obtain rates
of convergence for the resulting estimators. Section 3 presents the tools for
our technique. In Section 4, we arrive at rates of convergence for least squares
and least absolute deviations estimators, in general regression models. Exam-
ples with a particular « are given in Section 5. In Section 6, where we treat
penalized least squares, we confine ourselves to the class of smooth functions
mentioned above.

Let us now describe the main idea behind the technique we propose.
Consider first the case of least squares estimation. The least squares loss
function is

1~ 2
(1) L,(g)= ;kglb’k _g(xk)l )

and the least squares estimator 2, is given by

L,(8,) = min L,(g).
ges
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A simple argument will lead us to empirical process theory. Regard

v,(g& — &) = Vn[L,(8) — EL,(8)] —Vn[L,(g) — EL,(g)]

as an empirical process indexed by functions g € . Endow & with the
(pseudo-) metric || - ||,,, defined by

1 n 9
lglZ = — ¥ gl
k=1

In the literature on empirical processes, a theory is developed for the order of
magnitude of the increments of empirical processes indexed by functions [see,
e.g., Alexander (1984), Dudley (1984) and Pollard (1984)]. Also in this context,
we aim at expressing the order of magnitude of |v,(g — g,)| in terms of
lg — &oll,.. Since L,(2,) < L,(g,), which can be rewritten as

(2) U8, — 80) = V|18, — &0l

results on the increments of v, will imply a rate of convergence in || - || ,-norm
for 8,. Our line of reasoning is best illustrated with the following example.

ExampLE. Let &= {g:[0,1]1 > R, [|g™)|? < 1}, where m > 1 and where
g™ denotes the mth derivative of g. We shall show in Lemma 6.1 that under
certain conditions

lv.(g — 80|
g-gp

(3)

uniformly for all g € & with ||g — g,l|,, bounded by some constant. Insert (3),
with g replaced by 2,, into (2) to see that

18, = &oll, = G(n~m/Em*D).

This turns out to be the optimal rate for estimating g, [see Stone (1982)].

We argue that a general method for proving rates of convergence for the
least squares estimator is close inspection of the increments of v,. The
increments in turn, depend on the entropy of «: If the entropy is large, then
the increments can be large too. Therefore, the entropy of  determines a rate
of convergence. These observations are exploited in Theorem 4.1. The evalua-
tion of increments is given in Section 3.

The argument can be easily transferred to least absolute deviations estima-
tion, where the loss function is

S| =

Ln,l(g) = killyk _g(xk)l'

The least absolute deviations estimator &, ; minimizes L, (g) over g € <.
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In the situation of penalized least squares, we consider only the case d = 1
and the smoothness penalty

(4) J%(g) = flg(”‘)lz, m>1.

We assume that J(g,) is finite, but that a bound for J(g,) is unknown. The
method of sieves for this situation is to take

I=9,={g:J(g) <M,},

with M, - « as n — « and to estimate g, by least squares using this 7,.
However, we find that the rate of convergence for the resulting estimator may
be slower than the optimal rate [see Lemma 5.1(Giia)l. The penalized least
squares estimator can overcome this drawback. Let L,(g) be defined as in (1)
and let 2, , be the minimizer of the loss function

L.(g) +X,dJ?*(g),

where A, > 0 is a smoothing parameter [see, e.g., Wahba (1984) and
Silverman (1985)]. To study the asymptotic behaviour of &, ,, we evaluate the
increments of the empirical process v,, not only in terms of ||g — goll,., but
also in terms of J(g). This is done in Section 6.

2. The entropy of ¢: Definition and examples. Let (A, d) be a metric
space.

DEFINITION. For 8 > 0, the §-covering number N(8, A) is defined as the
number of balls with radius 8 necessary to cover A. In other words, N(§, A) is
the cardinality of the smallest set, T' say, such that for all A € A,

(5) mind(A;,A) < 8.

A eT

Take N(8, A) = » if no such finite set T exists. A collection T' satisfying (5) is
called a -covering set. The §-entropy of A is H#(5, A) = log N(§, A).

If A is not bounded, we shall consider the entropy of a ball around some
fixed A, € A.

DEFINITION. For o > 0, let B(Ay, o) ={r € A: d(A,Ay) <o} be a ball
around A,. Let

H(8;0) = #(8, B(Ary,0)).
We shall refer to s#(5; o) as the local entropy.

Note that -#(8; o) depends on A,. However, we shall not express this in our
notation.
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Now, let ¢ be a class of functions on R¢, endowed with (pseudo-) norm

1 n 12
lel. = £ lea ]
k=1

where x,,..., x, is a set of points in R?. We shall denote the 5-entropy and the
local 8-entropy of a ball B,(g,,0) ={g € £:||g — g, < o} around g, € &,
by #,(8,#) and #(8;0,), respectively. Note that this (local) entropy
depends on the metric ||+ ||, and hence on the configuration of the points
%y, ..., %,. However, it turns out that in many situations the order of magni-
tude of the (local) 8-entropy as function of 8 can be found without precise
knowledge of this configuration.

The concept of local entropy will especially be of concern in the case where
the functions in  are indexed by a finite-dimensional parameter, i.e.,

= {g,:0€ 0}, OCR".

As an example, consider the class of linear functions
&= {g(x) = 07x:6 € R?}.
Then it is easy to see that
(6) H#,(8; L8, %) <Alog L, for all 6 > 0,

where the constant A only depends on the dimension d.
Two more examples are presented in Lemma 2.1. Throughout, we use the
notation

log*a = (loga) V 1, a>0.
ExampLE 2.1. (i) Monotone functions. Let
&= {g:R - R, g increasing, |g| < 1}.

Then #,(8, #) < A(1/8)log™(1/8), for all 8 > 0 and for some constant A > 0.
(ii) Smooth functions. Let

Z={g:[0,1] >R, J(g) <M}, M=1,
where J%(g) = [|g™)2. Define

m-—1
1 x, x7]
Zﬂ . .
e m-1
1 x, x,

and let ¢7 , be the smallest positive eigenvalue of (1/n)Z7Z,. If we assume
¢1,, = ¢ > 0, then

M 1/m
%(8;0’,%)3A(?) , forall 6§ >0,

where A depends on m, ¢ and o, but not on n, M and §.
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Proor. (i) Define H,(B) = (1/n)2%_, 15(x;), B C R. Assume without loss
of generality that g > 0 for all g € # and that x,,..., x, are distinct. Take
N =|1/8%] + 1, where |a] denotes the largest integer less than or equal to a.
Let —»=ay<a; < -+ <ay_, <ay=» be such that H,(a;_,a;] < 8%
i=1,..., N. Define for each g € &£,

gi(g) = (l/n)kilg(xk)1(a,»_1,a,«](xk)/Hn(ai—1’ a;]

and

SORILIC

Then for i = 1,..., N,

2
“(g - 8Ki(g))1(ai_1,ai]"n < Hn(ai—l’ai]{gz(ai) - gz(a'i—l)}
+ H,(a;_,,a;]8%

Hence
2

N
Hg —8Y Ki(&)1w, 0| =0*g(a,)’ - g(a,)’} + 82 <28
=

1

We have that 0 <K,(g) < - <Kpn(g)<|1/8] and K(g) €N, i=
1,..., N. Therefore, the number of functions of the form =¥ , K,(g)1
is at most

(a;i-1a;]

((N+ 1) +|1/8] - 1)
[1/5] '
The logarithm of this expression is of the required order.

(ii) The proof of Theorem 15 of Kolmogorov and Tihomirov (1959, 1961,
page 308) shows that the set

Ze=(g:10,1] >R, |g| <C, J(g) < M}

can be covered by
c M\
N =exp| A, log*(g) + Alog*(—s—)

balls with radius & for the sup-norm, i.e., there exist functions g;,i = 1,..., N,
such that for g € &,

min sup |g(x) —g/(x)|<39.
8 x€[0,1]
Thus, the result follows if we show that the functions in B,(g,, o) are
uniformly bounded in a suitable way.
Assume without loss of generality that g, = 0. Set S, = {g € B,(gy,0):
J(g) = 0}. It follows from the Sobolev embedding theorem [see, e.g., Oden and
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Reddy (1976), page 85] that each g € B,(g,, o) can be written as g = h, + h,,
with h, € S, and |hy| < CyM for some C,. Hence ||h,||, <o + C;M < C,M
for some C,. But then |h,| < mC,M/¢, , < C;M for some C,, so that |g| <
C;M+CyM=C;M. O

REMARK. It can be shown that if the class of monotone functions defined
above is equipped with an appropriate L,-norm, instead of the L,-norm || - ||,
then the entropy is of order 6! [see Birgé (1987)].

3. Increments of empirical processes. This section contains some
probabilistic results, which we shall formulate in a general framework Let
(A, d) be a metric space, with metric of the form d? = (1/n)L?_, d2, where
{d,} is a family of pseudometrics. Let Z, be a real-valued process on A with
Z,(Ay) =0, Ay € A, of the form

1
Zn = T
where X,..., X, are independent centered processes on A with

| X, () - X, (D) | <M, d,(A,R), AMAeAk=1,...,n

nM:

We shall assume that M,,..., M, are uniformly subgaussian random vari-
ables, i.e., for some positive g8, T,

(7 Elexp|BM, "] <T <», k=1,...,n

Then it is possible to write down an exponential probability inequality for Z,
(see Corollary 3.2). This probability inequality follows from Lemma 3.1.

LemMA 3.1. Let z,,...,z, be independent and centered random variables
and ay,...,a, be a sequence of real numbers. Assume that z,,...,z, are
uniformly subgaussian with constants (B,T’). Then there is a constant & > 0,
depending only on (B, T), such that for any positive t,

9 at2
<2e&xp| -3
=1 ak

n
P ar2g

P(
k=1

Proor. See Kuelbs (1978), inequality 3.10. O

CoroLLARY 3.2. Suppose (7) holds. Then for some & depending only on
(B,1),

aa?

d?(AA) [

P(|Zn()t) -Z,(0)|= a) < 2exp[—

foralla > 0 and all A\, A € A.
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We shall now consider the increments of Z,(A). Let #1(5;0) be a continu-
ous function of & > 0, which bounds -#(8; o) from above. Recall that s#(5;0)
is the local entropy of a ball B(A,, o) around A, € A. The following theorem is
an adaptation of Pollard (1984) page 144. The proof is a standard application
of the chaining argument as it was introduced by Dudley (1978). Also see
Alexander (1984) for a good description of this method of proof.

THEOREM 3.3. Suppose (7) holds. Then there exist positive constants a, 7,
C, and C, depending only on (B,T), such that for all t with t/o > C, and

(8) t> 02[()“"/%(;‘;0-) du,

where t, = influ: ¥ (u;0) < nt?/0?), we have

at?
(9) IP( sup |Z,,(/\)|2t) < 2exp|——5 |-
A€B(Ag, o) o

Proor. Let for each i =0,1,...,T; be a 27 ¢,-covering set of B(A,, o),
ie., for each A there is a X?(A) € T, such that d(A, XP(V)) < 27%,, i =
0,1,... . Without loss of generality, we assume T; C B(Ay,0),i =0,1,... . Let
T = U7, T;. Then it suffices to show that

at?
P(sup|Zn(/\)| > t) < 2exp|——5 |-
AeT o
Now

IP’( sup|Z,(A)| = t)
AET

t t
< [P’( sup |Z,(X)| > —) + IP’( sup|Z,(1) — Z,(XO(1))| = —)
A(O)ETO 2 AeT 2

=P; + Py, say.

We have chosen ¢, in such a way that #(¢,;0) < nt2/0? with 7 to be
specified. Let 7 = @/8, where & is the constant of Corollary 3.2. Then, since
card(T,) < exp(nt?/o?),

P <9 2 at? 0 at?
< —_ - —| < -—1.
1= 2expIm o? 40%|” exp 802

Next, consider P,. Since

1Z,(A) - Z,0O)| = X |Z,0O)) - Z,(EDW))),
i=1
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we have that for any sequence {n,} satisfying X7_,n, < 1,

i . , t
P,< X P( sup | Z,(A2(1)) = Z,(X"D(A))] = m—)
i=1 AT 2

s . at’n;
<2 Zlem{ZJY(z ‘to; o') - ———-————~2_2(i_1)4t(2) ]
ie
From (8), we see that we may choose
7]: = —2-maX{C22_l V(X(Z_lto;a) —t_, E },

where E = £%_, 27%/i, and where C, is to be specified. Take 8,/C2 = d/32, so
that ‘

P,<2) exp
i-1

=) ~242 © ~12
an;'t ait
SzZeXP ——:7—]522 [_—

= [ 2-%32¢2 = 128:2E?

8n2t? an?tt?
C227242 27 Ui=Dyyl

a't?

< 2exp[— —5 | for some o’ > 0.
g

Combination yields

at?
P, + Py < 2exp| ——5 |- |
g

Of course, Theorem 3.3 is only of interest if in (8),

/:O\UZ/(u;U) du < o,

This entropy-integrability condition is well known in the literature on empiri-
cal processes [see, e.g., Dudley (1984) and Giné and Zinn (1984)].

From Theorem 3.3, we deduce two weighted versions which we shall apply
in Sections 4 and 6, respectively.

LeEMMA 3.4.  Suppose that (7) holds. Let 6 > 0, yn & > 1 and suppose

lim ay = O,

L—ox

_ J}y#(uLs; L3) du

“L Vn L
Then there exist constants L, and C,, depending only on (B,T) and the

where
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sequence {a;}, such that for all L > L,
Pl sup 1Z,(M)|
a0 ag>Ls G2(A, Ag) T

Proor. Replace L by 2~ and observe that

1201 r) _ ( 1Z,()|

> sup
dz(/\ A ) 276 <d(A, Ag)<2/7 18 d? (A, A

x/_)Sexp( C,L2%%n).

P sup P

d(r, Ag)>2L5

I
™

Fang ="

L

I

J

<) IP’( sup |Z,(A)]| = \/r7(2j6)2)
j=L \AeB(Ay,2/*1)

= ) P, say.
Jj=L

Let ¢; = Vn(2/8)* and o; = 2/*'5. It is easily seen that for any positive
C,,Cy,m, we have t;/a; > C,,

t;>Cy f X (u;0;) du
and ¥(¢y;0;) <nt;/g? for some t, < o;, provided ;j is sufficiently large.

Hence, we may apply Theorem 3.3: For some L, depending only on (B, I') and
{a.}, and for all j > L,,

at? a22162
P; <2exp|——5 | =2exp| ———— |
o
But then for L > L,,
a2%§%n
Y P<2) exp[ —————] < exp[ —C,L2%3%n]. O
Jj=L Jj=L

LEMMA 3.5. Suppose the conditions of Theorem 3.3 are fulfilled with
HK(8;0) <Ké %, 0<¢<1.
Then there exist constants L, and C, such that for any L > L,
COLzK]

[p( sup MzL\/f

- < exp
reBGy o) (d(A,20)) ¢ [

Proor. Application of Theorem 3.3 yields that for L>L, and j €
{0,1,...}, '
. 1-¢ a2?'L2K
|].'.D( sup |Zn(/\)| > (2 (J+1)a') Ll/I?) < 2exp[—(—rm .

A€B(Ag,2770)
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Hence
1Z,(M)| - a22L2K
Pl sup —————>LVK| <2} exp|— —5r55—F
r€BGg, o) (d(A,20)) ¢ = o 2920-0)
C,L?K
sexpl—— 3 | O

4. Rates of convergence for least squares and least absolute devia-
tions estimators. For the regression model of the Introduction, we investi-
gate the rate at which an estimator tends to g, in || - ||,,-norm. Recall that

1 7 2
lgll = = X |a(x)".
nop_1

First, consider the least squares estimator 2,. Let v, be defined as in the
Introduction:

v.(& — &) = Vn [L,(g) —EL,(g)] — Vn[L,(g) —EL,(g)].

In order to be able to apply Lemma 3.4 to v,, we assume that ¢,,...,¢, are
uniformly subgaussian: For some 8 > 0, I' > 0,

(10) sup max [E(exp|[3£k|2) <T <o,

n l<k<n

THEOREM 4.1. Assume that ¢4, ..., €, are centered random variables satis-
fying (10). Let 6, — 0 be a sequence with Vn 8, > 1 and suppose that for some
no,

LV #(uLs,;Ls,, <) du
(11) lim sup fo\/ ( Jn Lo, ) =0

L->»n>ng

Then &, converges with rate ©,(8,). In fact, there exist constants L, and C,
such that foralln > ny, L > L,

(12) |]j’("én - gO"n > Lan) =< exp[_COLzalzln] ‘
Proor. Rewrite L,(2,) < L,(g,) as

v,(8, — 80) = V1 8, — &olli-
Then the theorem follows from Lemma 3.4. O

In the particular situation that the functions in & can be indexed in a
suitable way by a finite-dimensional parameter § € ® C R", one can establish
the rate £,(n~'/?) for 2, by imposing the assumption that the pth absolute
moment of the errors exists. Here, p should be larger than the dimension r. In
that situation, the assumption that the errors are uniformly subgaussian is
not needed. See van de Geer (1988) for details.



ESTIMATING A REGRESSION FUNCTION 917

We now turn to least absolute deviations estimation. Rewrite L, (&, ;) <
L n, l(g 0) as
Vp 1(8n,1 — &) = VR pi(&a,1 — 80),

where

Un,l(g - &) = ﬁ[Ln,1(go) - IELn,l(gO)] - ‘/’7[Ln,1(g) - IELn,l(g)]
and

p(& — 80) = EL, (&) — EL, 1(&0)-

Throughout when considering least absolute deviations estimation, we shall
require that &,,..., ¢, have median zero, so that p%(g — g,) is nonnegative.
First, we relate p2(g — g,) to |lg — &ol12-

LEMMA 4.2. Assume that there exists a Dy > 0 and a « > 0 such that for
all 0 <a < D,,

(13a) inf min P(0 <¢, <a) > ka
n l<k<n

as well as

(13b) inf min P(—a <¢, <0) > «ka.

n l<k<n

Suppose moreover that for some sequence c,, > 1 and some D < ,

lg(xy) — 8o(x)]
sup max <D.

n 1l<k<n 1 +cn"g_g0"n

Let

= {(g _gO)/(l + cn”g _golln): g € f}
There exists an n > 0 such that for all f € F,

p2(f) =l fI5-
Proor. By straightforward manipulation
12 17
pa(f) = — Z Elep — F(2)| — = X exl
n _ n E=1
1
> f(xk)lp(o <&, < 3f(x))

T fx)=0

b T (AEIPGE) <6< 0).

f(xk)<0

[\

Assume now without loss of generality that D, < 3, D > 1. Then

D
3 ()| = 5| ()|
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and
D,
F|f(xk)| <D,, foral fe ¥, k=1,...,n

This yields for f(x,) >0, fe %,

P(0 < & < zf(xk))>P(0<sk<—f(xk)) € f(x,).

Similar arguments apply to the case f(x,) < 0. Thus p2(f) = «(D,/D)| f|?.
O

In what follows, we shall also work with the class
9_={ (g — &) :gef}
1+ cn"g - gO”n
defined in Lemma 4.2. Let £, ; = (8, , — 80)/(1 + ¢, ||8,.1 — &oll,.)-

THEOREM 4.3. Assume that the conditions of Lemma 4.2 hold. Let 5, — 0
be some sequence with Vn 8, > 1 and suppose that for some ng,

J¢ V#(uLs,; Ls,, F) du
14 lim su =0
( ) L—o nzrlz)o ‘/’7L8n

Then there exists constant Ly and C, such that for all L > L,, n > n,,

(15) P(|| £,.1ll, > L3,) < exp[ - C,L2ns2].
Moreover, if ¢,8, — 0, then |8, 1 — &ll, = £,(5,).

ProoF. The fact that v, (8, ; — &) = VnpX(&, , — &) and the convexity
of the least absolute deviations loss function, imply that v, f,, D=

Vnp2(f, 1)- But then, in view of Lemma 4.2, Vo (fr 1) = ﬂ\/_llfn 1||2 Apply
Lemma 3.4 to see that

IP(|| furll, > La,,) < exp| —CoL262n].

If | fn 1||n &,(8,) and ¢, 8, — 0, then certainly with arbltrary la.rge proba-
bility cn||fn 1||,,_% for all n sufficiently large. If cn||fn A, <3, then

n”én,l gO”n 2(1 + cn”én 1 gO” ) or cn”gn,l gO"n < 1 SO then
”én,l gO"n " fn 1”n(1 + cn"én 1 gO“n) = ﬁp(an) o

Note that in most instances, & will be a cone (i.e., if g € #, then also
ag € # for all a > 0). Then the local entropies of 4 and & are of the same
order, so that the rates of convergence for g, and &, ; coincide.
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5. Examples. We investigate three types of regression problems: linear
regression and two nonparametric situations with isotonic and smooth func-
tions (splines), respectively. Throughout, we assume that the appropriate
assumption on the errors are met, i.e., (10) in the case of least squares and
(13a) and (13b) in the case of least absolute deviations. The exploration of the
exponential bounds (12) and (15) are left to the reader.

LemMa 5.1. (i) Linear functions. Let £ = {g(x) = §Tx: § € R%}.

(ia) ”gn - gO”n = ﬁp(n_l/z)'

(ib) Let X, be the design matrix X,, = (x,, ..., x,)T. Denote the smallest
positive eigenvalue of (1/n)XIX, by ¢} ,. Let d, > 1 be a sequence satis-
fying

max max |x,|<d,,
l<k<n l<s<d
where (xy4,...,%y,) denote the coordinates of x,, k=1,...,n. Suppose
_1/2dn/l/’l n - 0. Then ”én 1 gO“n = ﬁ(n—l/Z)

(ii) Monotone functions. Let &= {g: IR — R, g increasing, |g| < 1}.

(iia) |18, — &oll, = G,(n"/*(log n)'/?).

(llb) ”én 1 gO“n = ﬁ(n 1/3(10g n)1/3)

(iii) Smooth functzons Let #={g:[0,1] - R, J(g) < M,}, M, > 1, where
JAg) = [Ig™)% m > 1. Define

1 x xm—1

and denote by ¢3 , the smallest positive eigenvalue of (1 /n)ZTZ, . Suppose
that ¢, , = & > 0 for all n sufficiently large.

(ma) ”én gO”n — ﬁ(n—m/(2m+1)Ml/(2m+l))

(iiib) Suppose M,, = ©(1). Then 18,1 — &oll, = G(n~"/@m*D),

Proor. All three cases follow by verification of (11) and (14). Roughly
speaking, one has to choose the rate 3, in such a way that the local §,-entropy
does not exceed n62. Furthermore, the entropy should be integrable. For cases
(ib), (iib) and (iiib), let &= {(g — g,)/(1 + ¢, |lg8 — &ll,.): & € £} with c, to be
specified. .

(ia) From (6)

1
#,(uL$,; Ls,,Z) sAlog(;—)

and, hence, for §, = n~'/2 and all n sufficiently large

J4V#(uLs,; L3, Z) du J3flog(T/w) du
. -
L

< const

Vn L3, -
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(ib) Taking ¢, =d,/¢, ,, we find

max sup | f(x,)| < sup 16 = 8]l =
L<hen fes T g 1+]0-6]ld,
Here || — 6, is the Euclidean norm of (8 — 6,) € R?. Thus, if c,/Vn = 0,

¢, =d,/¥1 , then |8, , — &ll, = G,(n"1/?).
(iia) From Lemma 2.1(3),

1.

1 1 1 1
H#(uLd,;Ls,, &) < const.—log*(—)né,zl——log*(——),
L L u u

for 8, = n~1/3(log n)/3 and n sufficiently large. Hence

fo#(uLs,;Ls,, <) du - t\/log*(l/L) 1\/log+(1/u) p
\/;Lﬁn < const. L3 fo " u

-0

as L — .

(iib) Obviously, we may take ¢, = 1 here, so that the rate follows from (iia).
(iiia) In this case, we use the fact that we may restrict ourselves to a ball
around g,. No matter what ¢ is, we always have

1 1 1/2
2 2
- < — - <2|= —g.l..
18, = 8oll. < =1va(8 ~ 80)| < (nkgllekl) 18, — &oll,

Condition (10) ensures that (1/n)L%_,|e,|? = £,(1). Therefore, it suffices to
consider a ball B,(g,, o), o > 0. But for L§, < o,

M, \V"
H(uld,; Lo, &) < #(uld,;0,F) sA(uL; ) .

This follows from Lemma 2.1(ii). Thus, if §, = n~m/@m*+Dpfl/@m+D,

H(uLd, ;0,F
fl\/ n(uLd,; o )du—>0 as L — oo,
0 ynLs,

(iiib) Again, take ¢, = 1. Then for f € &, J(f) < M, = ©£(1). This and the
fact that | f]|, < 1, implies that the functions in % are uniformly bounded
[see the proof of Lemma 2.1(ii)]. So the rate for g, ; follows from entropy
calculations. O

ReEMARK. The rate &,(n~'/3(log n)'/?) for monotone functions does not
coincide with the &,(n~'/%) rate of convergence in L,-norm, that can occur
when estimating a monotone density [Birgé (1987) and Groeneboom (1985)].
However, it should be emphasized that this is only due to our bound for the
entropy. The rate @;(n'l/ 3) follows from our techniques if the §-entropy is of
order 1/8. However, we were unable to prove the latter.
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6. Penalized least squares. In this section, we confine ourselves to the
situation where
Z={g:10,1] - R, J(g) <},
with

I g) = [le™f, m=1.

We assume throughout that J(g,) is finite, but that no further information on
&, is available [e.g., g, might not be very smooth in the sense of Wahba
(1977)]. The penalized least squares estimator g, , minimizes the loss
function

L,(g) +XdJ*(g),

with A, — 0 a smoothing parameter.

The asymptotic properties of g, , will be studied using results on the
increments of the process v, indexed by functions g € B,(g,, o). Using a
simple argument, we show in Theorem 6.2 that indeed, with arbitrary large
probability, ||8, » — &oll, < o for some o and all n sufficiently large.

LEmMMA 6.1. Assume that condition (10) on the errors holds. As in Lemma
5.1(iii), let ¢3 , be the smallest positive eigenvalue of (1/n)Z*Z, and suppose
1., =¢ > 0. Then

| vn(g — 8 0) |
sup

-1/2m m
g<B (g0 o |& — &oll, (1 + J(g))?

= o,(1).

Proor. This follows from Lemma 2.1(ii) combined with Lemma 3.5:

v, (g —
P sup 1|—1§2gm g0)| 1/2m > 21/2mL
g<B,(g, o 18 — &oll, (1+J(g))
(o] vn a—
<Y P su |1_1(g 8| ‘ > 21/2m],
4 _ /2m j-1 1/2m
i=1 | &<B&0, |l& = &l,  T"(1+2/71)
27" 1< J(g)<2/
v,(g —
+P lv-(e f‘;iz'm > gl/2my,
g<B,(g, |8 — &l
J(g)=<1 :
- CoL227/m Cy2V/m L2
< Zexp[————l/m +exp| - ——

=< exp[ - éLz] ’
for some € and for all L sufficiently large. O
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The consequence is that a rate for £, , can be found using relatively
straightforward arguments.

THEOREM 6.2. Under the conditions of Lemma 6.1,

”gn,)« - gO”n = é})z(/\n)
provided n™/@m*D) > 1,

Proor. First, we show that without loss of generality we may restrict
ourselves to the ball B, (g, o). Condition (10) on the errors implies that

(1/n) X lel® = 4,(1).
k=1
Now, suppose that (1/n)L7_,|e,|° < C2. Then
(186) ”gn,)« - go",zz =< n_l/zlvn(gn,). - go)| + ’\2n{J2(go) - Jz(gn,).)}

gives
2
18,2 = &olln < 2C| 8,1 — &oll, + A%2(&0)-

So clearly, then &, , — gll, < 4C for all n sufficiently large.
Next, we rewrite (16) as

g, — golemvin o PnBnn — 80l VR A(Tg0) ~ I(4,,0))
mh ol - 1-1/2m 1-1/2m
A 1201 — &0l
=e, +b,, say.
Let

t@L = {‘vn(gn,/\ _g0)| > L"én,)« - gO”rlz_l/zm(l + J(gn,A))l/zm}
and
Cu={J(&,,)) >M=J(g,)}.

On €, we have b, < 0, so on %f N €y,

Vi |8 s — 8ol ™ < L(1 + J(8,,0))"*™.

But, because n™/®m*D) > 1, this would imply that for M large, e, + b, < 0.
Since ||, , — &oll, cannot be negative, we thus have that for M large,
Suppose now that b, > e,. Then
‘/;”‘gn,). — 8o ”:;2m+1)/2m < 2bn
or
(17) 8.1 — &oll, < 2’\27:(‘]2(30) - J2(§n,).)) < 205,J%(go). -

Suppose on the other hand that b, < e,. Then on %5 N €2,

Vi |8, s — &l P < 2e, < 2L(1 + M)'/*™

n
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or
(18)  18n — &oll, < n7m/Cm DL EmTR(L 4 M)VEMTD,

For M large, & N €53 = #f and, by Lemma 6.1, P(#;) is small for L large.
Combination of (17) and (18) completes the proof. O

7. Concluding remarks. In our view, the approach we have presented in
this paper yields some insight in the common features of certain estimation
problems. The link with empirical process theory is quite obvious, and the
recent developments in this field make it possible to relate rates of convergence
to entropy. However, a drawback is that if ¢ is too large, then the increments
of v, (g — go)| or v, (g — go)| need not be small for small values of ||g — goll,,,
i.e., the processes are no longer stochastically equicontinuous [see Dudley
(1984) and Giné and Zinn (1984)]. Then, optimal rates slower than o,(n~'/%)
can emerge and such slow optimal rates cannot be handled by our technique.

This paper does not establish optimality of the rates that follow from
entropy calculations. If the distribution of the errors is given, one can use, e.g.,
Fano’s lemma [see, e.g., Birgé (1983) and Le Cam (1986), page 524] and the
capacity of & for | -|,, to find a lower bound for the speed of estimation.
Such lower bounds and minimax risks are also dealt with in Birgé (1983). For
appropriate error distributions, this bound coincides in most situations with
the rates in this paper. But since we did not prove local uniformity in g, of the
rates (which can of course be established by making the conditions locally
uniform in g, in a suitable way), the minimax-type lower bounds and the rates
in this paper are not completely comparable.

The entropy, and thence the rates, depend on g,. Local perturbations of g,
have no impact, but for example in two-phase regression, where the functions
are allowed to have a jump somewhere, the rate is £,(n~'/?(loglog n)'/?) if g,
does not have a jump, which is slower than the £,(n~'/?) rate that holds if g,
has a nontrivial jump not converging to zero [see van de Geer (1988)]. Also, we
believe that in isotonic regression the rate improves if g, is constant. As for
penalized least squares: If g, is very smooth in the sense of Wahba (1977),
then by choosing A, appropriately, one finds |8, , — &oll, = &,(n~27/¢m*D),
This can be shown by inspection of the order of magnitude of |v,(g — g,)| in
terms of J(g — g,) for small values of J(g — g,). Choosing A, appropriately
in this context means that the correct order for A, depends on the unknown
8o- Therefore, A, has to be taken data dependent, e.g., by cross-validation.

Related results for penalized estimators can be found in, e.g.,, Rice and
Rosenblatt (1981) and Silverman (1982). Most authors study the behaviour of
penalized estimators using the properties of reproducing kernel Hilbert spaces.
In such an approach, it is essential that the roughness penalty is a quadratic
form. The entropy approach on the other hand, only requires that finiteness of
the roughness penalty ensures a manageable entropy. On the other hand, our
approach with L,-entropy needed the assumption that errors are subgaussian,
whereas when working with smooth functions it actually suffices to assume
the existence of a Laplace transform. Probably the L,-entropy does not
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capture all the structure in classes of smooth functions. An L_-entropy
condition might lead to more refined results for this case.

Acknowledgment. I am very grateful to an anonymous referee, whose
suggestions helped me to improve the organization of the paper and to gather
the probabilistic arguments in one theorem.
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