502 DISCUSSION

Of course, these arguments prove nothing about admissibility but do sug-
gest that the necessity for the known mean of the V;’s is not unreasonable.
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Here is a slightly simpler version of Brown’s nice paradox: the statistician
observes X ~ N, (u,I), p >3, and also an integer J that equals j =
1,2,3,..., p with probability 1/p, independently of X. It is desired to esti-
mate p; with squared-error loss. Then ¢ is ancillary, and conditional on J = j
the obvious estimate dy(X, j) = X, is admissible and minimax. Uncondition-

J
ally, however, the Jth coordinate of the James—Stein estimate,

dy(X,J) =[1-(p-2)/1XI%]X,,

dominates d (X, J), with E[d(X,J) — pu,;1? < E[d (X, J) — u ;]2 for all vec-
tors .

In other words, Brown has restated Stein’s paradox, that d; dominates d,
in terms of total squared error loss, in an interesting way that casts some
doubt on the ancillarity principle.

[The example above does not look much like Brown’s regression paradox,
but we can fix things up by supposing that given J =j the statistician also
observes X, ~ N(a + u;, 1), independent of X ~ N (u, I), the goal now being
to estimate o with squared-error loss. Then &, = X, — d (X, J) dominates
éo = X, — dy(X, J) unconditionally but not conditionally. This situation might
arise if X; was the placebo response of patient j on some physiological scale
and X, was patient j’s response when given a treatment of interest; we
placebo-test p patients and then choose one at random to receive the treat-
ment.]

Why do we intuitively accept the ancillarity principle in Cox’s example,
Section 5, but doubt it in the example above, or in Brown’s regression
paradoxes? I believe that the answer has more to do with single versus
multiple inference than with hypothesis testing versus estimation.

Notice that d (X, j) disregards all of the data except X;. There is nothing
in the ancillarity principle to justify this. All that ancillarity says is that we
should do our probability calculations conditional on o = j. In Cox’s example
on the other hand, the conditional solution makes use of all the data and the
ancillarity principle works fine. '

Even when the choice J = j is totally nonrandom it is not obvious that d,
is preferable to d,. The real question is whether or not the ensemble estima-
tion gains offered by d, are relevant to the specific problem of estimating u ;.
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Carl Morris and I worried about this a lot in our 1971 and 1972 papers, and
also in the specific examples of 1975. Our hard-working 18 baseball players
were offered as a simplified test case for thinking about the trade-offs between
d, and d;; see also Section 8 of Efron (1982).
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1. Introduction. Professor Brown has presented a comprehensive dis-
cussion of multiple regression in relation to admissibility and the ancillarity
principle. He concludes that there is a paradox: That the results with multiple
regression contradict ““the widely held notion that statistical inference in the
presence of ancillary statistics should be independent of the distribution of
these ancillary statistics.” The reader thus receives the impression that there
is something wrong or inappropriate with conditional inference. The basic
assumption of conditional inference is that only the conditional model is
examined and that information from the marginal model is ignored. This is not
a “notion” that inference “should” be independent of the marginal model as
interpreted by Professor Brown, but that inference should not use or make
reference to that model.

The technical point then is that there is a conflict between conditional
methods and classical optimality criteria. We feel that this should be no
surprise, let alone paradox. In Section 5 we present a simple example that also
illustrates the conflict. ,

Our broader viewpoint is that the familiar optimality criteria of statistics
are in fact in conflict with scientific principles and that this provides the
explanation for the issues raised in the paper; see Section 2.

In a concluding Section 6, we argue that conditional methods are close to
the core of the scientific method, and note that conditional inference from both
a theoretical and pragmatic orientation is a recently active area of research
and presents exciting possibilities for research development.

Standard statistical theory uses a range of optimality criteria, such as
maximum power for a test at a given size @, minimum length for a confidence



