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NONPARAMETRIC ESTIMATION OF A PROBABILITY
DENSITY ON A RIEMANNIAN MANIFOLD USING
FOURIER EXPANSIONS

By HARRIE HENDRIKS

Katholieke Universiteit Nijmegen

Supposing a given collection y,,...,yy5 of iid. random points on a
Riemannian manifold, we discuss how to estimate the underlying distribu-
tion from a differential geometric viewpoint. The main hypothesis is that
the manifold is closed and that the distribution is (sufficiently) smooth.
Under such a hypothesis a convergence arbitrarily close to the N~/ rate
is possible, both in the L, and the L, senses.

1. Introduction. Potential applications of differential geometry in statis-
tics are at least two-fold: In a wide variety of situations the statistician is faced
with a sample space that is no longer Euclidean but is more appropriately
described by a manifold. On the other hand, the statistical model seems to be a
geometrical object per se. Many statisticians have paid attention to formulat-
ing and explaining properties of statistical models in geometrical language. An
interesting survey with a large number of references can be found in
Barndorff-Nielsen, Cox and Reid (1986).

Although we are convinced that still a lot may be done in this area, in
particular when general parametric models are considered, in this paper we
focus on a special statistical problem where the sample space is a manifold.

Statistical theory on sample spaces like the circle and the two-dimensional
sphere dates back to Watson and Williams (1956). A survey of the state of the
art as well as many references can be found in Mardia (1972), Watson (1983)
and Fisher, Lewis and Embleton (1987). Testing for uniformity on a compact
homogeneous space has been considered in Beran (1968), and Giné (1975a),
more generally, deals with the same problem for a compact Riemannian
manifold. A two-sample permutation test on a compact Riemannian manifold
is developed in Wellner (1979). For testing symmetry on such a manifold, see
Jupp and Spurr (1983).

In this paper we focus on the discussion of Devroye and Gyorfi (1985) of an
L,-convergent nonparametric trigonometric series estimator of a density on
the circle. We will generalize this discussion to other Riemannian manifolds
comprising the large class of closed (i.e., compact and without boundary)
Riemannian manifolds. Moreover the theory can be extended to the class of
homogeneous manifolds, so that the group of isometries acts transitively.

We will get convergence results both in the L, and the L, senses. (Note
that for compact manifolds, L, convergence implies L, convergence; moreover
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for L, estimation a partial result on L, estimation is needed.) The necessary
ingredients are made explicit for the circle, the two-dimensional sphere, the
projective plane, the Lie group SO(3) and Euclidean space. As a special case, in
Section 3.4, we find the Fourier integral estimate for the real line described by
Konakov (1973) and Davis (1975, 1977).

It is well known that a Riemannian manifold is equipped with a symmetric
positive second order partial differential operator, the Laplace-Beltrami opera-
tor. Given a positive self-adjoint extension, application of the spectral theorem
will give rise to a Fourier transform defined on L, functions, and in particular
on L, densities. For closed manifolds the spectrum is discrete and the Fourier
transform naturally leads to an orthonormal basis of L,, which may lead to an
orthonormal series-type density estimator. In order to address an audience as
large as possible, we will restrict the theoretical discussion to closed manifolds,
although many of the results are formulated in such a way that they remain
valid in the context of not necessarily closed, homogeneous manifolds. How to
obtain the spectral function for nonclosed Riemannian manifolds is indicated
in Section 3.4.

Since many practical examples of manifolds are closed or homogeneous
(Euclidean space, linear groups, spheres, projective planes), our results will be
widely applicable. However, the case of domains in Euclidean space with
regular (nonempty) boundaries, which may be important in geology, escapes
the present analysis. The statistician may notice that formally the treatment
of the estimator is very similar to that of series-type estimators on a Euclidean
space. For the geometer it might be interesting to observe that this formal
similarity with the classical approach is based on a far from trivial generaliza-
tion, due to Hérmander (1968), of the asymptotic behaviour of the spectral
function and an interesting consequence for generalized zeta functions.

The statistical problem and the main results are formulated in Section 2,
the geometrical facts are given in Section 3 and the proof of the main results is
given in Section 4. In Section 5, an alternative nonparametric estimator is
proposed, which makes the idea of ‘“cooling down” the “hot” atomic density
corresponding to a sample of observations by a conduction process explicit. It
is (also) of the kernel type. For the reader unfamiliar with differential geome-
try, in the Appendix a survey is given of the concepts used in this paper. One
may also consult Giné (1975a) for most of the concepts, as well as for explicit
computations for the circle, the two-dimensional sphere and the projective
plane.

2. Main results. Let M be an m-dimensional Riemannian manifold. For
each N e N, let Y},...,Yy be a sample of i.i.d. random variables with values
in M. Let dvol denote the volume element of M associated with the
Riemannian structure. It will be assumed throughout that the. unknown
probability distribution P of the Y; has a density f = dP/dvol € LM, dvol),
with respect to the volume element We propose to estimate the density f.

2.1. Preliminaries. In order to state our results we first introduce some
notations from Fourier theory. Suppose that M is a closed Riemannian mani-



834 H. HENDRIKS

fold. Then the Laplace-Beltrami operator A: C*(M) — C*(M) is a positive
essentially self-adjoint operator. See the Appendix for its definition. Its eigen-
values have finite multiplicity and may be enumerated by a function A: N — R,
such that A is positive (> 0) weakly increasing without upper bound and such
that each eigenvalue occurs as often as its multiplicity. Given an orthonormal
set of eigenfunctions {¢,}, <, for which A¢, = A(k) - ¢,, it is well known that
{¢,)} is an orthonormal basis of L,(M). The eigenfunctions ¢, are smooth
functions, i.e., ¢, € C*(M). These functions may be chosen to be real valued.
Associated with this decomposition, one has the spectral function

(2.1) e(x,9,T) = L ul(x) () .

AME)<T

This function does not depend on the particular choice of the eigenfunctions
and we have the property

[e(x: 3. T)g(avol(y) = T aydu(x), if g(x) = ¥ axdi(%).

MR)<T k

Thus the integral operator with kernel e(x,y,T) is the projection operator
E;: L,(M) - L,(M) whose domain is the sum of the eigenspaces associated
with the eigenvalues less than T'; see Section 3.3 for explicit examples.

2.2. Density estimation. Consider the density f. Since f € L,(M), by as-
sumption it follows that f = lim,_, E, f, with convergence and equality in
the L, sense. As E; f(x) = [y e(x,y, T) f(y)dvol(y), one sees that E f is the
expectation with respect to P = f- dvol in the y coordinate of the random
function e(-,y,T).

Given T > 0 and the observations y,,...,yy, We may estimate f by the
empirical density

1 N
(22) fTﬂ“(x) = N : gle(x’yj’T),

whose expectation is the projected density
fr=Erf.

Note that the estimator fj is not necessarily a nonnegative function. Our
aim is to choose T so that the distance between f and ff is minimal in the
L, sense [respectively, in the supremum sense (L, sense)l. We obtain the
following theorems, valid in case M is a closed (or homogeneous) Riemannian
manifold.

THEOREM 2.1 (L, Estimate). Suppose f is s times differentiable with
square integrable derivatives (see Section 4.2 for the precise hypothesis). Let
Ty, > 0. There are constants A (depending on M) and B (depending on the
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density f) so that for T > T,

Tm/2

B(l - F#I2) <A+ + BT

In particular, for a suitable choice of T, one may obtain as dependence
on N,

E(| f - f#lz,) < O(N™/@s+m . N1,

THEOREM 2.2 (L. Estimate). Suppose f is s times differentiable with
square integrable derivatives and s > m /2. Let T, > 0. There are constants A’
(depending on M) and B’ (depending on M and f) so that for T > T,

{E(” f- f%"llim)}l/z <A %//: 4+ B - Tm/2-9)/2

In particular, for a suitable choice of T, one may obtain as dependence
on N,

E(|| f—rE ||im) < O(N2m/@s+m) . N=1),

See Section 4 for more details about the constants A, B, A’ and B’ and the
optimal choices for T. Asymptotically, for growing T, the dependence on A,
B, A’ and B’ on M is only through the dimension m of M. The above raw form
is sufficient to deduce how to change N and T in order to reduce the error by
a certain factor. Our inspiration for this type of theorem was Theorem 3 of
Devroye and Gyorfi (1985, page 308), where the L, error is estimated in the
situation where M is the circle S*.

3. The spectral function and the zeta function. In order to prove
Theorems 2.1 and 2.2 it is necessary to consider the behaviour of the spectral
function, and the related zeta function.

3.1. The general facts. Consider the spectral function e(x,y,T) of the
Laplace—Beltrami operator. It has the following properties:

1. e(x,y,T) = e(y, x, T) (symmetry).
2. For each «x, e(x, - ,T)is an L, function.
3. [melx,y,T)e(y,z,T)dy = e(x, 2z, T') (idempotency).

From these properties follows as an example:
4. |fr(x)] = |[mex,y, T) f(y)dvol(y)| < e(x,x, T)?| fl|y,

We will make use of the following known facts about the asymptotic
behaviour of the spectral function. Recall that M is supposed to be closed. Let
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v,, denote the quantity
1

 (2V7)"T(m/2 + 1)
and let C(x,T') be defined by
(3.1) e(x,x,T) =C(x,T) v, - T™/2

vm

ExampreE. For the circle S', m =1 and v, = 1/7. Moreover C(x,T) =
(k + 3)/T'?, where k denotes the largest integer less than T''/2 (see Section
3.3).

Facts. It is one of the beautiful facts that the geometry of M shows up
only in the lower order behaviour of C(x, T'). In particular lim, __,C(x,T) =1
[Minakshisundaram and Pleijel (1949), page 243] and even sharper
sup, cm|C(x, T) — 1| = O(T"'/?) [see Hoérmander (1968), page 194, or
Duistermaat and Guillemin (1975), (2.25)].

The zeta function of the Laplace—Beltrami operator is the function

Z(x,5) = L |éu(x)[*A(R) "

AME)>0

It is known that the sum converges absolutely for complex numbers s with
Re(s) > m/2 and that it has a meromorphic extension with, among other
poles, a simple pole in m/2 [see Minakshisundaram and Pleijel (1949) or
Duistermaat and Guillemin (1975)].

In order to prove Theorem 2.2 we shall need to consider the rate of
convergence of the zeta function. Consider the function

Y(x,5,7) = L |ou(x)[a(k)"
AMER)>T
and define D(x,s,T) by

m/2
. T)=D T) v, ———— - Tm™/?s,
(32  Y(xsT)=D(x,s,T) v, o T

ExampLE. For the circle S?, a spectral decomposition is given in Section
3.3 and we have

1> 1 1
Z(x1s) = — E k—Zs = _I(zs)’ Y(x,s,T) = - Z k_2s
T ho1 T T oy T
and V
D(x,s,T) =(2s — 1)T*"/2 Y k=2,
k2yT
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THEOREM 3.1.

) |D(x,s,T) — 1]
lim sup sup =
T-o®yeMs>m/2 s

0.

The proof is inspired by the method of Mandelbrojt (1969), Theorem 1.2.1,
to prove convergence of Dirichlet series.

Proor. Let & > 0. Choose T, such that for T > T, and x € M, one has
|C(x,T)— 1| <e. Let @ >T>T, and let (i), i=1,...,n, be a strictly
increasing enumeration of the set {Q, T} U {\(k); @ > A(k) > T}. Let AQ) =
T by <iplen(®)|? and (i), i = 1,...,n — 1, be such that I(i) <#(i) < IG+1
and that

) -1G+D™ s
W)™ =1+ )™ s —m/2 S

Then

Y Jen(x)PA(R)

Q>MR)=T

n—1
= gl(A(i +1) —AG))IG)

= nilA(i + D)(IGE) -1+ ) - AN +A(n)l(n)"°
i=1

= nile(x,x,t(i))(l(i)—s —1(i+ 1)_3) —e(x,x,T)T"*

i=1

+e(x,x,Q)Q°
= nilc(x,t(i))vmt(i)’””(l(i)‘s —1(i+1)7°)
i=1

- C(x,T)v, T™?* + C(x,Q)v,,@™/>*

S

n—1
= El C(x,t(i))vm;_—m/-é-(l(i)mﬂ—s G+ l)m/Z—s)

- C(x,T)v, T™?** + C(x,Q)v, Q"> ".
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Notice that if C(-,-) were identical to 1, this expression exactly equals
v, - (m/2)/(s —m/2) - (T™/?¢ — Q™/?>*). Thus

2
Y len()PA(R) T — v, _m£_ .pm/2-s

Q>ME)=T s = m/2
s s
B I S A7
s—m/2 s—m/2
<. 2s —m/2 ' m/2 m/a—s.

m/2  m s—my2

Now taking the limit for @ — «, |D(x,s,T) — 1| <& - {@2s — m/2)/(m/2)},
from which the theorem immediately follows. O

ReEMark. Using Hérmander (1968), the above results can easily be modi-
fied to the situation of any positive elliptic symmetric partial differential
operator instead of the Laplace—Beltrami operator.

3.2. Specialization to homogeneous closed spaces. In this section we sup-
pose that the group of isometries of M acts transitively on M, ie., M is
homogeneous.

LemMa 3.1.  If M is homogeneous, the function e(x, x, T') is independent of
x in M. Moreover C(x,T) and D(x,s,T) are independent of x.

Proor. The argument is entirely classical. Let & be an isometry of M.
Then h acts on L,(M) via the action on M by f — f o h. Because h leaves the
measure dvol invariant, it gives rise to an isometry of L,. Moreover h leaves
the Laplace-Beltrami operator invariant and therefore transforms a spectral
decomposition into another one. But the spectral function is independent of
the particular spectral decomposition so that e(h(x), h(y),T) = e(x,y, T).
Because the isometry group of M acts transitively on M, the function e(x, x, T')
is independent of x. O

LemMa 3.2. If M is homogeneous and closed, then © A(k)=T|¢k(x)|2 equals
the multiplicity of T divided by the volume of M.

See Giné (1975b), which contains this result as an immediate consequence
of his beautiful addition formula for the zonal eigenfunctions.

Proor. Let A be the smallest eigenvalue of the Laplace-Beltrami operator
(strictly) greater than T. Then the sum expression equals e(x,x,A) —
e(x, x,T). Thus it is independent of x. The result follows by integration. O
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CONSEQUENCE. If M is homogeneous and closed, then:

1. e(x,x,T) =e(T) = 1/(vol(M)) - #{k;A(k) < T}.
2. Y(x,s5,T)=Y(s,T) =1/(vol(M)) - ):Asz 1/(A(R)®).

3.3. Examples of spectral decompositions. The techniques in finding the
spectral decomposition for the most common homogeneous spaces have a long
history. A very instructive exposition of some of them is given by Vilenkin
(1968). A concise explanation of the spectral decompositions for the circle, the
two-dimensional sphere and the projective plane can be found in Giné (1975a),
Section 6.

In the case of the circle M = S, we have the following: It can be parametriz-
ed by ¢ — (cos ¢, sin ), where 0 < ¢y < 27. Its volume (length) is 27. The
eigenvalues are T, = (j — 1)2. The multiplicity of T, is 1 and an orthonormal
eigenfunction is f(¢) = 1//(2m) . The multiplicity of T; (j > 1) is 2 and an
ortho-normal basis of the eigenspace is f,(¢) = 1/Vmr cos((j — 1y)
and f,() = 1/ Y sin((j — 1)y). The spectral function has the following
expression, where %k denotes the smallest integer less than 7'1/2:

1 sin((k + 3)(¢; — ¥2))

e(¢,9,,T) = % Sin(%(c,lll — ¢2)) , if Py # iy,
2k + 1
e, ,T) =~

In the case of the two-dimensional sphere M = S2, we have the following. It
can be parametrized by (8, ) — (sin(8)cos(y), sin(#)sin(y), cos(8)) where 0 <
6 <7 and 0 < ¢ < 27. Its volume (area) is 4m. The eigenvalues are T =
(j — 1)j. The multiplicity of 7, is 2j — 1 and an orthonormal basis of the
eigenspace is

Fu(8,0) = 1/Vam {(2j - 1)(j— 1 —-m)!/(j— 1+ m))}"/”
X exp(im) P{™)(cos(8)),

where m = —j + 1,...,j — 1. Here P{™) denotes the associated Legendre
function [see Gradshteyn and Ryzhik (1965), formulae 8.752.1 and 8.910.2, for
its definition].

In the case of the projective plane, considered as a quotient of S2, the
volume is 27 and the spectral decomposition is given by the eigenvalues T, ; of
the two-dimensional sphere with the same multiplicity and the y2 multiples of
their eigenfunctions.

In the case of the special orthogonal group of order 3, i.e., the rigid motions
of the three-dimensional Euclidean space fixing the origin, one may refer to
Vilenkin (1968) or Gel’fand, Minlos and Shapiro (1963). One has the following:
The manifold M = SO(3) can be provided with the parametrization by Euler
angles [see Vilenkin (1968), page 106]. Its volume is 16y2 72. The eigenvalues
are T; = (j — 1)j/2. The multiplicity of T} is (2j — 1)2 and an orthonormal
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basis of the eigenspace is given by

B ,
frun(@,0,¢) = JRol(50(3)) -exp(—i(m¢ + ny))

where m,n= —j+1,...,j — 1. Here P/ ! is intimately related to the Ja-
cobi polynomial P ™*™ [see Vilenkin (1968), page 125] from

(I-m)!(l+m)!
(I-n)!(l +n)!

PJ—1(cos 0),

Pl,(2) = 27mimr

X (1= 2) " TE(L 4 2) /P man(2),

-m

[For the definition of Jacobi polynomials, see Gradshteyn and Ryzhik (1965),
formula 8.960.]

3.4. A remark on nonclosed manifolds. In the general case, the Laplace-
Beltrami operator A may be considered as an operator on L,(M) with the
collection of smooth functions with compact support as domain and range. As
such, it is a positive symmetric operator and by the theorem of Friedrichs it
admits a positive self-adjoint extension. If M is geodesically complete (e.g.,
closed or homogeneous), the operator A is essentially self-adjoint, so that one
has a natural self-adjoint extension [see Chernoff (1973)]. From the spectral
theorem we have a measured space S together with a measurable real valued
function A: S —» R and an isometry .%: L,(M) — Ly(S) so that #(Ag) = A -
Z g (pointwise multiplication).

This equality holds at least for C* functions with compact support in M.
The function A is nonnegative.

Associated with the isometry %, one has the spectral resolution {E;} of
projection operators Ep: Lo(M) — L,(M), defined by (FE;gXv) = Fg(v) if
AMv) < T and (¥ E;gXv) = 0, otherwise.

Then E; is an integral operator [see Agmon and Kannai (1967) and
Hoérmander (1968)]. Its kernel will be denoted by e(x,y, T).

In the case where M is closed, S may be chosen to be the natural numbers
N, together with the count measure and A as in Section 2.1. Then the points of
S correspond to an orthonormal basis {¢,}, and we obtain formula (2.1).

For the Euclidean space R”, the spectral theorem gives rise to a space
S = R", with Lebesgue measure and real valued function A(¢) = ||€||2. The
Fourier transform is the classical one:

FF)E) = [(@m) "% f(y) dy.
The associated spectral function is
Jm/2(”x -yl \/T) "/
(1= =] vT)™ @m™

e(x,y,T) =
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Here J,, ,, denotes the Bessel function of order m/2 [Gradshteyn and
Ryzhik (1965), Section 8.4]. For ||x —y| - VT tending to 0, this function
converges to e(x, x,T) =v,, - T™/?. The corresponding estimate (2.2) in the
case M = R! is the so-called Fourier integral estimate of Konakov (1973) and
Davis (1975, 1977).

4. The Fourier expansion estimate. Suppose we have a sample
Y,,...,Yy of iid. random variables with values in the Riemannian manifold
M. Let T > 0. Then we will estimate fr = Erf by ff, defined by formula
(2.2): ff(x)=1/N-T¥  e(x,y;,T).

Our aim is to choose T so that the distance between f and ff is minimal
in the L, sense [respectively, in the supremum sense (L., sense)]. Our analysis
will be based on the decomposition f— ff = (f— fr) + (fr — ). We will
refer to these terms as the projection error and the sampling error. Remark
that the two error terms are orthogonal in the L, sense, because the sampling
error lies in the sum of the eigenspaces associated with eigenvalues less than T
and the projection error lies in the sum of the eigenspaces with eigenvalues not
less than T.

Recall that M is supposed to be closed. Thus C; = sup, . C(x, T) is finite
and we have the equality [cf. formula (3.1)]

(4.1) supe(x,x,T) =Cp v, - T™/2.
xeM

Furthermore for s > m/2, the number D, = sup, <y D(x,s,T) is finite
and we have the equality [cf. formula (3.2)]

m/2—s

42) Y(x,s,T) =D m/2
(4. Sup ¥(x,8,T) =Dy vp = =

4.1. The (L,) error due to sampling. The variance of f7(x), whose expec-
tation value is fp(x) (w.r.t. f dvol), is

1

E( f#(x) ~ fr()[") = % * (E(le(x,2, D)) ~[E(e(x, 5, T)) [
- = (B{leCx.y, 1)) -1 Fa()P).

Thus, by exchange of the order of integration and using the idempotency
property (Section 3.1, property 3) we obtain

1 1

_rx2Y = — . - 2 — .
E(| fr~ f£17,) = % - (Ble(y,2, 7)) ~| frlz,) < % (SIylpe(y,y,T))
1
< N 'CT'vm'Tm/2.

This leads to the following conclusion.
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CONCLUSION.

1

2 m
(4.3) E(| fr = f#lZ,) < 5 - Cr-vm - T™/
Recall from Section 3.1 that lim, _,_, C; = 1. Note also that for the uniform
distribution [i.e., f= 1/vol(M)] we have exactly the qualitative behaviour

indicated by the inequality (4.3).

4.2. The (Ly) error due to projection. We will study || f — frl|,,, under the
assumption that f is s times differentiable, with L, derivatives. Because M is
closed, it follows that A = —divgrad = d*d when applied to twice differen-
tiable functions with square integrable derivatives (see the Appendix). Let f*
be defined recursively, for & < s, as

f(O) =f, f(21+1) = df(2j), f(2j+2) = d*f(2j+1) =A f(2j).

Suppose moreover that f*® € L, for k£ = 1,...,s. Then:

LEmMmA 4.1.  If M is closed and f(x) = L, a,¢,(x) as in Section 2.1, then
Iml O dvol = £ Ak)® - |a, |2

Proor. If s is even, then A may be applied s/2 times to f, giving an L,
function. If s is odd, it is necessary to introduce the full exterior algebra of M,
together with the essentially self-adjoint operator d + d* and a corresponding
spectral decomposition [see Chernoff (1973)]. Notice that the square of d + d*
is exactly the Laplace-Beltrami operator (on the space of smooth functions).

As a consequence

s —s 8)||12 -5
E(If-frlz,) = T lal’<s T AR |ey'T~ <|| 7, T D
MER)=T ME)>T

CONCLUSION.
(4.9) E(If - frlz,) <) £z, - T

ReEMARK. In general, a function f & L,(M) belongs to the Sobolev space
H, (M) if and only if ¥ A(k)® - |a,|? < . One may replace throughout this
section the integrability condition on [ with the condition f & H,(M) and
the square integral of [ with ||f[|% = L A(k)®- |a,/>. Recall Sobolev’s
lemma, stating that for a positive integer £ and s > k2 + m /2, a function
f € H(M) is represented by a k times continuously differentiable function on
M [see Aubin (1982), Theorem 2.21]. As a consequence, the alternative to the
differentiability condition on f in Theorem 2.2, namely the Sobolev space
condition f € H, with s > m /2, still implies the continuity of the function f.

4.3. Proof of Theorem 2.1. Let T, > 0 be given. Let A = supy, 1, Cr v,
and B = || f®||},. Using the fact that the sampling error and the projection
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error are orthogonal in the L, sense, we deduce from inequalities (4.3) and
(4.4) the error bound for T > T:

m/2

2 T _
E(|f-f#lz,) <A +B-T.

This expression attains its minimal value for T = max(T,,{(2sB/mA) -
N}/+m/D) and (if T > T,) the minimal value is

m/@2s+m)
(1 + %) . (%) CNm/@stm) . AL NTL o

4.4. Pointwise bounds. If we try to obtain pointwise bounds we find the
following: First, notice that property 4 of Section 3.1 applies to f; — f#, so
that

| fr(x) = FE(x) [ < e(x,%,T) || fr — FEl2,

Therefore, using formulas (4.1) and (4.3), we conclude:

CONCLUSION.
1
(4.5) E(sup| fr(x) —f;‘(x)|2) <% {Cr- v, - Tm/2}2‘

Second, supposing that f is s times differentiable with s > m /2, one may
derive the following inequality: If R > S > T, then

| fr(x) _fs(x)| = Z a,d(x) < Z ak)‘(k)s/z(ﬁk(x)/\(k)_s/z-

R>ME)=S R>ME)=S
Thus
| fa(x) —fs())P < T |affAR) - L [du(x)[A(k)°
R>AME)=S R>ME)=S

<| FOI2, - ¥(x,5,T).

A consequence of Theorem 3.1 is that Y(x, s, T') converges uniformly in x to 0
as T — ». Therefore f; converges uniformly as T — « and because its L,
limit is f, its pointwise limit is f.

We may thus conclude, using (4.2), that:

CONCLUSION.

m/2

. Tm/2—s.
s—m/2

(46) | f(x) —fr(x)[ <| FOI3,  Dop v -

Recall from Theorem 3.1 that lim4 _,, D, 7 = 1.
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4.5. Proof of Theorem 2.2. Let T, > 0. Let A’ = supy .7 Cr- v, and
1/2
m/2
B' = f(S) '{sust .vm.____}
17k, TaT, (s —m/2)
Then we obtain from inequalities (4.5) and (4.6) the error bound for T > T:

m /2

1/2
2 4 ’ m -s
(B(sup| £(0) = 12))) <4 T + BT
x
This expression attains its minimal value for

’, _ 2/(s+m/2)
B - (s—m/2) N2
A-m

T = max(TO, {
and (if T > T,) the minimal value is

. Nm/(2s+m) ‘A’ 'N_1/2. O

m (8 _ m/2)B’ m/(s+m/2)
) [

4.6. A remark on the estimation of | f”||;,. As usual in statistics, any a
priori information on the density is precious, as for example, knowledge of the
mechanism that leads to the density from which the degree of differentiability
or even an upper bound of || f||,  may be inferred, or from which, in the
context of this paper, e.g., symmetry propertles may lead to (linear) relations
between the coefficients of the Fourier expansion. This does not mean that
there is no statistical way to estimate || f)||, .

We propose the following procedure to estimate || f§”]| ., = E sz, < sl Rl PACR)S.
The S used in this formula of course may be different and would have to be
considerably larger than the upper eigenvalue T' used in the Theorems 2.1 and
2.2. Notice that [y e(x, x, T )dvol, which behaves as O(T ™/?), is the number of
coefficients a;, with A(k) < T.

Given i.i.d. observations x4,..., x,, take

v= ) — Y il )d’k(x ))‘(k)

MER)<S n( 1) i#j

Then it follows from Lemma 4.1 that E(¥) =||f§”||7 . Of course it is

important to know that the variance of the estimator ¥ is somehow under

control. The following assertions depend on a study of the rate of divergence of
the zeta function Z(x, s) for s < 0.

CraiM. ¥ f belongs to L (M) N H, (M) for some a > 0, then for 2s < a
the variance of ¥ can be estimated by
1 B,

4.7 R 2s+m /2 I
(4.7) N2A S + N
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and for 2s > a the variance can be estimated by

1 B
4. 2s+m/2 f 2s—a'
(4.8) ~zArS + S

The uniform density exhibits the behavior (4.7) with B;= 0. In the dim
zone where f & L, so that in particular @« < m /2 and the Fourier series need
not be absolutely summable, the variance of ¥ can be estimated by

(4 9) _l_A SZs+m/2 ﬂs2s—a+m/4
. N? N .

We do not claim that the estimation (4.9) is sharp. In these inequalities A,
B,, B; and B} depend on f. In particular A, can be chosen proportional to
|| f || Lz, with proportlonahty constant arbltrarlly (depending on T) close to

m - (m/2)/(m/2 + 2s).

5. Comparison to a method related to diffusion. Recall that we
suppose that M is a closed manifold. Let f € L,(M) be as in the introduction
of Section 2 with f =X a,¢,. Define

. 1 N
ff* = Z (aze_/\(k)f) ) d’k where ap = ﬁ Z ¢k(yj

Jj=1

whose expectation is
f; =X (aye®) - ¢,.

Then 7 functions as a cooling time or diffusion time, and we search for r,
for which the expected value of || f — f*||2 1, is minimal.
The expected variance due to sampling is

E(” f~1' - f~1'*“l2,2) = ’ﬁ * (E(Z |¢k(x)|2e_2’\(k)"') — E |ak|2e—2)t(k)‘r)
< % . S]i'p ) |¢k(x)|2e—2/\(k)f‘

Let 0(x,x,7) = Z|d,(x)|%e**®", Then according to Berger, Gauduchon and
Mazet (1971), page 215, or Duistermaat and Guillemin (1975), Corollary 2.2',
one has lim_ _, ; 8(x, x, 7X(47w7)™/2 — 1 = 0 and the limit is uniform in x. Let
C, = sup, 0(x, x, 7)(4m7)™ /2 Then 7+ C, is continuous and lim__,C, = 1.
As a conclusion we have:

CONCLUSION.

F_F 1
E(” fr - f,-* ”22) <C,- ﬁ . (87T1') -m/2
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We have the bound

| F=Fillz, = T lax’(1 — e 2®)® < T Ja, PACR)% 2 = | F@ 2, - 72

This behaviour remains the same if f is more than twice differentiable.

The choice of the optimal 7, based on these inequalities will lead to a
convergence behaviour (for N — «) comparable to the case of twice differen-
tiable densities in Section 4. Thus the diffusion method will not lead to a
convergence arbitrarily close to the N~1/2 rate. It is in fact a manifold variant
of the kernel estimate [see Devroye and Gyérfi (1985)] using the heat kernel.

RemARk. Uniform convergence can be proved if f belongs to H, for some
§ > 2 + m/2. The convergence behaviour (for N — ) is comparable to the
case of H,,,, 5 functions in Section 4.

APPENDIX

The concepts of differential geometry. Our aim is to make explicit the
definition of manifolds, Riemannian structure, integration and the Laplacian.
A very rigorous treatment of these concepts may be found in Helgason (1962
or 1978). A warning should be given beforehand, that for each type of
manifold, additional ad hoc and cunning tricks are needed to find formulas, if
any, that are manageable by classical analysis [for example, the recommended
use of polar (geodesic) coordinates when dealing with spheres or projective
planes or spaces].

Let M be a metrizable topological space. Suppose there is given a collection
A of maps ¢: U — V, where U is an open part of M, V is an open part of R™
and ¢ is a homeomorphism onto. The space M is a C* manifold with atlas A if

1. The domains U of the maps ¢ in A cover M.
2.If ¢: U->V and ¢ U — V' belong to A, then the map ¢'op L
dUNU) - ¢WUNU)is a C” map.

The elements of A will be called charts of the manifold.

ExamPLES.

1. An open part of the Euclidean space R™ or of the space of £ X I-matrices to
be identified with R**!. An atlas may consist of one chart only.

2. The (n — 1)-dimensional sphere S"~! of points of R” with Euclidean dis-
tance 1 to the origin. For each i,let U; ,={x € S" ' + x, > 0}. Let V =
{x eR* 4|z <1} and ¢, ,: U; ——>V given by d)l i(xl,.. x,) =
gy Xy Xy eeey X)) Then A = {4’; .} is an atlas with 2n charts

Two atlases give rise to the same C* manifold structure of M if the union of
the two atlases again is an atlas. As a matter of fact, each C* manifold
supports a unique maximal atlas.
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A function f: M — Ris r times differentiable if for each chart ¢: U —» V in
A, the function fo¢~1: V- Ris r times differentiable in the classical sense.
A function which is r times differentiable for all r is said to be a C* function
and belongs to the vector space C*(M). Let p € M, the tangent space T,(M) of
M at p be the vector space

{¢£:C*(M) > R; ¢ isRlinear and ¢(f- g) =f(p) - €(g) + &(p) - (1)}
It may be considered as the set of all directional derivatives at p. Given a chart
¢: U—>V with peU, a basis {37}, of the tangent space is given by
P P(f) = ((f o p~ 1 /dx,Xd(p)), where i =1,...,m. Given another chart
¢': U — V' with p € U, one has the transformation rule

ro b1
spr— ¥ Xy .
F ax;

A Riemannian structure for M is given by an inner product g, on T,(M) for
each p € M with the following smoothness condition. For every chart
¢: U — V of A and indices i and j, the function v — g,;(v) = g,-1,,(9;,9,) is a
C* function on V. Due to the above transformation rule, a density dvol may be
defined on M. If ¢: U -V is in A, then dvol is determined by
¢4 (dvol|,) = /g - dx, -+ dx,,. Here g: V > R denotes the function g(v) =
det(g,;(v),;. If f: U > Risa contmuous function w1th compact support lying
in U, then [y fdvol = [y, fo ¢ "(v) - /g(v) dx; -+ dx,,. Integration for real
or complex valued continuous functions with compact support on M is now
defined by linearity.

Corresponding to directional derivation, one has the total or exterior deriva-
tive of C* functions. Let T,*(M) denote the dual vector space of T,(M). The
dual basis with respect to {8"’ P} will be denoted by dx??, i=1,...,m. It
naturally has the inner product g, , with g, (dx;, dx; ) = gi(¢( p)) where
(g¥(v)),; ; denotes the inverse matrix of (g;;(v);;- Con81der the space T*(M) as
the disjoint union of the vector spaces T*(M) It is called the cotangent
bundle. A 1-form is a mapping ss M > T *(M) such that for each p,s(p)
T,*(M). 1t is r times dlﬁ'erentlable if for each chart ¢: U — V, the function
defined on V, v~ s(¢~ M6 @) is r times differentiable for each i. It is
C~ if it is r times differentiable for each r. To a C* function f is associated
the total derivative df defined by df(p)(¢) = ¢(f) for p € M and ¢ € T,(M).
It is a C* 1-form. This is our version of the classical gradient grad. Let Cj be
the vector space of C* functions with compact support and I'j be the vector
space of C* sections of T*(M) with compact support. Then we have d:
Cg — I'y. Moreover Cj is an inner product space by (fi, f2) = [m f1f2 dvol
and I'y by (s, 85) = [m &(sy, sp)dvol. The adjoint operator d*: I'y — C7 is
defined. It is our version of the opposite of the divergence div. The Laplace-
Beltrami operator is defined as A = —divgrad = d*d: Cj — Cjg.

If ¢: U - V is a chart, then

Af(¢ 1 (v)) = -—f Zg‘k\/_—(f c¢~1)|(v).
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Let A, denote the corresponding partial differential operator, with domain
the twice differentiable functions. Suppose that M is geodesically complete,
which is the case if M is closed or homogeneous.

Then A is an elliptic essentially self-adjoint partial differential operator of
order 2 [see Chernoff (1973)]. Moreover the self-adjoint extension of A is
defined on a twice differentiable function f, if f, df and A, f are square
integrable, and its value then is A, f.
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