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In this paper we obtain the asymptotic distribution of robust nonpara-
metric autoregression estimators for dependent observations. Weights based
on kernel and nearest-neighbor methods are considered.

1. Introduction. Let {(X,,Y)): ¢ > p + 1} be a strictly stationary process,
X, € R?, Y, € R. We consider nonparametric estimators of the regression func-
tion ®(x) = E(Y,|X, = x). Since we can take X, =(Y,_;,...,Y,_,), this in-
cludes estimation of the predictor function.

In recent years several dependence conditions for stochastic processes have
been used in order to study the asymptotic behavior of nonparametric esti-
mates of the predictor function. More precisely, certain mixing conditions have
been considered. Roughly speaking, all that these mixing conditions say is that
the dependence between the random variables is weaker the farther they are
apart. The first paper on this subject was by Rosenblatt (1956) who introduced
the notion of strong mixing processes: Let {Z;: j > 1} be a stochastic process
and denote by M, , the o-algebra generated by the random variables
{Z,; a <t <b}, 1 <a < x. The process is said to satisfy a strong mixing or
a-mixing condition if there exists a sequence a(n) of positive numbers such
that lim, ,,a(n) = 0 and forany A€ M, , BE M,,, .. we have

|P(ANB) — P(A)P(B)| < a(n).

However, the more often studied mixing condition is a stronger one, the
¢-mixing condition [Billingsley (1968)]. The sequence is said to be ¢-mixing or
uniform strongly mixing if there exist coefficients ¢(n) such that
lim, ,.¢(n) = 0 and the inequality

|P(ANB) ~ P(A)P(B)| < ¢(n)P(A)

holds forany Ae M, ,, BEM,,, ...

This condition is considerably stronger than the a-mixing condition. In
particular, for a Gaussian stationary process, the ¢-mixing condition is equiva-
lent to m-dependence [i.e., there exists m € N such that ¢(n) = 0 for all
n > m] as proved in Theorem 17.3.2 of Ibragimov and Linnik (1971), while
a-mixing processes generally include a pth-order autoregressive model.
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Another dependence measure, weaker than the ¢-mixing, is the p-mixing
condition which is based on the maximal correlation and is defined as follows.
The process {Z,: ¢ > 1} is said to be p-mixing if

|P(A N B) - P(A)P(B)| <p(n)[P(A)P(B)]"*

holds for any A€M, ,, BEM,,, ,. and some sequence {p(n): n > 1} de-
creasing to 0.

A first reference to nonparametric methods in time-series analysis is
Watson (1964), who applied kernel methods to a meteorological prediction
problem. The kernel estimate of ®(x) is defined by

T
(1.1) Pr(x) = L we(2)Y,

t=p+1

where

T
w,r(x) = K((X, —x)/hr) Z K((Xr_x)/hT)7

T=p+1

K is a nonnegative integrable function on R? and k, > 0. Asymptotic proper-
ties of such estimators and predictors were obtained by Roussas (1969), Bosq
(1980), Doukhan and Ghindeés (1980, 1983), Collomb (1982, 1984), Robinson
(1983), Yakowitz (1985) and Doukhan, Leén and Portal (1985). Collomb (1984)
considered uniform consistency for kernel estimators under the ¢-mixing
condition. Roussas (1969) Doukhan and Ghindés (1980) and Yakowitz (1985)
obtained pointwise consistency for Markov processes satisfying the G2 condi-
tion which is basically a ¢-mixing condition. These consistency results where
extended to less restrictive dependence structures by Peligrad (1988) who
assumed a p-mixing condition and also required for ¢-mixing processes weaker
assumptions on the bandwidth selection. Truong and Stone (1988) obtained
the optimal rates of convergence in probability for a-mixing processes and
Roussas (1988) studied strong consistency results for all kinds of mixing
conditions. Truong and Stone (1988) and also Roussas (1988) eliminated the
condition of boundedness on the response variables. This condition was also
relaxed to a moment condition by Sarda and Vieu (1986, 1988) for ¢-mixing
processes. Robinson (1983) obtained weak consistency and asymptotic normal-
ity of the kernel estimate for a-mixing processes. See also Bradley (1983) for
some normality results.

Collomb (1980, 1985) extended nearest-neighbor methods from density
estimation to nonparametric regression in the ii.d. case and for ¢-mixing
processes, respectively. These estimators are defined through

A

T
(1.2) Or(x) = ¥ We(2)Y,

t=p+1
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where
T
Wr(x) =K((X,—x)/Hrz)| Y K(X,-=x)/Hp),
T=p+1
H, is the distance between x and its k-nearest neighbor among X, . ,,..., X,

k =kp is a fixed integer and K is as in (1.1). Mack (1981) studied the
asymptotic distribution of these estimates for the i.i.d. case.

Both methods are highly sensitive to the effect of just one isolated disparate
observation Y,, particularly if X, is close to x, since they are weighted averages
of the observations. In order to obtain robust nonparametric estimates M- and
R-type methods have been considered.

In the ii.d. case Tsybakov (1983) and Hardle (1984) studied pointwise
asymptotic properties of a M-type version of the Nadaraya—Watson method
when scale is known. Later on, Hirdle and Tsybakov (1988) extended their
previous results to scale equivariant kernel estimates obtaining a central limit
theorem for simultaneous regression and scale estimation. See also Boente and
Fraiman (1989b). R-type kernel and nearest-neighbor with kernel estimates
have been considered by Cheng and Cheng (1987), where by R-type estimates
we mean robust estimators obtained from rank tests [see for instance Huber
(1981)].

M-estimators with kernel weights were adapted to time-series models by
Robinson (1984) who established a central limit theorem when scale is known
assuming an a-mixing dependence structure. A similar approach was consid-
ered by Collomb and Hérdle (1984), who obtained uniform convergence of this
family of estimates for ¢-mixing processes.

In Boente and Fraiman (1989a) strong consistency of robust scale equivari-
ant estimators for nonparametric regression models based on kernel and
nearest-neighbor methods was obtained for ¢- and a-mixing processes.

In this paper we study the asymptotic distribution of both families of
estimates under some regularity conditions, for a-mixing processes. Our re-
sults for kernel weights are closely related to those of Robinson (1984). We
consider the case when scale is unknown by using a consistent scale estimator.
The asymptotic distribution for the robust estimates based on kernel weights
is also used as an auxiliary result in order to obtain the asymptotic normality
of the robust nearest-neighbor estimates.

Let ¢ be a real function and (X,Y) be a random vector with the same
distribution as (X,,,,,Y,,,). Denote by F(y|X = x) a regular version of the
conditional distribution function of Y|X = x and define g(x) as the solution of

(1.3) Ju((y - g(x)) /s(x)) dF (51X = x) = 0,

where s(x) is any robust scale measure, for example, s(x) = MADy(x) =
med(|Y — m(x)| |X = x), where m(x) = med(Y|X = x) is the median of the
conditional distribution function.
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If F(y|X = x) is symmetric around 7(x) and ¢ is an odd, strictly increasing,
bounded and continuous function, we have that g(x) = 7(x). The robust
nonparametric estimators of g(x) related to kernel and nearest-neighbor
weights are defined as the unique solution g;(x) and g;(x) of

T
(1.4) Z lth(x)lp((Yt - gT(x))/sT(x)) =0
t=p+
or
T
(1.5) ) IWtT(x)'lf((Yt - 8r(x))/3r(x)) =0,
t=p+

respectively, where w,; and W, are defined in (1.1) and (1.2), respectively.
The scale measures are, for instance, sp(x) = med(|Y — m4(x)||X = x) and
§7(x) = med(|Y — fp(x)| |X = x), where the medians are evaluated corre-
sponding to the empirical conditional distribution function based on kernel
and on nearest-neighbor methods, respectively, i.e.,

T

(1.6) Fr(y|X=x) = Z lth(x)lA(Yt)!
t=p+
. T

(1.7) Fr(yX=x)= X thT(x)lA(Yt),
t=p+

where A = (—o, y] and 1, denotes the indicator function of the set A. More
generally, any robust estimator consistent to s(x) can be used.

In Section 2 the asymptotic normality of the proposed estimates is stated.
In Theorem 1 we require the kernel’s bandwidth to verify the condition
lim,_, ,Th2*? =B, 0 < B < », instead of lim; , Th%*? = 0 and the asymp-
totic bias is calculated. Analogously, in Theorem 2, we require the sequence k&
to verify that lim,_, kT~ 2/®*® =y, 0 < y < . The bias of both estimates
is the same as for their linear relatives and the relationship between both
asymptotic variances is the same as for kernel and nearest-neighbor density
estimates.

In Section 3 proofs and some auxiliary results are given.

2. Asymptotic distribution. We will need the following assumptions:

H1l. ¢: R - Ris an odd, strictly increasing, bounded and continuous func-
tion such that lim, , .¢(¢) = a > 0.

H2. The function ¢ is twice continuously differentiable with second deriva-
tive ¢" verifying that there exist positive constants ¢, M and & such that
[Y"(2)] < clt|"@*+® for |t| > M.

For instance ¢(¢) = arctg(¢) verifies H1 and H2.
H3. E[y'(Y, — g(x))/s(xNIX, = x] # 0.
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H4. The process {(X,,Y,): ¢ > p + 1} is a strictly stationary a-mixing pro-
cess, with the mixing coefficients a(n) verifying:

NY a(j) >0 as N,
N+1

H5. The vector X, has a density f continuous and positive at x.

H6. (a) For all s > 1 the density f,(u,v) of (X,, X,, ) is bounded uniformly
in s, or

(b) For all s > p + 1 the density f,(u,v) of (X,, X, ) is bounded uniformly
in s and X,=(Z,_y,...,2,_,), Y, =Z,, where {Z} is a strictly stationary
a-mixing process.

H7. The kernel K: R? —» R is bounded, nonnegative, [K(z)du =1 and
|ulPK(u) - 0 as |u| — .

HS8. There exists 0 < 8 < © such that AT ?*? - B as T — .

H9. There exists a continuous, symmetric distribution function F, such
that the conditional distribution F(y|X = x) = F((y — g(x))/s(x)) with g and
s such that

(a) g verifies a Lipschitz condition of order 1, and there exists

'}ig(l)(g(x +eu) —g(x))/e =g'(x,u),

(b) s verifies a Lipschitz condition of order %, ie., |s(x)— s(x)| <
Clu — x|'/2 for some C > 0, and lim, _, o(s(x + su) — s(x))/e'/2 = 0.

Note that without loss of generality we may assume that the scale function
of F(y|X = u)is s(u) = MAD (u).

H10. The kernel K is twice continuously differentiable and verifies:

(@ 0< [IK(uw)|du <o, [KXu)du <> and [ulPK,(u)—> 0 as |u| > o,
where K(u) = L?_,(0K/du ;Xu)u ;.

() [ulP*'Ky(u) > 0 as |u| — =, where Ky(u) = L, ;(0°K/du, ou Xu)u,u,
and u = (uy,...,u,).

H11l. There exists 0 < B < ©» such that kYPTX/(P+DH-1/P)
B(f(x)MV))/P, where A(V;) denotes the Lebesgue measure of the unit ball.

THEOREM 1. Assume H1 to H9 and that gr(x) — g(x) in probability.
Then if sp(x) is any sequence of scale estimators such that sp(x) = s(x) in
probability

2
(ThR)*(gr(x) — 8(x)) =, N(bl,«rf / ll/z(u)dFo(u)/ ( / l/"(u)dFo(u)) )
holds, where

by =B/ [g'(x,u)K(u)du,  of =s*(x) [K*(u) du/f(x)

and -, stands for weak convergence.
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THEOREM 2. Assume H1 to H11 and that g;(x) = g(x) in probability.
Then, if $7(x) — s(x) in probability we have that kX*(g,(x) — g(x)) is asymp-
totically normally distributed with mean b = b,( f(x)MV))/? and variance
o2 = o2f(x)AMV)V(¢), where b, and o are given in Theorem 1, and V() =
JA(w) dFy(w)/(f¢'(w) dF(w))>.

REMARK 2.1. Conditions and a proof for the almost sure convergence of
gr(x) and g,(x) to g(x) may be found in Theorems 2.1 and 3.1 of Boente and
Fraiman (1989a). However, in order to obtain the asymptotic distribution of
the estimates we just need the convergence in probability, which follows
straightforwardly by a second-order Taylor expansion as in the proof of
Lemma 4 of Section 3. Therefore we will just assume it on Theorems 1 and 2.

ReEMARK 2.2. The asymptotic variance in the case of kernel weights is given
by V, = oZV(y) with

fl/fz((u - g(x))/s(x)) dFy x_ (u)

V(l/f) = 2
(/¥ = () /5(2)) dFyxos)

and

of = s%(x) [K*(u) du/f(x)
and by

Vo = Vi f(x)M(Vy) = s%(x) [K2(u) du A(V)) V()

when we use nearest-neighbor weights. sZ(x) [respectively §2Z(x)] provides a
consistent estimator of s%(x) and fr(x) = (ThR) 'L, K(X, — x)/hy) is
a consistent estimator of f(x), as was shown by Robinson (1983). Then in
order to estimate V, (respectively V,) it is enough to give a consistent estima-
tor of V(). For kernel weights define

T
Bir = Z th(x)l/fz((Yt—gT(x))/ST(x))

t=p+1

and

T
Byr= YL w(x)y'((Y, - gT(x))/sT(x)) = Ar(x, gr(x), s7(%)).

t=p+1

Then Ay = B,;/Bj; is a consistent estimate of V(). Effectively, in the proof
of Lemma 4, it is shown that A;(x, g;(x), sp(x)) converges to A(x, g(x), s(x)) =
J'(u) dF(u) since gp(x) and sp(x) are consistent estimates of g(x) and
s(x). The same argument can be applied to 2 since  is strictly increasing
and bounded. Thus B,; converges to [¢?(u — g(x))/s(x)) dFy x_,(u) in
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probability, and therefore A s2(x)/K%(u)du/f;(x)is a consistent estimate of
the asymptotic variance.

An analogous argument hold for nearest-neighbor weights.

REMARK 2.3. The problem of bandwidth selection has been considered by
several authors. In the i.i.d. case, Hirdle and Marron (1985) considered a
cross-validation method for the classical kernel estimate, which tends to select
a bandwidth that yields a good estimate of the regression function, and they
showed the asymptotic optimality with respect to the mean square error. Vieu
and Hart (1988) adapted this proposal to ¢-mixing processes. Wong (1983) also
considered the smoothness parameter by cross-validation on the average square
error and showed consistency in the ii.d. case. Recently, Hardle, Hall and
Marron (1988) and Hirdle and Bowman (1988) studied the problem of the
smoothing parameter selection for fixed carriers in the ii.d. case, using
cross-validation with a weighted least squares criterion.

In our framework, both the smoothing parameter A, (or the number of
nearest neighbors k,) and B can be selected by minimizing the asymptotic
mean square error as was done by Hérdle (1986) in the i.i.d. case for his robust
proposal. Since the objective function is the same, the problem is reduced to
using consistent estimators of the scale, s(x) and the density function, which
are given, for instance, in Remark 2.2 and in Boente and Fraiman (1986),
respectively. This selection of the parameters involved will lead to consistent
and asymptotically normally distributed estimators.

3. Proofs. In order to prove Theorem 1 we will use the following lemma
due to Robinson (1983), Lemma 7.1.

LemMa 1. Let {V,;, 1<t <T, T > 1} be a triangular array of random
variables zero mean and {ar: T > 1} a sequence of positive constants such that:

(i) For each T, V,p, t = 1,...,T, are identically distributed random vari-
ables and V,r is measurable with respect to the o-field generated by (X,,Y,)
with {(X,,Y,): t > 1} verifying H4.

(i) There exists C > 0 such that P(V,;| <C) =1 forall1 <t <T,T > 1.

(iii) ap > 0 and Tay > ©as T —> .
(iv) There exists 0 > 0 such that E(V2)/ap - 0% as T — .

(v) There exists C, > 0 independent of T such that E(\V,;V,,, ;) < Cia%
fors > 1,1 <t < T and T large enough.

Then S; = (Tap)™Y2LT_V,; converges in distribution to a normal variable
with zero mean and variance o .

In the following lemma we give a short proof of the asymptotic distribution
of the linear kernel estimates, using Lemma 1, in order to include the case
where Th2*?2 > 8,0 <B <, as T — o,
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Lemma 2. Let {(X,, Z,): t > 1} be a stationary random process verifying H4
such that |Z,| < M for all t > 1. Denote by F(z|X, = u) the conditional distri-
bution of Z, given X, =u, by ®u)=E(Z|X;,=u) and by oXu)=
E(Z, — ®(x))?X, = u). Let us suppose that:

() @ is Lipschitz and lim__, o(®(x + su) — ®(x))/e = O'(x, ).
(i) o2 is continuous in a neighborhood of x.

Let ®p(x) = LT w,p(x)Z, with th(x) defined as in (1.1). Then H5 to H8
imply that (ThE)*(®p(x) — ®(x)) is asymptotically normally distributed
wzth mean b, = B(1+P/2)fd>'(x u)K(u)du and variance of = o%(x)K, with

= [K%u) du/f(x)

Proor. Since (Th2) LT K(X, — x)/h) converges to f(x) in probabil-
ity, it is enough to show that

T
(2) (Thp) ™" L K((X, =) /k)(Z, - (X))
. N(0,0%(x) f(x)[K*(u) du)

and

T
(b)  Sp=(Thp) '? };IK((X‘ —x)/hp)(P(X,) — ®(x))

— b, f(x) in probability.

Under H6(b), (a) follows from Theorem 5.1 of Robinson (1983). Under
Hé(a), (a) follows easily applying Lemma 1 to

Vir = K((Xt - x)/hT)(Zt - 9O( Xt))'
As

E(S;) = (Th% )szK(u)(CIJ(uhT +x) — ®(x)) f(uhp+x)du,
H7, H8(i) and the dominated convergence theorem entail that
lim B(S7) = f(x)p®">/2 [K(u)®(x, u) du.

Therefore, in order to prove (b), it is enough to show that the variance of S,
verifies that lim; . V(S7) = 0. Denote by W,; = K(X, — x)/h XP(X,) —
®(x)). As |W,7| < 2M|K|,, = C,, where |K|, = sup, < ge|[K ()|, Theorem 17.2.1
of Ibragimov and Linnik (1971) implies that |Cov(W,,, W, ., 1)| < a(r)C;. On
the other hand, using H7 and assumption (i), standard arg'uments led to the
following inequalities:

| Cov(Wig, Wiy 1) | < Cob%(hR) for r > p,
ICOV(W’tT’ t+r,T)| =< CthT(h'g‘) for1 <r<p,
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and
V(W,r) < Coh%h,

for some positive constant C,. Therefore, as

T-1T-t
V(S,) < (Thg)™" Z V(W) +2(ThR) ™ Zl ZI|COV(WtT, Weir o)l
t=1 t r

< Cyh% + 2C,(N — p)hRh% + 2C,(hE) ™" 2 a(r) + 2C,ph%,
N+1

taking N = [(h£)™1] + 1, H4 implies the desired result. O
We will denote by ,(¢) = oy(¢/0).

Lemma 3. Under H1, H2 and H4 to H7, if hy > 0 and Thf - «© as
T — « and F(y|X = x) is symmetric around g(x) we have

T
(Th)'? L wir(2)[Woer/(Y — 8(2)) = ¥, (Y, — g(x))] >0 asT -,

t=p+1

in probability for any sequence o(T) = op(x) such that op(x) - o(x) =
o> 0 as T — « in probability.

Proor. By H5 and H7 we have that (TR2)'L7_, ., K(X, — x)/h ) con-
verges to f(x) in probability. Therefore, it is enough to show that

T
(ThE) V2 ¥ K((X, - x)/hp)[Wa)(Y; — (%)) — ¥,(Y, — g(x))] - 0

t=p+1

in probability as T — «. For any s > 0 define Hy(u) = ¢, (&) — ¢,(u),
I(w) = ¢, () — ¥, (), Ji(s) = (ThR) VLT, +1K((X x)/hp)H(Y, —
g(x)), JT(s) = Jj(s) — E(JF(s), Jp(s) = (Th") gt o K(X, -
x)/hp)I (Y, - g(x)) and J7(s) = J7(s) — E(J7(s)).

It suffices to show that

(3.1) lim lim sup E(JF(s)) =0

T->®d->00<s5<d

and

(3.2) lim lim P( sup |Ti(s)|> g) -0
T-od->0 \o<s<d
holds and the same result with J5(s) instead of J7(s). (3.1) is straightforward
using H1, H7 and the dominated convergence theorem.
In order to show (3.2) it is enough to prove that the sequence J;(s) of
random variables on the space C([0,1]) of continuous functions on [0, 1] is
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tight. According to Theorem 12.3 of Billingsley (1968) if suffices to verify that

1. The sequence {J;(0)} is tight.
2. There exist constants ¥ > 0 and @ > 1 and a nondecreasing function F, on
[0, 1] such that

E(|T5(s3) = T5(s)[) < (F(sy) — F(s1)"
for all 0 < s, < s, and T large enough.

(1) follows since J;(0) = 0.
As in Lemma A of Fraiman (1980) we have

(33) |H,(u) - H,(2)| < F(s;) = F(sy),
where F(t) = at — C(o + t)™1, C is a positive constant and a is given in H1.

Denote by V;p = K(X, — x)/h ) H,(Y, — g(x)) — H,(Y, — g(x))]. Then we
have that (3.3) implies that |V,;| < sup{|K(«)|: u € RP(F(s,) — F(sy) = C,.
Therefore Theorem 17.2.1 of Ibragimov and Linnik (1971) implies
(3.4) |CoV(Ver, Vi r)| < a(r)CE.

On the other hand,

|Cov(Vir, Virr,r)| < (F(s5) = F(s1))*

X {E[K((Xt —x)/hp) K(( X4, — x)/hT)]
+E’K((X, — x)/hp)}
< hP(F(sy) — F(51))*{Ca + (JK(u) f(uhy + x) du)?)

holds for r > p from H5 and H6 with C, a positive constant.
From a slight modification of Bochner’s theorem used by Parzen (1962) we
have

fK(u) f(uhp +x)du - f(x) asT — o,
which entails that there exists positive constants C;, C, and T, € N such that
(8.5)  |Cov(Vir, Ve, 1) | < Cah¥(F(sy) = F(s,))” for r > p,
|Cov(V,z, Visr,2)| < CuhR(F(s3) — F(s,))® forl<r<p,
and
E(V) < (F(s;) = F(s))*E[K*(X, - x) /hq)]

< C,hR(F(sy) — F(sy))? for T > T,.

(3.6)
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Finally, as
E((J#(s2) - T3(s0)))

- (Thg)‘IVar( f m)

t=p+1

T T-1 T-t
=(Thg)™t ¥ Var(Vip) +2(Thg) ™" ¥ ¥ Cov(Vir, Vi, 1)

t=p+1 t=p+1r=1

< (Thg)™" f E(V3)

t=p+1

T N T
+2(Thf‘)_1 > {Z|C°V(VtTth+r,T)|+ h |COV(VtTth+r,T)|},

t=p+1 \r=1 r=N+1
(3.4), (3.5) and (3.6) imply that for T > T,
E((J7(s5) — T5(s1)))
< (F(o2) = F)F[Cip + 1) + N =)t 1K LA T ()]
N+1
Let N =[h7P] + 1, then we have Nh§{ < 2, N < T as Thf — «~ and there-
fore H4 implies that for T' large enough

E((T#(s) = T#(s1)’)

< (F(sy) - F(sl))z[c4(p +1) + 205 +| KN N)fla(r)]

< C(F(s3) = F(51))’
with C = C, + 3C;.
A similar argument shows that (3.1) and (3.2) holds for J7(s). O

ReMARK 3.1. Note that Lemma 3 also holds if we replace ¢ by ¢? and by
¢’ since (3.3) holds in these cases.

LEMMA 4. Under H3 and the assumptions of Lemma 3, if F(y|X = x)
is a continuous function of x, symmetric around g(x) and gr(x) = g(x) and
sp(x) > s(x) is probability, we have that (ThE)'/*(g (x) — g(x)) has the same
asymptotic distribution as

r |
s(x)[A(x, g(x),s(x)] (ThE)? L wr(x)u((Y, — g(x))/5(x)),

t=p+1

where A(x,u,0) = [¢'(y — u)/o) dF(y|X = x).
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Proor. Denote by Ap(x,u,0) = L], w,(x)y(Y, — u)/o) and by
Ap(x,u,0) = T W (XY ((Y w)/o). The mean value theorem entails

0 = (ThE)"*Ap(x, g7(%), 57(x))sp(x)
(8.7) = (Th)*rp(x, g(x), sp(x))sp(x)

—(Th$)"*(gr(x) — g(x))Ar,
with
Ap=Ap(x,8(x), sp(x)) + (gr(x) — g(x))yr(x, £r(x), s7(x))/s7(x)
and
ér(x) = (1 - 07)g(x) + 0r87(x)
with 0 <60, < 1,

T
'YT(x’u’o') = (1/2) Z th(x)‘/f"((Yt - u)/a)

t=p+1

From H2 we have that yp(x, §T(x) sp(x)) is bounded and therefore the
second term in Ay converges to 0 in probability.

On the other hand, A,(x, g(x), sp(x)) — Ap(x, g(x), s(x)) = 0 in probability
by Remark 3.1. Finally, if we show that A,(x, g(x), s(x)) = A(x, g(x), s(x)) in
probability, the conclusion of Lemma 4 follows from (3.7) and Lemma 3.

Since (Th$)™'L]_, . K{(X, — x)/h ) converges to f(x) in probability, it is
enough to show that (Th) 'L, K,(X, — x)/h 'Y, — g(x))/s(x)) con-
verges to f(x)A(x, g(x), s(x)) in probability, which follows straightforwardly
from Markov’s inequality, by majorizing the variance as in (3.5) and (3.6). O

ProOF OF THEOREM 1. As g, (x) converges to g(x) in probability we have
that by Lemma 4 it suffices to show that

(Thp)'? Z wr(x)Z,
(3.8) t=p+l

= N{byf0'(0) dFy(w) /32, o2 [02(0) dFo() /5%()),

where Z, = y((Y, — g(x))/s(x)), which follows from Lemma 2 since ®(x) = 0
o¥(x) = [§*(u) dFo(u) and ®'(x, u) = g'(x, u) [¥'(t) dFy(t)/5(x). O

PrOOF OF THEOREM 2. Define as in Lemma 4,

T
’\T(x,u’o') = Z VVtT(x)l/'((Yt - u)/O’)

t=p+1
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and
_ T
’\T(x, U,(T) = Z W.:T(x)*/"((Y.: - u)/o-).
t=p+1
The mean value theorem entails
(3.9) 0 = k¥ 2Ap(x, 8p(x), §7(2))8p(x) = k¥ 2 p(x, g(x), §7(x))37(x)
- kY% (8r(x) — g(x)) A%,

where
Af = XT(x,g(x),§T(x)) + (8r(x) —&(x))yr(x, ép(x), 81(x)) /87(x),
ép(x) =(1-07)g(x) + 0p87p(x)
with 0 < 6, < 1 and

T
yr(x,u,0) =(1/2) X Wr()¢" (Y, - u) /o).

t=p+1

As in Lemma 4, the second term in A% converges to 0 in probability.
Then (3.9) implies that 2%/%(8;(x) — g(x)) has the same asymptotic distri-
bution as

-1 T
s()( [W(w) dFo(w)| WY T War(2)0(¥, - () /81(x),

t=p+1

if we show that Ap(x, g(x), §;(x)) converges to A(x, g(x), s(x)) in probability.
Therefore it is enough to show that

T
D) k¥ X Wr()y((Y, - g(2))/37(x)) »* N(bs, 03),

t=p+1

where b5 = (f(X)MV)2b, [¢'(w) dF(u)/s(x), of = f(x)MV)olB,/s*(x)
and B, = [¢*(u)dF,(u)
and

(i)  Ap(x,g(x),87(x)) = A(x, g(x),s(x)) in probability.

In order to prove (i), let A% = kp,/(Tf(x)A(V))). Boente and Fraiman (1986)
established that 2%%((h,/H;) — 1) is asymptotically normally distributed and
that (THR)™'L7_, ., K(X, — x)/Hz) = f(x) in probability. Thus it is enough
to show that

T

Sp=k¥*(Thg)™' ¥ K((X,-x)/Hp)d((Y, — g(x))/8r(x))

t=p+1

converges to a normal distribution with mean b, = b;f(x) and variance
2 _ 2 2
of = oif(x).
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A second-order Taylor expansion gives Sy = Sp; + Spy + Spg, Where

T
Sy =k¥A(ThE) ™" ¥ K((X, - x)/hp)y((Y, — g(x))/37(x)),

t=p+1

Spy = k¥*((hp/Hp) — 1)(Thg) ™!

T
X ¥ K((X,—x)/hp)¥((Y, - g(x))/87(2)),

t=p+1

Srg = k¥*((hg/Hp) — 1)*(Thp) ™!

T
X Y E((X, —x)/ér)u((Y, — g(x))/87(x)),
t=p+1
where min(h,, Hy) < &5 < max(hp, Hyp).
The proof of (i) will be complete if we show that

(@) Sry, =, N(by, o),
(b) S;; = 0 and S;; — 0 in probability as T — .

As Up = (fFMV)VYAThR) L], .1 K(X, — x)/h ) converges in probabil-
ity to (fOMV'?f(x)/K(w)du and Sy, = (TR)'2ET_, , ,w,p(x)y((Y, -
8(x))/87(x)Uy, (a) follows from Lemma 3 and (3.8).

Since k3 *(hp/Hyp) — 1) is asymptotically normally distributed and ¢ is
bounded, in order to prove (b) it is enough to show that

T
a0y (T I KX =0 /he)b(Y. - () /62(x)

— 0 in probability

and that
T
(3.11) (Thg)™" ¥ |K,((X,—x)/¢r)| isbounded in probability.
t=p+1

(3.11) can be obtained from H10(b) in a similar way as in Boente and Fraiman
(1986), Theorem 5.

Denote by Ap(x,u,0) = L7, wir(x)y(Y, — u)/a), where wp(x) =
K((X; — x)/hp)/ZT_, 1 K{(X, — x)/hy). By H10(a) and Lemma 3 we have
that '

Np(x, g(x), 87(x)) — Xp(x, g(x), s(x))
— 0 in probability.
Then (3.10) follows if we show that

T
Qr=(Thg)™' ¥ K,((X,-x)/hp)w((Y, - g(x))/s(x))

t=p+1
— 0 in probability.
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Since H3 holds, E(Q;) » 0 and straightforward calculations lead to
Var(Q) — 0.

(ii) After a second-order Taylor expansion as in (i), the same argument used
in Lemma 4 can be applied to conclude the proof. O
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