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BAYES ESTIMATION FROM A MARKOV
RENEWAL PROCESS

By MicHAEL J. PHELAN

Princeton University

A procedure for Bayes nonparametric estimation from a Markov re-
newal process is developed. It is based on a conjugate class of a priori
distributions on the parameter space of semi-Markov transition distribu-
tions. The class is characterized by a Dirichlet family of distributions for
random Markov matrices and a Beta family of Lévy processes for random
cumulative hazard functions. The main result is the derivation of the
posterior law from an observation of the Markov renewal process over a
period of time.

1. Introduction. This paper develops a procedure for Bayes estimation of
the transition distributions from a Markov renewal process. The prior consists
of a family of Dirichlet distributions on the space of Markov transition
matrices and a Beta family of Lévy processes having sample paths in the space
of cumulative hazard functions. The main result is the derivation of the
posterior from an observation of the Markov renewal process over a period of
time. The result shows that the chosen prior family is a conjugate family for
this problem, and it extends the Bayes life-testing estimation procedure pro-
posed by Hjort (1984, 1988) to the present context. Hjort (1984, 1988) conjec-
tures that his procedure extends to the subfamily of hierarchical semi-Markov
processes considered by Voelkel and Crowley (1984). Our results show this
conjecture to be true, but we find the restriction to a hierarchical process
unnecessary.

Our approach is based on the parametrization of the transition distributions
in terms of transition probabilities of a Markov chain and cumulative hazard
functions of life distributions. The estimation procedure is developed by
concatenating a procedure proposed by Hjort (1984) for estimating Markov
transition probabilities with that proposed for estimating cumulative hazards
in life-testing. The result is a considerable generalization of the result in Brock
(1973), who only considers Bayes estimation for the Markov transition proba-
bilities. Moreover, our approach can incorporate a model for random right-
censorship, so that the Bayes estimators of transition distributions provide
alternatives to the nonparametric estimators proposed by Gill (1980a) and
Phelan (1988).

The paper is organized as follows. The next section recalls some elementary
facts about Markov renewal processes. In particular, we define the sample
space and a probability measure for sample functions from the process ob-
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served over an interval of time, namely [0, ¢]. Most important is the identity
given in equation (2.4) that specifies the measure in terms of a set of Markov
transition probabilities and a set of cumulative hazard functions. This is
followed by the specification of the a priori distribution over the parameter
space of Markov matrices and cumulative hazards from the family of Dirichlet
times Beta process priors using Definitions 2.1 and 2.2. In Section 3 we specify
a model for Bayes nonparametric estimation from a Markov renewal process.
This is followed immediately by the statement of the main result in Theorem
3.1 together with the rules for updating the a priori parameters. The remain-
der of the section is devoted to the proof of Theorem 3.1 and three propositions
needed in that proof. Finally, in Section 4 we calculate the Bayes estimators
under squared-error loss, make some closing remarks, and discuss generaliza-
tions of our results.

2. Markov renewal processes and the prior.

2.1. Markov renewal processes. Here we present some facts which follow
from the constructive definition of a Markov renewal process given by Pyke
(1961). Let (J,S) = (J,, S,), n > 0, denote a Markov renewal process with
state space E X R and transition distributions {Q, ;(¢); i, j € E, ¢ > 0}, where
E={1,2,...,m} m > 1. For each n we have

(21) Qij(t) = P(Jn+1 =j’ Sn+1 - Sn = tlJn = l): l’.] € E’ t>0.

The process J =(J,), n >0, is a Markov chain with state space E and
transition probabilities given by p;; = @, (), i, j € E.

We assume that the process is stationary, so that the left-hand side of (2.1)
is independent of n and the duration the process has been active. As an
example in medical clinical trials, let E denote the collection of the patient’s
state during treatment, such as initial illness, in remission of symptoms,
progression and relapse. The patient changes his status according to a Markov
chain, the nth transition occurring at time S,. The length of stay for a patient
in a given state depends only on that state and the state to which he moves,
and the patient sojourns between a pair of states i and j according to the
distribution @, ;.

According to Pyke and Schaufele (1964), we incur no loss of generality to
assume that @;; = p,;¢;, where ¢; denotes a distribution on R .. For each
i € E, recall that the distribution ¢, is determined uniquely by its cumulative
hazard function b; defined by

do(s)

2.2 b.(t) = —
(2.2) {(£) '/;O,tll_d’i(s_)
where ¢,(s —) = lim,, ., ¢,(x). We will use an important representation of the
transition distribution @), ; that is given by :

(23) Q1) =pyt) =py(1- T1 A-db(s)), 20,

<s=<

t>0,

where the above product-integral of b, is treated for example in Gill (1980b).
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For each n > 0,let IT, = (E X R,)"*! and let II,, denote the Borel field on
I1, generated by all subsets of E and the Borel sets in R,. Also let N =
{0,1,2,...,} and let N denote all subsets of N. The sample space for a Markov
renewal process observed over a period of time is given by the product space
(N x II,N ® I), where I1 = U5 _,II, and Il = V5 _,II,. In particular, let
N = (N(@)), t > 0, denote the Markov renewal counting process defined by

0

(2.4) N(t)= Y 1(S,<t), t=0,

n=1

and let X,,;=S,,1 — S, n >0, where S, = 0. Suppose the Markov re-
newal process is observed over [0, t], ¢ > 0. Then, according to Moore and Pyke
(1968), almost all sample functions can be represented by a point in the sample
space (N X II,N ® II) given by the finite tuple (N(2), R(¢)), where R(?) =
(Jos s Iy Xus - os Xy ¢ — Swny)- A probability measure P is given on
this space as follows. For any n > 0 and G € II,, we define

P(N(t) =n, R(t) €G) = /de(n;w),

where, using (2.1), (2.2) and (2.3) we have

n—-1
dP(n;m) =Pj0(1 - ¢j,,(ut)) H Djrjrir d¢j,,(xk+1)
£=0

(2.5) L
=p;, T1 (1-db;(s)) [ 1ps,., TT (1-db(s))db;(xss1)
0<s<u, k=0 0<s5<xp49
for 7= (Jg, J1r---»Jn> X1+ Xp, Uy), Where 1 <j, <m, 0<k<n, x,20,
l<k<n, u,=t-x,— " —x,>20 and p; = P(J, =j,). Of course, for

n =0 in (2.5) we replace u, with ¢ and the empty product over & with a
probability measure having unit mass at the point (jg, 0). Here (2.5) defines
the projection of P onto (II,,II,), n > 0, parametrized by the transition
probabilities and the cumulative hazard functions. For a given set of these
parameters, we take (N X II, N ® II, P) as the underlying probability space for
an observation from a Markov renewal process.

2.2. The prior. This section specifies the parameter space and an a priori
distribution for our problem. Throughout, (2, F, P) denotes a probability space
upon which all random variables are defined. Let (M,,, M,,) denote the Borel
space of m X m Markov matrices, where each element of M,, is a transition
probability matrix of a Markov chain on E. Let (H, H) denote the Borel space
of cumulative hazard functions, where each b € H is a nondecreasing, right-
continuous function on R, satisfying 5(0) = 0 and Ab(¢) < 1, ¢t > 0. Also let
(H™,H™) denote the m-fold product space of (H, H) with itself. The parame-
ter space for our estimation problem is given by the product space (0, ®),
where ® =M,, X H" and ® =M,, ® H™.

To specify a random element of (®, ®), we proceed by specifying a random
element of (M,,,M,,) and of (H™,H™) separately. Note that each matrix in
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M,, has rows that lie in the m — 1-dimensional simplex in the unit cube. Let
B, - - - s B, denote nonnegative quantities, and let Z denote a random vector in
the simplex. We use the notation Z ~ Dir(8,,...,B,,) to denote that Z is
Dirichlet distributed with parameters B,,..., B8,,. Consider the following defi-
nition.

DeFiNiTION 2.1. Let B = (B;;), i,j € E, denote a matrix of nonnegative
quantities. Let M = (M,;), i,j € E, denote a random matrix defined on
(Q,F,P). The rows of M are independent random vectors such that for each
i€E, (M;,...,M,,) ~Dir(B;y,...,B;n) We say M is Dirichlet distributed
with parameters B and denote this by M ~ Dir (B).

According to Definition 2.1, M is a random matrix with values in (M,,,M,,)
and distribution determined by the m-fold product measure of Dirichlet
distributions over the simplex. Let @, denote the probability measure on
(M,,M,,) induced by the mapping M. Here @, serves as the a priori
distribution of the transition probabilities of the process oJ.

Next we specify a random element of (H, H). For this purpose, we introduce
a family of Lévy processes developed in Hjort (1984, 1988). Let b denote a
fixed hazard function in H with a finite number of discontinuities on the set
D, and let ¢ = (c(2)), ¢t > 0, denote a positive, piecewise-continuous function.
The process A = (4A,), t > 0, is said to be a Beta process having parameters ¢
and b, which we denote A ~ Beta(c, b), provided A is a process of independent
increments having Lévy measure v satisfying: For £t > 0,0 <x < 1,

c($)x (1 — x)“ P db(t) dx, t&D,

(2.6)  v(dhde) =1 by ) as, teD,

where f(¢,-) denotes the Beta density on [0,1] having parameters B; =
c(t) Ab(¢) and By = c(¢)X1 — Ab(2)), t € D. The Beta family of Lévy processes
is defined constructively in Theorem 3.1 of Hjort (1984, 1988), where it is
shown that P(A € H) = 1. The Lévy measure characterizes the distribution of
the increments of the process A and appears in the exponent function of its
Laplace transform; see, for example, Hjort (1988), equation (3.6). We note that
EA, = v([0, ¢] X [0, 1)) for every t. The term Beta process derives from the fact
that the increments of A over short intervals are distributed approximately as
Beta random variables, although these processes are almost surely discontinu-
ous at those times in D, where the size of the jumps are Beta random variables
whose densities appear in (2.6). Consider the following definition.

DerFiNITION 2.2. For each i € E, let c¢; denote a nonnegative, piecewise-con-
tinuous function and let b; € H with a finite number of discontinuities on the
set D,, say. Let A = (Al,..., A™) denote a vector-valued process defined on
(Q,F,P). The A’ are independent and A’ ~ Beta(c;,b,), i € E. We say A is a
vector Beta process with parameter (c,b) = ((¢y,...,c,,),(by,...,b,,)) and
denote this by A ~ Beta(e, b).
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According to Definition 2.2, A is a random variable with values in (H™, H™).
For each i € E, let Q; denote the probability measure on (H, H) induced by
the mapping A’. Then the probability measure on (H™, H™) induced by the
mapping A is given by the product measure determined by the ;. This
product measure serves as the a priori distribution of the cumulative hazard
functions [see (2.2)] of the sojourn-time distributions of the process (J, S).

We define a random element in (0, ®) as follows. Let (M, A) denote a
random variable defined on (Q, F, P) taking values in (®, ®). We assume that
(M, A) has distribution @ over (0, ®), where @ denotes the product measure
given by Definitions 2.1 and 2.2 using the fixed parameters B and (c, b), so
that M and A are independent with M ~ Dir(B) and A ~ Beta(c,b). The
distribution @ is the a priori distribution for our problem where by varying the
parameters B and (¢, b) a family of a priori distributions is obtained. In order
to interpret these parameters, we close this section with the following observa-
tions. We have

(2.7) E(Mij) =B kZEBik, i,jEE,
and
; ; ¢ (1 — Aby(s))
(2.8) E(A}) =b,(t) and Var(A})= _/(;dei(s)a
1€ E,t>0.

Thus the parameters B and b define an a priori guess on the transition
probabilities and the cumulative hazards, respectively. Moreover, the function
¢ parametrizes one’s degree of prior belief in b because of the apparent way its
size moderates the dispersion of A about b.

3. Bayes estimation. The problem is Bayes estimation of the transition
distributions from a Markov renewal process observed over a period of time.
Our approach is to concatenate the procedure proposed by Hjort (1984) for
estimating transition probabilities of a Markov chain with that for estimating
cumulative hazards in life testing.

Let (Q,F,P) denote the probability space on which all random variables
encountered below are defined. Let (N X II,N ® II) and (®, ®) denote the
Borel spaces defined in Sections 2.1 and 2.2, respectively. In accordance with
Section 2.2, let (M, A) denote a random element in (®, @, @), where @ is the
product measure defined above. Now consider a stochastic process (J, S) =
(J,, S,), n > 0, with state space E X R_. We assume that the conditional law
of (J,S) given (M, A) is that of a Markov renewal process with transition
probabilities M = (M,)), i,j € E, and cumulative rate functions A =
(Al ..., A™). In particular, as the equivalent of (2.1) we have

P(Jy 1 = S = Su < 8, =i, M, A) = M;(1- T (1-aal)),

O<s<t

(3.1) i,jeE, t>0.
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Equation (3.1) specifies the regular conditional transition distributions of
(J, S) given (M, A). Obviously, J = (J,), n > 0, is conditionally a Markov
chain with state space E and transition probabilities M. Moreover, the
sojourn-times {X, =S, —S,_;, n > 1} are conditionally independent given
(J, M,A), where for each i € E, the sojourn-times in state i have random
cumulative hazard A’.

Fix ¢ > 0, and suppose the (J, S) process is observed over [0, ¢]. We consider
the random vector (N(¢), R(¢)) defined as in Section 2. Since E is finite, it
follows that N(z) is almost surely finite so that (N(¢), R(¢), M, A) lies almost
surely in the sample space (N X IT X @, N ® II ® @). A probability distribution
over this sample space is defined as follows. We assume that P(J, = 1) = 1.
Then, using (3.1) we have

(3.2) P(N(t) =n, R(t) €F,(M,A) €G) = fa[deP(n;qrw)] dQ(e),

for n>0, GO, Fell,, where P(n; |0) is given by (2.4) for 6 =
(p;;),by,...,b,,) € ® and p, = 1. According to Section 2.1, the latter defines
a probability measure P(-|6), say, providing the regular conditional probability
distribution of (N(#), R(¢)) given (M, A) at 6.

We introduce the following random variables and processes: Fix ¢ > 0 and
define

N()

(33) Ivu= Z l(Jk—1=i’Jk =J)’ i,jEE,

k=1

N(@@)
(3.4) N(s)= ¥ 1(J,_,=i, X, <s), s>0,ick,

k=1
and

N(@)

(3.5) Yi(s) = Uy =it — Syey 2 5) + kz—:l W(Jpoy =1, X 2 5),

s>20,i€E.
Here the random variables { 'i j» I, J € E} give the observed transition counts
for the process o/, while for i € E, N(i) = (N/(s)), s > 0 is a counting process
defined over the completed sojourn-times in state i and Y(i) = (Y,(s)), s > 0,
is the analog of a risk process in life testing. Notice that included in Y(i) is the
partially observed times Xy, in the sense that its value is known only to
exceed the backward recurrence time ¢ — Sy,
Let B, ¢ and b denote a fixed set of a priori parameters. For each i € E,
define the processes B(i) = (B,(s)), s > 0, and C(i) = (C(s)), s > 0, by

(3.6) Ci(s) = ci(s) + Yi(s), §20,
and

Sci dbl + dM

(3.7) B,(s) =j0 — §>0

) =
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Here B(i) is a weighted average of the prior guess b,, and an analog of the
Nelson estimator of cumulative hazard. The random variables g = (8;; + N; ),
i, jeEE, C=(CQA),...,C(m)) and B = (B(1),..., B(m)) play the role of the
updated parameters in the posterior distribution.

The main result of the paper is the following theorem.

THEOREM 3.1. For fixed B, ¢ and b, suppose M and A are independent
with M ~ Dir(B) and A ~ Beta(e,b) defined by Definitions 2.1 and 2.2,
respectively. Consider the probability model specified by (8.1) and (3.2). For
t > 0, let (N(¢), R(t)) denote an observation on the process (J, S) over [0, ¢].
Then M and A are conditionally independent given (N(t), R(t)), with condi-
tional distributions given by Dir (B) and Beta(C, B), respectively.

The class of Dirichlet times Beta process priors is a conjugate family for
Bayes estimation from a Markov renewal process. The naturalness of the
problem and the product form of (2.4) and the prior lead one to this expecta-
tion, particularly when the first n terms of the process are taken as data.
Nevertheless, the observational scheme used here, which monitors the process
over a period [0, ], requires we establish two facts. Namely, notwithstanding
the presence of semi-Markov dependence in the sample, the posterior is
obtained by independently updating each factor in the prior, and the sojourn-
times act on the posterior Beta process as do censored lifetimes in the
framework of Hjort (1984, 1988). The care required in demonstrating the
latter in Proposition 3.3 originates in the “censoring” of Xy, to ¢ — Sy,
being a function of the preceding observations.

The remainder of this section is devoted to proving Theorem 3.1. We
proceed by first proving three needed propositions. Recall that ® = M,, X H™
and that for each n, I, = (E X R, )"*'. Hence, for any 6 € ®, we write
0 =(6,,6,), where 6, € M,, and 0, € H™, and for any = € Il,, we write
m = (my,m,), where my € E"*! and 7; € R"*. Now define

n—1
(3.8) dP(n;‘ITO|00) = k]':'l(:)pjkjk+l’
where m, = (jo,j1,-.-,J,) and 8, = (p;;), i,j € E. Next, using equations
(2.4), (3.2) and (3.8), define dP(n; m,|0,, 7,) so that
(3.9) dP(n;m|0) = dP(n;m,|60;,my) dP(n;m,|6,),
where

n’

= (%, %9, %,,u,) (u,=t—x,— "+ —2x,>0),
0, = (by,bq,...,b,,), ™= (m¢,m)
and 6 = (8, 0,). This obtains a convenient factorization of the kernel of the

measure P(n;- |6) appearing in the bracketed term of (3.2).
We have the following proposition.

ProrosiTiON 3.1. Let (N(¢), R(t), M,A) denote the random element in
NXMTXxO,N®II ® O, P), where P is determined by (3.2). Then
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(X4, ..., Xyupy A) and M are conditionally independent given
(o, - - » Ingey N(@).

Proor. Since N(¢) is almost surely finite it suffices to prove the condi-
tional independence on the set {N(¢) = n} for every n > 0. Fix n and using
(3.8) and (3.9), we begin by defining the E™*'-measurable function

f(n,80) = [ dP(n;m|m,,6,) dQ'(6,), 1wy € E"*Y,
Hm™ XR'.:,+1
where @' is the distribution of A, and E**! denotes all subsets of E”*!. Next
observe that according to (3.2) and using (3.8) we have

P(N(t) = n, (Jy,...,Jdne) €EF, M € G)

=f f(n,mq) dP(n;mol6,) dQo(8,),
GXF

for FeE"*! and G € M,,. This defines a measure u, say, on (E"*! X
M,,E"*! @ M,,), which is the restriction of the distribution of
(N@), g, ..., Ineyy M) to the set {N(¢) = n}. Moreover, for all G € E**! ®
M,,, we have

P(N(¢) =n,(Xy,..., Xnw) EF,A€K, (Jy,...,Jyey M) € G)

=f f fe(n,my) dP(n;m|m,, 0,) dQ'(8,)| du(my, 0,),
GL'KxXF

for F € R"*! (the Borel sets in R**!), K € H™ and where f®=f"'if f> 0
and f°®= 0 if f= 0. Note that for each n the term in brackets above is a
measurable function of ;. Moreover, for 7, outside a set of w-measure zero,
it defines a probability distribution over (R>*! x H™ R"*1 x H™). Therefore,
by virtue of the equation above and the definition of u, it follows that the
bracketed term determines a regular conditional distribution of
(Xy,..., Xngy A given (N(@),dy, ..., dye, M) on {N(¢) = n}. Since this is
independent of M, the proposition is obtained. O

Proposition 3.1 implies that A and M are conditionally independent given
(N(2), R(¢)). Hence, to obtain the posterior distribution of (M, A), it suffices to
individually derive the posterior of M given (N(¢), Jy, J,. .., Jy) and the
posterior of A given (N(¢), R(2)).

The remaining two propositions are more technical, but they provide the
thrust to the proof of Theorem 3.1. Fix n > 0 and consider X,,..., X, ., and
Jo,dy,...,dJ,. For each i € E, define N = card{k J,=i,k=0,1,...,n -1}
and the random set T, ={X,: J,_; k= ,n}. Let @, denote the
random probability measure on (H, H) deﬁned by the following rule: For each
w e Q,if N(w) = 0, then set Q(w) = @;. Otherwise if N(w) > 0 and T(w) =
{x,, k= , N(w)}, then set @(w) equal to the probability on (H H)
obtained by formal application of Theorem 4.1 of Hjort (1984) with @, as the
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starting measure and T,(w) as the observed sample. According to Corollary 4.1
of Hjort (1984), Q,(w) is the probability law of a Beta process with parameters
obtained by updating (c;, b;,) according to the rules set by (ii) and (iii) of
Theorem 4.1 of Hjort (1984).

We have the following proposition.

ProPOSITION 3.2. Fix n >0 and let X =(X,, X;,..., X,), X,=0, Y =
(Jo,J1y---re,) and m=(,j,,...,J,) € E"*L. Consider the event B(mw) =
{Y =7} and define G = o(X,Y) V o(B(w)). Let r > 0 and let G denote the
rectangle G, X G4 X -+ X G,, € H™ and suppose P(B(w)) > 0. Then on B(w)
we have

P(X,..>r,A€G|G) = TTQ(G)E, JI1 (1 -dayj(area),
iFjn <s<r

~

where E is the expectation operator defined by the random measure Q) .
Hence the Q, give regular conditional distributions of the A’ given G.

Proor. Observe that almost surely we have
P(X,,,>7,A€G|G)
= E(1(X,,,>1)1(A € G)|G)
= E(1(A € G)E(L(X,,, > r)|o(X,Y,A) v o(B(7)))|G)

- E(l(A 6) 1 (1-dap) G),

where these equalities follow by definition, the inclusion G c ¢(X,Y,A) Vv
a(B(w)), and assumption (3.1), respectively. Next recall that by hypothesis,
the times X,,...,X,,,; are conditionally independent given B(w) and A,
where the sojourn-times in state i, namely the set of times T}, i #j,, and
{X,,1} VT, i=j,, have conditional distribution determined by the process
Al, for i € E. Moreover, by virtue of the independence of M and A, and the
independence of the A’, it is easily shown that the random variables (T}, A?),
i#j, (X, UT;, A/») are conditionally independent given B(r). There-
fore, on B(1) we have

E(1ac@) I (1-aap) G)
- I E( 4 e 6)l6)E (, [T (1-dap)i(ane @,)e),

where terms in the product on the right above depend only on those sojourns
inT, i+ jn, and T , respectively.

Yet again by hypothes1s and given B(), each of the subproblems posed by
the conditional expectations above is equivalent to finding the posterior law of
a Beta process A’ given a sample of size n; = card{k: j, =i, k =0,1,...,
n — 1} lifetimes in 7T; from the model for Bayes estimation in life testing
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proposed by Hjort (1984). Hence, by Theorem 4.1 and Corollary 4.1 of Hjort
(1984), it follows that on B() we have

(l(A eG) T1 (1-dak) G)

O<s<r

- TTQ(G)E, T1 (1-dap)y(ar<g,)

i#],

and the proposition is thus proved. O

It follows from Proposition 3.2 that on B(w) we have

(3.10) P(X,.;>7|G) = Ejn 1‘1 (1 —-dAl"), r=0,

where E denotes the expectation operator induced by Q The expression on
the rlght ‘hand side of (3.10) admits the following 1nterpretat10n For each
w € B(m), let Q () denote the probability measure identified by Proposition
3.2. Then, the rlght hand side of (8.10) can be lnterpreted as the probability
some positive random variable Y, say, exceeds r in the context of a Bayes
model for life testing with prior process A’» distributed according to QJ ().
Using this interpretation, we see that in Proposition 3.2 the problem of
further conditioning on the event {X, , >r} is in essence equivalent to
updating the distribution Q () by conditioning on the event {Y > r}. The
latter is formally handled by (i) of Theorem 4.1 of Hjort (1984). Hence, let
Q () denote the probability on (H, H) obtained by formal application of (i) of
Theorem 4.1 of Hjort (1984) to Q (@) as described above. Consider the
following proposition.

ProposITION 3.3. Fix n > 0 and let B(w), G and G € H™ be defined as in
Proposition 3.2. Let r > 0 and suppose P(B(w) N{X,,, >r}) > 0. Then on
B(m) n{X, ., > r} we have

P(A €G|G Vv o({X,., >1)) = TTQ(G)Q(G,).
i%jn
Second, define Q, = {N(¢) = n} and suppose P(B(w) N Q,) > 0. Then on
B(m) N Q,, we have:

P(A € G|G v o(0,)), = T]1@(G)R(G,),

L#E],
whereu, =t —x,— -+ %, >0 for X(0) =x,,..., X,(0) = x,.
Proor. We define a probability u as follows. For G € H™, let u(G) =

PA G|{Xn+1 > r}). The conditional probability in question can be com-
puted from the measure u; namely on {X,_; > r} we have

P(A € G|G V o({X,., > r})) = u(G|G).
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Now it is easily shown that, outside a set of w-measure zero, we have
w(GIG) = P(A € G, X, > r|G) /P(X,,, > r|G)

[see, for example, Billingsley (1979), page 404]. Hence, by virtue of Proposition
3.2 and equation (3.10), on B(w) we have

w(GlG) = TT1 Q(G)HU(r, j,.G;),
L#jp

for G = G, X --- X @G, and where
U(r,jnnG;) = B, T1 (1-dal)i(a<G,)/E, T1 (1-dap).
O<s<r O<s<r

But it follows from (i) of Theorem 4.1 of Hjort (1984), that for each w € B(w)
we have

U(r, jn, G;,)(@) = §;(G;,, ),

so the first assertion is proved.

To prove the second assertion we define a probability v as follows. For
GeH™ let v(G)=PA € G|Qn). Then, outside a set of v-measure zero and
arguing as above, we have

P(A€G|GV o (Q,))1(N(t)=n)=v(G|G)

= P(A € G, N(¢) = n|G) /P(N(¢) = n|G).
To evaluate this last expression, let x;, >0, i =1,...,n, such that u, =
t—x;,— - —x,>0. Observe that for any o € ), we have X, (o) =
Xy, X(w) =x,, Nt w)=n if and only if X(0)=2x,,..., X, (0) = x,,
X, .{®) > u,. Therefore, on B(w) N {X; + -+ +X,, <t} we have

V(G'G) =P(A€G X, > ut'G)/P(Xn+1 >ut|G) = l;[ Qi(Gi)Qiu'(Gj,,),
i,

for G = G, X - X G,,, where the last equality follows from the first asser-

tion of this proposition with r replaced by u,. The second assertion is thus
proved. O

We are now in a position to give a proof of Theorem 3.1.

Proor oF THEOREM 3.1. Proposition 3.1 implies that M and A are condi-
tionally independent given (N(¢), R(#)). Therefore, it remains only to compute
the conditional distribution of M and of A given (N(2), R(#)).

Proposition 3.1 implies that, to compute the conditional law of M, it suffices
to compute the conditional law of M given (N(2), Jy, Jy, ..., Jy). Define
Q, ={N(@) =n}, for n > 0. Since N(¢) is almost surely finite and by an
elementary calculation, we have ’

P(M € G|lo(N(t) Jo, d1s.. ., Ine)) = L P(M € Glo(Jy,...,J,))1q,,
n=0
for G € M,,,. By hypothesis, for each n > 0, J,, dJ;,...,dJ, are observations
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over [0, n] from a Markov chain having transition probabilities M drawn from
the distribution Dir (). Hence, using the hypothesis of time homogeneity, the
repeated application (i.e., over successive transitions) of (iii) of Theorem 2.2 of
Hjort (1984) shows directly that P(M € G o(Jy, Jy,...,d,))1q, is computed
from the distribution Dir(B), where N (T) n in (3.3). This proves the
desired result for M.

To compute the conditional law of A given (N(¢), R(¢)), define G, =
o(Jy, Jyy .oy, Xy oo, X,) V o(Q),), for n > 0. Since N(#) is almost surely
finite, we have

P(A € G|o(N(2),R(2))) = ¥ P(A €G|G,)1,,
n>0
for G € H™. For rectangles of the form G = G, X -+ X G,,, Proposition 3.3
implies that

P(A € G|G,)1, = H Q:(G))QY(G,,),

where U=t - X, -+ - X, 20, and where the @, i #J,, and QY are
determmed as in Propos1t10ns 3.2 and 3.3. Hence, Corollary 4.1 of Hjort (1984)
implies that P(A € G|G,)1, is computed from the distribution Beta(C,B),
where N(¢) = n in (3.4)—(8.7). This proves the desired result for A and
completes the proof.

4. Remarks and generalizations. The present paper provides a proce-
dure for Bayes estimation from a Markov renewal process. In particular,
suppose the Bayes estimators of the Markov transition probabilities and the
cumulative hazards of the sojourn-time distributions are desired. Then, under
squared-error loss, these are given by the posterior means of the conditional
distribution derived in Theorem 3.1. For the transition probabilities, we have

(4.1) E(M;|N(¢), R(t)) = B; kZ Bir» i,j€E,
ek

where the B,; = N, j T B;; are defined in Theorem 3.1. For the cumulative
hazards of the sojourn-time distributions, we have
(4.2) E(A{|N(¢),R(t)) =B,s), s=0,i<E,

where B(i) = (B,(s)), s > 0, is defined by (8.7). By virtue of the conditional
independence of M and A given (N(¢), R(2)), it follows from (3.1), (4.1) and
(4.2) that the Bayes estimators of the transition distributions are given by

E(Mij(l - I (- dAl‘u)) N(t),.R(t))
4.3
“ = (Bij/kgEBik)(l - o<l:ISs(1 - dBi(u))),

fors>0and i,j € E.
The posterior analysis can proceed to compute other parameters of interest,
such as mean sojourn-times, renewal functions, etc. Many of these are ex-
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pressed as the posterior mean of a functional of (M, A); the transition distribu-
tions computed in (4.3) provide a particular example. Alternatively, consider
the problem of obtaining a Bayesian confidence set for the parameter, for
which the posterior variances of the estimators are useful in constructing
approximate Bayesian confidence intervals or bands. These are given by

(4.4) Var(M;|N(¢),R(2)) = Bij( )y Bik)/[(Z Bik)z(z Bir + 1)],
k+#j k k
and
, s1— AB,
(4.5) Var(A’SIN(t),R(t))=/OT+—1—dBi.

In principle, the variance of a transition distribution is obtained from (4.4),
(4.5) and numerous applications of the product rule for independent variables.
Instead, we recommend working with Var(M, ins|N (¢), R(¢)) to construct ap-
proximate Bayesian confidence bands for the transition rates. This may be
achieved using sample-path simulations from the posterior distribution.

The conjugate family of priors considered here have each member of the
family specified by choice of the parameters B, ¢ and b. The problem of
estimating these parameters from an empirical record remains to be explored
as part of the general methodology for approximate posterior analysis men-
tioned above. The estimators may be based on past observations of the (J, S)
process in leading to consistent empirical Bayes procedures.

The Bayes estimators of the transition distributions defined at (4.3) provide
alternative nonparametric estimators to those proposed in Gill (1980a) and
Phelan (1988). The estimators in Phelan (1988) are obtained by formally
setting the B;; and c; equal to 0 in the updated versions of the parameters. On
the other hand, those in Gill (1980a) are obtained similarly, provided one
restricts Gill’s problem and motivates the estimators accordingly. One way is
to restrict the class of transition distributions to those that factor as in Phelan
(1988), another is to restrict the censoring mechanism as below.

The results of this paper generalize in a number of ways. Obviously, we can
accommodate additional observations provided these are of conditionally inde-
pendent realizations of the Markov renewal process. In this case one simply
aggregates over these realizations when computing the random variables
defined in (3.3)-(3.5). The conclusion of Theorem 3.1 is the same. A more
interesting generalization for applications allows for random censorship. In-
deed a restricted version of random right-censorship of a Markov renewal
process is accommodated without fundamental change to the proofs nor the
conclusion of Theorem 3.1. This model allows for right-censorship of the
sojourn-times without loss of the state information of the J process. This is
the essence of the restriction of Gill’s censoring mechanism referred to above.

The proof of the main result rests on the simultaneous use of Theorems 2.2
and 4.1 of Hjort (1984); the former being concerned with Bayes inference from
Markov chains, while the latter is concerned with Bayes inference from
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lifetimes. Individually these theorems cover a wider class of priors than those
considered here, so that another immediate generalization of our result is
obtained by using the wider class of priors, where a proof of the conjugate
property would require similar steps. On the other hand, it has been suggested
by a referee that such a program might flow more easily from the building of a
time-discrete framework for renewal-type phenomena, taking the time-con-
tinuous case as a limit over a suitable sequence. This approach may prove
particularly valuable in generalizing the whole framework to other observa-
tional schemes and to the Markov additive processes treated for example in
Cinlar (1972).
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