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NONPARAMETRIC ESTIMATION OF A REGRESSION FUNCTION

BY PrRABIR BURMAN AND KEH-WEI CHEN
Rutgers University and University of North Carolina, Charlotte

A data dependent method of estimating a regression function is proposed
here. The model is allowed to be heteroscedastic. Applications to piecewise
polynomial, spline, orthogonal series, kernel and nearest neighbor methods
are discussed.

1. Introduction. Let (X,,Y)),...,(X,,Y,) be iid. on I X R where I is a
compact set in R?. Let m(x) = E(Y|X = x). Then m is called the regression
function of Y on X. In this paper we are interested in estimating m and we allow
the model to be heteroscedastic. In the literature one can find many nonpara-
metric methods for estimating m, e.g., kernel, orthogonal series and spline, to
name a few. Optimal convergence properties of these estimators have been
studied in great detail, e.g., by Stone (1982). It is known that for each of these
methods how good an estimator is depends on how smooth the underlying
regression function is. Typically, optimal estimation involves an index which
depends on the smoothness of m, e.g., the bandwidth for the kernel methods or
the number of terms for the orthogonal series method. In practice, however, the
amount of smoothness of the unknown regression function is never known. So
the problem of finding a data dependent method of choosing the smoothness
index is an important task. Fortunately, quite a few data dependent methods
already exist in the literature. Chen (1983) used the final prediction error (FPE)
method to investigate the properties of the piecewise polynomial estimator in
the homoscedastic case. Properties of FPE, AIC, C,, C;, cross-validation and
generalized cross-validation methods for the homoscedastic case with X’s as
constants have been studied by many authors, e.g., Shibata (1981) and Li (1987).
Hardle and Marron (1985) studied the optimality properties for the cross-vali-
dated kernel estimator under the assumption that m and f (the marginal
density of X)) satisfy the Holder condition. In this paper all we need to assume is
that m and f are bounded.

In Section 2, we formulate the problem and state the main result. We discuss
piecewise polynomial, spline, orthogonal series, kernel and nearest neighbor
methods in Section 3. Section 4 contains the main results, assumptions and some
technical lemmas. In Section 5 we present a numerical example and in Section 6
we prove the main results of this paper (i.e., the results of Sections 2 and 4). In
Section 7, we prove the optimality results for different types of regression
estimates described in Section 3.

2. General method and goal. Let (X, Y)),...,(X,,Y,) beiid.on I X R,
where I is a compact subset of R?. The regression function of Y on X is defined
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1568 P. BURMAN AND K.-W. CHEN

by m(x) = E(Y|X = x). The main object of this paper is to estimate m for the
heteroscedastic regression model under the assumption that m is bounded. We
will assume that sup, E(Y*|X = x) < oo, for some positive integer s > 2, and
the conditional variance function ¢%(x) = Var(Y|X = x) is bounded above by a
positive constant. Let F' be the marginal distribution function of X and let F,
be its empirical d.f. Let {W,,: k= (k,,..., k,) € D,} be a sequence of weight
functions (depending on F) on I X I, where D, is an index set and card(D,) =
K,, K,/n°— 0. From now on, whenever we write £ < K, we mean that
ke D,. -

(Al) /W, (x,x', F)dF(x') > 1 for each x and for any sequence k, =
(kip,i=1,...,p) > 00,1e, k;,, >0 fori=1,...,p.

(A2) If m,, = [m(x)W,(x, x', F)dF(x’), then J(m,, — m)>dF — 0 for
any k, = oo.

(A3) m,;, # m ae. F for any k and n and sup, , sup,|m,,,(x)| < oo.

Notation and conventions. For functions g, and g, let (g, 8,) = [g,8, dF
and (&, &), = &8, dF, and |\g||” = [g} dF, ||g}|I; = /& dF,. Let {£,,} be a
class of random variables indexed by « and {7,,} be a class of positive random
variables or a sequence of positive constants. Then by e = Oy(n,,), We mean
SUpP,|€,0/Mnal = Oy(1). Similarly we can define §,, = o,(n,,). For notational
convenience we will write Wi(-,,-,), m,(-) instead of W,(-,-,*,), m,(-). For
x = (xy,...,%,) € R, let us denote |x| = |x,| + -+ +|x,|.

From the above sequence of weight functions we can construct a sequence of
estimates i (x) = LYW, (x, X}, F,)/n, k < K,. How large K, is depends on
the type of weight function and hence we postpone this question to Section 3.
The criterion for performance of our estimator is given by how good a predictor
it is. Let (X,,,, Y, ) be an independent copy of (X,, Y)), i = 1,..., n. Hence the
prediction error is

E((Your = (X, ))’|X0 Y i = 1,0, 0) = fo?dF + L, (k)

where L, (k) = ||, — m||%. This tells us that we should look for the index k at
which L, (k) attains its minimum value. Unfortunately, 2 depends on the
unknown distribution of (X, Y). So we try a different approach. Heuristically,
L, (k) = |7y, — m||% = |ml[}, + |[]|% — 2(7y, m),.

If we estimate (r,, m), by n™'LY;m,(X;), the bias given X,..., X, is
n”Yo?%(x)Wy(x, x, F,) dF,(x). This bias can be large and needs to be removed
[e.g., it is O,(k/n) if a polynomial of degree k has been fitted]. An estimate of
this is n™?L& Wy(X), X;, F,), where &,; =Y, — m,(X;). So an estimate of
(M, m), is given by n™ 'LV (X)) — n ?Le; W(X,, X, F,) (see Remark 2.4).
Let

L,(k) = ml2 + 17412 — 207" ¥ Yy ( X;) + 202 L83 Wi(X,, X, F,)
=lml; = n P XY + 0t L& [1 + 207 WX, X, F,)].
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Then I:n(k) is a good estimate of L, (k). Let
T(k) = n 2 L& ,[1+2n Wy(X;, X, F,)] and T(k) = inf T(k).

Then we use 7; as our estimate of the unknown regression function. The fact
that 7; is a good choice is shown by the results (see Section 4)

(2.1) L(k)/L(E) »p1 and V,(k)/V,(k*) >p 1,
where
Vi(k) = E(L,(k)X,,..., X,)

=n"" [} x)Wi(x, x, F,) dF,(x) + |, — mi?,
my(x) = E(’hk(x)|X1,---, Xn) and V,(k*) = infksK,, V.(k).

REMARK 2.1. In some cases our selection rule may involve less computation
than ordinary cross-validation, e.g., the nearest neighbor method (see Section 3).

REMARK 2.2. L, (k) =]/, — m||® should be preferred to the loss (1 ,( X;) —
m(X,))?/n on the ground that the latter measures the discrepancy between i,
and m only on the points X,..., X,, whereas, L,(k) is the overall loss.
However, they can be shown to be equivalent in many cases [see Marron and
Hardle (1986)].

REMARK 2.3. It is possible to choose our loss function to be
[(#r, — m)2h(x) dF(x) for some nonnegative weight function 4. Indeed, such a
loss function with an A vanishing at the boundaries will help us to get rid of the
problem of boundary effects associated with the kernel and nearest neighbor
methods. It is not hard to see what the corresponding L, should be and all the
results of this paper will remain valid. Since we can always choose a weight
function A which is 1 on the compact set I and 0 otherwise, it is not necessary to
assume that X is in a compact set if our goal is to estimate m on I.

REMARK 2.4. For the purpose of discussion here, let w;; = W(X;, X}, F,),
@, = w2/(1 — 2n"'w;) and wg; = {(w;; — n~*Li iywy)} /(1 — 2n” 'wy;). Let us
note that n =228 wy; is an estimate of n™Yo*(x)Wy(x, x, F,) dF,(x) and it can
be shown that this estimate has a smaller bias than the one introduced before.
This gives rise to the following estimate of L, (k); L(k) =|m|2=n"'LY? +
n~'ZE2 [1 + 2n"'w}]. Another estimate of n™'fo?(x)Wy(x, x, F,)) dF, is given
by n2LY;é, Wi(X,, X, F,), where W, = W,(1 + n~W,). It is easy to see what
the corresponding estimates of (m,, m), and L,(k) should be and the results of
this paper remain valid.

3. Applications. For all the applications to be considered here we assume
that the marginal density of X satisfies 0 < b < f(x) < B for all x € I, for some
0<b<B and I=1[0,1]7. Let us note that even if X is not assumed to
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be valued in a compact set, this assumption on the density can be made with-
out loss of generality since we wish to estimate m only on compact sets (see
Remark 2.3). Let us recall here that the criterion function is T, (k) =

_IZ§k [1+ 2n‘1Wk( » F,)] and k is the index at which T (k) is mini-
mized, i.e., T(k) = 1nfk<K T(k) We will call optlmal if (2.1) holds. From
now on, for notational simplicity we will write Wy(x, x’, F') and Wy(x, x’, F,) as
W,.(x, x") and W,(x, x’), respectively.

3.1. Least squares method. Let {,(x) be a A, dimensional vector of func-
tions. Here we get i, as a linear combination of these A, functions by the least
squares fitting. For all the applicatiions we have in mind, c,(k, -+ k,) <A, <
cy(k, --- k) for positive constants ¢ and c¢,. Let K, besuch that K /n1 “->0
for some a Zo. Here the index set is of the form D ={k: A< K } Let

(8.1a) A, = f‘Pk‘P;e dF, dy= fm‘l/k dF, Wi(x, x) = u(x2) AL i (x),

A= [widF,  di= TY4(X,)/n,
Wi(x, x) = $i(x) A7 u(x).

The regression and the criterion functions are

(3:2) Au(x) = djAy Yu(x) and

T(k)=n""1 Zekj[l +2n (X )Ak Vi X; )]

THEOREM 3.1. Let us assume that (A2) and (A3) hold. Let §,, =
A2~ (=972 for some 0 < § < a/2. Then My, is optimal if:

(3.1b)

(i) All the eigenvalues of A, are between c;\,' and c,A\;* for some positive
constants c; and c,.
(i) |14 — ALl = 0,(8,), where || - || is the matrix norm.

Piecewise polynomials with fixed partitions [Chen (1983)]. For each k =
(kyy-.os kp), let {Cpp t=(ty,...,¢,), 1 <t;<k;,i=1,..., p} bea collection of
disjoint rectangles covering I such that lengths of the sides of each C,, are
(k1% Ry 1). On each C,, we fit a polynomial of a prescribed degree (say v) by
the method of least squares, i.e, on each C,, we fit a linear combination of
the functions ¢,,, by the method of least squares, where ¢,,,(x) = I17 x¥,
x=(xy...,%,), u=(uy...,u,) and |u| =u; + --- +u, <v. Here, A,=
vk, -+ k, where v, = ;’-=0(p‘; +J). Let ¢,,(x) be the vector of functions

Srews Ul < v, I (x) the indicator function of C,, and

b= [Tu()ou(x)$3,(x) dF(x), A= [L(2)dre2)9h(x) dE,(),

d,, = fIk,m¢>k, dF, dy, = zIkt(Xj)‘Pkt(Xj)Yj/n
J
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Here
W (x, x') = ZIkt(x)Ikt(x/)d’kt(x)Ak_tl‘f’kt(xl)’
¢

Wk(xa x') = ZIkt(x)Ikt(xl)(rl);et(x)A;t1¢kt(xl)'

The regression estimate and the criterion function are

y(x) = ZIkt(x)%,(x)A;,‘Jk, and
t
T (k) = n"t L2 ,|1+ 207" Lopl X)) Aol X)) |-
t
In this case, ¥, is the vector of the functions ¢,

Piecewise polynomials with random partitions. From a practical point of
view, the fixed partition case sometimes may have a serious problem. It may
happen that one or more of the rectangles may have very few or no observations
at all. Random partitioning avoids this problem and is carried out as follows.

For variable X, divide [0,1] into k; subintervals [{; ;_ 1, §; /), where {; , = 0,
$ir,=1and {;; is the (j/k,)th sample quantile for the variable X;. If this is
done for 1 < i < p, it gives rise to a partition {Cy,} of [0,1]”. The rest including
the criterion function T, (%) remain the same as in the case of fixed partitioning.

THEOREM 3.2. Let us assume that m is not piecewise polynomial. For the
piecewise polynomial regression method (with fixed or random partitioning), m;,
is optimal if m is bounded.

From now on, for technical reasons we will write

p
¢ktu(x) = l_llx?i(xi - xkti)uis
il

where x,, = (X4, - .-, Xp,p) is the middle point of C,,. We note that with these
®r..'S We get exactly the same estimates as before.

Spline regression: Equispaced knots. Fore each integer [, let Sp; be the class
of all functions s on [0,1] such that for each i =1,...,/, s is a polynomial of
degree v on [(i — 1)I}, il"'] and is (v — 1) times continuously differentiable on
[0,1]. Sp, is called the class of splines of degree v on [0, 1] with knot spacing [~ %
Let (B, : j=1,...,1+v}bea basis of Sp, consisting of normalized B-splines
of degree v (with knot spacing I~ ') [see de Boor (1978)]. Let {B,, ,: t = (¢, ..., t,),
1 < t; <k, + v} be the class of multivariate normalized B-splines on I defined
as the product of univariate normalized B-splines, i.e., B, (x) = l_[f;lBki, (%)
Here A, = [17,(k; + v). Let §, be the vector of B,,’s. The regression function
7, and the criterion function T, (k) are of the form given in (3.2).

Spline regression: Random knots. As in the case of piecewise polynomials,
fitting spline regression with equispaced knots may also run into trouble. From a
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practical point of view it is advisable to place the knots at the quantiles. For
variable X;, we could place the knots at 0 = {;, <§; <{;p < -+ <§, =1,
where §;; is the (j/k;)th sample quantile for variable X;. Apart from the
placement of the knots, everything else [including the criterion function T,(%)]
remains the same as in the fixed knots.

THEOREM 3.3. Let us assume that m is not a spline of degree v. For spline
regression with equispaced or random knots, m;, is optimal if m is bounded.

REMARK 3.1. For the spline regression with random knots we should write
Wi(x, ') = yi(x)A; 'u(x') and W’k(x’ x') = ‘I:;e(x)fik_ltﬁk(x'),

where 43; is the vector of B-splines with random knots. However, all the proofs
go through with some modification in arguments. These same comments also
apply for the piecewise polynomial method with random partitioning. We will
discuss spline regression with random knots in a forthcoming paper.

Orthogonal series method. There are essentially two methods of construct-
ing regression functions using the orthogonal series method. The first is a variant
of the kernel method and hence no special treatment is given to it.

1. Let {¢,} be an orthonormal system on I. For convenience we will write the
system as {¢;, ¢,,... }. The weight function here is defined as

Wi(x,x') = X ¢i(x),(x") | X ¢,(x)8,

VELY J<Ay

where 6, = [¢; dF or, in order to avoid possible zeros in the denominator, we
could write the other form as

W(x, ) = ¥ ap0/(x),(x) | L ay;0,(x)6;,

VEIV J=Ag

where {a,: j < A,} is a sequence of constants chosen so that lim, a, ; = 0 for
each jand X;_, a; ¢;(x)¢;(x") > 0 for all x and x’. If trigonometric polyno-
mials are taken with a, ;=1 or a,;’s as the Fejer weights, then W(x, x’)
looks very much like a kernel. '

2. As in method 1 we will write the orthonormal system as {¢,, ¢5,... }. We will
present this case mainly for p = 1 and trigonometric polynomials even though
our results are written in a general form. Let us assume that ¢’s are
uniformly bounded by a constant, say 1. Let {,(x) be the column vector of
the functions ¢,(x), ¢t <A, (A, = 2k + 1 for trigonometric polynomials and
A, = k for Legendre polynomials). The regression function and the criterion
function are of the form given in (3.2). Different orthogonal series require
different types of assumptions on m to ensure that sup, sup, |/, (x)| < oo [see
Jackson (1930)].
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THEOREM 3.4. Let us assume that m cannot be written as a linear combina-
tion of the finite number of ¢;’s. m;, is optimal if m is:

(i) Absolutely continuous when trigonometric polynomials are used.
(ii) Differentiable when Legendre polynomials are used.

For technical reasons, from now on we will denote the vector of functions
A%, j=1,..., A, by §,. We note this change does not affect the estimates
given above.

3.2. Kernel method. Let w be a bounded nonnegative density on R? vanish-
ing outside a compact set containing the origin and satisfying a Hélder condi-
tion, ie., |w(z;) — w(2,)| < T2, — 2,||# for all 2, and z,, for some T > 0 and
B > 0. Let us assume that sup, E(Y?*|X = x) < oo for all u > 1. Let f,(x) =
Afw(h(x — x")) dF(x’) and fh(x) = AMw(h(x — x)) dF,(x’), where h =
(hyy--oshp), A ="hy --- h, and for any z € R?, hz = (h,z,,..., h,z,). Here we
allow the bandwidths (i.e., &;’s) to vary continuously in the interval [n? n'~ %]
for any small a > 0, so that n* <TI7_ h; < n'~* Let C = {h = (h,,..., h,):
n® <h;<n'"% n*<TIZ b, <n'7°] Let Wy(x,x") = Aw(h (x — x))/fx(x),
Wi(x, x") = Aw(h(x — x"))/f;(x) and m,(x) = [m(x")W)(x, x") dF(x’). Here

my(x) = ()\/n)ZY}w(h(x - Xj))/fh(x)a
T,(h) =n ' L &,[1 + 2n~ \w(0) f(X;)]

and inf,_ ., T(h) = Ty(h). As usual, L (h)=|R, — m|®> and V(h) =
E(L(h)X,,..., X,).

THEOREM 3.5. Let us assume that m #+ m, a.e. for any h. If m is bounded,
then

L,(h)/ inf L (k) »p 1 and V,(h)/ inf V,(h) —p 1.
heC heC
To use our main result of Section 4, we will prove Theorem 3.5 for a discrete

choice of bandwidths with h;, = n® + (k; — Dnf ' k=1,...,K,=n"F"
i =1,..., p and show that this discrete choice approximates the continuous case
(Lemma 3.7).

Abusing some notation we will write Wy, mp,, My, L(hy), etc., as W), m,,
M, L,(k), etc. Lemma 3.6 will be needed very often. Let

e = (logn)"*"" /N, My(x) = [m(x')Wi(x, %) dF,(x')
and
my(x) = [m(x)W(x, =) dF(x"),

Where Ak = hkl ce hkp'
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LEMMA 3.6. sup,|fy(x) — fu(x)| = 0,(\se,s) and sup,|my(x) — my(x)| =
Op(Akenk)‘

The next lemma tells us that the discrete case allows us continuous bandwidth
selection. Let C, =I17_,[h; _, hy ], for k = (ky,..., k).

LEMMA 3.7.
(i) sup sup |V, (k) — V,(k)|/V,(k) =5 0.
‘ k heC,
(ii) sup sup |L,(h) — V,(k)|/V,(k) =p 0.
k heC,
(i) sup sup |L,(k) = L(k)|/V,(k) =5 0.
k heC,

REMARK 3.2. It is possible to relax the condition that w is nonnegative if we
can choose the bandwidths in such a way that inf, inf_ f,(x) > 0, which is in
fact enough for all the proofs to go through. Consequently, all we need to assume
is that w(0) > 0.

REMARK 3.3. We note that the conditions imposed on w here are not true
for the uniform kernel. However, calculations similar to the ones done here will
hold for the case of the uniform kernel with slight modifications and hence no
special treatment is given for it.

REMARK 3.4. We note that if we do not assume the existence of all the
conditional moments of Y given X, a will depend on s in a complicated manner,
where 4s is the largest moment of Y given X assumed to exist.

REMARK 3.5. Hardle and Marron (1985) assume that both m and f satisfy
Hélder conditions. Here all we need is that m and f are bounded.

3.3. Nearest neighbor method. For an integer k, the nearest neighbor esti-
mate at point x is defined as the weighted average of those Y;’s for which the
X,’s are the k nearest observations to x. Now let us describe this method
mathematically. Let w be a function on [0,1], w(0) > 0 and fw(¢)dt = 1. For
any two points x, and x, in R?, let ||x, — x,|| be the usual Euclidean distance
(or it could be the distance ¥|x;; — x;|). Let N(x, r) = {x": ||x — x'|| < r}. For
1 < k < n'~¢ for some small « > 0, let

Wi(x, 2') = Mw(NGo(x: ||lx = 21))) /74,
VVk(x’ x,) = >\Izw(}\leG(xa ”x - x’||))/vk,

where A, = n/k, G(x,r)= FE(N(x,r)), G(x,r)=F(N(x,r)) and », =
k_12f=1w( J/k). The nearest neighbor regression estimate and the criterion
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function are
fy(x) = n Tt LYW, X)) = B L Yw(MG(x, e = X)) /2,
T(k) =n"' Y&, [1 + 26 'w(k™Y) /v,).

We allow % to vary between 1 and n!~% We will assume here that E(Y*) exists
for all s. In order to make the proofs simple we will assume that either w is
uniform or it is linear or it is differentiable on (0, 1) with the derivative satisfying
a Holder condition. Now let us write down the main result. Let m,(x) =
fm(x"YWy(x, x") dF(x")

THEOREM 3.8. Let us assume that m, # m a.e. for any k. For the nearest
neighbor method, r;, is optimal if m is bounded.

The following lemma is very important.

LEMMA 39. Let a, = (logn)/?*%/ Jnfor some 8 > 0. Let I(x,r) be the
indicator function I(G(x, r) < a,). Then the following is true uniformly for all
xelandr> 0:

G,(x,r) — G(x,r) = o,(a®)I(x, 1) + 0,(a,)|G(x,7) (1 - I(x,7)).

The proof of this lemma follows from the results given in Breiman, Friedman,
Olshen and Stone (1984).

REMARK 3.6. Let us note that the nearest neighbor case is slightly different
from the others in the sense that we have only one smoothing parameter here.
However the general theory presented in Sections 2 and 4 holds here without
any modification.

REMARK 3.7. In order to be consistent with (A2) we should write A, =
n/(n + 1 — k). However, this change does not alter the proof in any way.

4. Main results.

4.1. The main results under general assumptions. The results of this section
are very general. We will prove the main results under some general assumptions
which will be given later in this section. In order to make the proofs simpler, we
will assume that the variance function o? is bounded away from zero.

Let us recall M (x) = E(f(x)|X,) = [m(x")Wy(x, x') dF,(x") and m,(x) =
m(x)Wy(x, x’) dF,(x’), where X, = (X,,..., X,). Let us now state the main
results.
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LEMMA 4.1. Under (A1)-(A9),
L.(k)
V.(k)

sup -1

k<K,

-p 0.

The following is an immediate consequence of Lemma 4.1.
COROLLARY 4.2. Under (A1)—~(A9), V(k*)/L (k) —p 1

LEMMA 4.3. Under (Al1)-(A9),

sup IL (k) = V() — (L (k*) — V,(k*))I/V, (k) =

Because of Lemma 4.3, we get for any ¢ > 0,
L (k) = L(k*) = (1 = &)V, (k) = V,(k*)
for all 2 < K, with probability tending to 1. Since Ln(k) - (k%) <0,

V(k*)/V(k) >1—¢ and hence 1> V(k*)/V(k) <1 — ¢ with probability
tending to 1. Since ¢ > 0 is arbitrary and because of Corollary 4.2 we conclude:

THEOREM 4.4. Under (Al1)-(A9),
L(k)/L (k) ~p 1 and V,(k)/V,(k*) >p 1

REMARK 4.1. If it is assumed that sup, E(Y — m(x))**|X = x) < {* for all
u > 1, for some { > 0, then all the statements in Lemmas 4.1 and 4.3 and
Theorem 4.4 could be proved “with probability 1” instead of “in probability” by
repeated use of Borel-Cantelli lemma.

REMARK 4.2. A look at the proofs of Lemmas 4.1 and 4.3 will tell us that all
the results of this paper are valid if X,’s are constants. In that case the loss is
taken to be n~'Y(m,(X;) — m(X;))%.. We would like to point out that the case
for random X,’s involves a lot more mathematical complications than the case
for constant X’s.

Now let us write down the conditions needed to prove Theorem 4.4. Let us
recall that sup, E(Y*|X = x) < co for some s > 2.

(A4) W,’s depend on A,,’s, where hnk (Rppys e hog,)- Let A =hpp
hpp,- For each n, {h,;} is increasing in j and

(i) sup Zh $ < o0,

n j=1

(ii) sup A,,/n— 0.
k<K,

The sequences {4, ;} and {A,,} arise quite naturally (see Section 3).
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(A5) () inf,_x Anif W2(x, x') dF,(x") dF(x) is bounded below and above by
two positive constants (indipendent of k) with probability tending to 1.

(ii) supksKnP\;,:foZ(x’)_Wf(x, x") dF(x") d(F, — F)(x)| = o,(1).

(iti) supy < x, SUP; Ak Wi, x)| = Oy(1).

Let a,(x,, x5) = [Wy(x;, x)Wy(x,, x) dF(x).

(A6) (1) Sup; <k, Ar_ﬂ:fal%(xh x) dF(x,) dF(x,) = Op(l)‘
(i) supy, < x, Aorfai(%y, X5) dF,(x1) dF(x5) = Oy(1).

(A7) (i) sup, [|Wy(x, x))| dF,(x,) = O,(1).
(ii) sup,, [|Wy(x, x)| dF,(x) = O,(1).
(iii) sup,, /|W(x, x,)| dF(x) = O,(1).

Let

V(&) = n~t [o*(x)Wi(x, x') dF,(x") dF(x) + I, = my|* + [y, = m]|*.

(A8) sup, . x |V,(k) = V(k)|/V,(k) =p 0.
(A9) [(, — m)*d(F, — F) = o, (V,(k)).

4.2. Some technical results. In this section we will write down a few impor-
tant technical results. From now on we will write 2, and A, instead of A,;
and A ;.

The following result is essentially a consequence of the assumption, m, # m
a.e. F for any % [(A3)]. Similar results appear in Li (1987) and Shibata (1981).

LEMMA 4.5. Under (A3), (Ad), (A5) and (A8),
(i) (2) inf nV,(k) —p oo,

inf nV, - .
(b) klsnKnn n(k) p ®

(i) (a) X (nV(k) -0,

k<K,

(b) X (nV(k)) " —po0.

k<K,

Let a, be the same as in Lemma 3.9. The following useful result follows from
Hoeffding’s inequality. For a proof see Breiman, Friedman, Olshen and Stone
(1984).

LEMMA 4.6. Let {¢,,: u € D,} be a collection of functions uniformly bounded
in absolute value by 1. Let t, be the cardinality of D, and o?2, = Var(¢,(x)). If
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t,/n®— 0 for some a > 0, then

f¢nud(Fn - F) = Op(ai)‘[nu + Op(anonu)(]' - Inu)’

where I,, = 1 or 0 according as o,, < a, or ¢,, > a,.
nu n

nu —

The following result due to Whittle (1960) will be used repeatedly.

THEOREM 4.7. LetZs, j = , i, be independent random variables with

zero means and EZ}* < for] = 1 ,n. Let yj(u) = {E|Z;]|“}'/*. Then for

any sequence of real numbers {b;: 1 < j s n} and {a;;: 1 <1, j < n}, there exist
constants c,(s) > 0 and c,(s) > 0 such that

(i) E(L852,)" < ei(s)(Zb2v2(2s)),
(ii) (Za” Z.Z; — Eza” ; J) <cz(s)(zauy,2(2s)yz(2s))

The following lemma is simple to prove, but harder to describe. For I < ¢, 1
and ¢ positive integers, let
Z(t,1) = {(iy,..., 8,): 1 <idy,..., 8, < L, iy,..., i, are integers
and (i,,..., i,) has [ distinct values}

and, for any £ € Z(¢, 1), let a(§¢) equal the number of indices in £ appearing only
once.

LEMMA 4.8. Let ¢ be a bounded function I'. Then there exists a constant ¢
(depending only on t) such that

E fols50) [0, = F))

t
ceYatt ¥ arle® 0 flg(x) dF(x,) - dF(x),
= $eZ(t, 1)

where [v] is the largest integer not exceeding v.

5. A numerical example. In order to show how our model selection method
works we present a numerical example here. The data are taken from the book
by Mardia, Kent and Bibby (1979). The data contain the analysis and statistics
scores of 88 students. We treat the statistics score as the Y-variable and use the
kernel method to fit a regression curve. The kernel we have used is w(z) =
1.5(1 — |2])%, |z| < 1. Since the standard deviation of the x-values is 14.85,
3sd = (3)(14.85) = 44.55. Taking a = 0.01 we allow A to vary between

n®% /44,55 = 0.02 and n®%/44.55 = 1.89. Since the kernel w vanishes outside
[ 1, 1] m,\(X )s and fx(X )’s remain the same for all A > 1. Consequently,
T,(\) is an increasing function of A on (1, 00) and this tells us it is enough to
consider T,(A) over [0.02,1]. We calculate T,(A) on a grid of 100 values of A in
the range 0.02 to 1 and X (i.e., the value of A at which 7, attains its minimum)
turned out to be about 0.10. Indeed the minimum of 7,( }\) over (0, 1] is attained
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Raw data and fitted values

100

SOﬁ e oo o

60

40 A

20 1

X

F16. 1. Scatter diagram showing the analysis (X) and statistics (Y) scores of 88 students along
with the graph of the fitted kernel estimate of the regression function.

2

A = 0.10. 15 is plotted in the given graph along with the scatter diagram (Figure
1). In this example, we have not pursued any additional steps to avoid the
boundary effects as discussed in Remark 2.3.

We have also considered generalized cross-validation (for the homoscedastic
case) and cross-validation estimates of A. For both these methods, the optimum
values of A turned out to be about 0.11. We do not present here the graph of i,
for A = 0.11, since it is very close to the one for A = 0.10.

6. Proofs of the main results (i.e., results of Section 4).
ProoF oF LEMMA 4.1. Let us note that because of (A5)({i), V, (k)=

c(A,/n) + ||/, — m||? for some ¢ > 0, with probability tending to 1. Here and
elsewhere we will denote the generic constants by c, ¢, ¢y, ... . Let

6= Y- m(X), au(x,x) = [Wilx, x)Wi(x, x,) dF(x)

and by(y) = [Wy(x, y)(i(x) — m(x)) dF(x).
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Then by (A6)(i) and (A7),
(61)  [ab(xi, %) dFy(x,) dFy(x;) = [ad(x,, x,) dF(x,) dF(%,) = O,(A,),

oz dF, < {sgp [ W, ») dF(x)}{Slip [1Wil, ) an(y)}
(62) X[y, = m||?
= O,(lirty, — m||*.
1 1
L,(k) — V,(k) = {? Zsisjalk(Xi’ Xj) - ?202()@)“1/«1(){;’ Xj)}
+ 2{%Zejbk(xj)}
= S,(k) + 2S,(k), say.

P| maxi[si(0))/ V()] > .

<ot T BB/ (nV, (k)"
<0(1) T n*(Lak(X, X,)) /(nV,(k))*
(6.3) k<K,
[by Theorem 4.7 (Whittle)]

< 00) T {fah(o,m,) dhy () dB(x) /(nV,(0)*

k<K,

<0,(1) ¥ (nV,(k)) " =o0,1) [by(6.1) and Lemma 4.5].

k<K,
Hence S,(k) = 0,(V,(k)). Now

P| maxIS,(£)/Vi(k)> |, |
< e‘?skSZKnE(nsz,(k))“/(nVn(k))23
(6.4) <o T n(zbz(xj))s/( nV,(k))™  (by Theorem 4.7)
<o) ¥ (nlli, = miI)"/(nV,(k))™
< Op(l)kEKnn(nVn(k))_s =0,(1) (by Lemma4.5).

Hence Sy(k) = 0,(V,(k)) and this proves Lemma 4.1. O
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PrROOF OF LEMMA 4.3. Let us note that
1 —
V() = — [o%(x) W2 (x, &) dF,(x") dF(x) + i, = mil*.
Also f,n(k) can be written as
Imily = n~P XY + 7t X6 + |y, — iyl + |1, — ml|2
+ 2(1hy, — 1y, 1y, — m)
2
- ;Zaj(mk(Xj) - m(Xj)) —-2n7! Zﬁj(mk(Xj) - m(Xj))

+207% ¥ (Y, - my( X)) WX, X,).
Hence
L(k) - V()

1 _
= g = g2 = [0V Wi, ) () dF ()
+ {17y = myllZ = 1Ry — mi|®} + 2{(ihy, — 1ty 12y — m),}

- o 2 Talmul X) = ml X)) = - [o%(x) (e, x) i (2))

n

- o - Delm(x) = m(x)} - 2{ 7 Tem(x)

+ 207 T (Y = X)) TlX X)) = [0 () File, 2) o))

+{%ffo2(x’)ﬁ—’,f(x, x') dF,(x')d(F, - F)(x)}
= Ti(k) + Ty(k) + 2Ty(k) — 2T,(k) — 2T(k) — 2T5(k)
+ 2T, (k) + Ty(k).

We note that Ty does not depend on % and the difference (L (k) - V(k)} —
{L,(k*) — V,(k*)} does not contain T,. Because of (A9) and (A5)(ii), Ty(k) =
0,(V,(k)) and Ty(k) = 0,(V,(k)). Let us note that

T\ (k) =n"? Zeiejﬁlk(Xi’ Xj) -n7? E“z(Xj)dlk(Xj’ Xj)»

where @,,(x,, x,) = [Wjy(x, x,)Wy(x, x,) dF,(x). Now arguing as in (6.3) and by
(A6)(ii) we can show Ty(k) = 0,(V,(k)). Now

1 — 1 —
T4(k) = ;ézeiejwk(xi’ Xj) - ;2“202(Xj)Wk(Xj’ Xj)'

(A5)(i), (A5)(ii) and another use of Whittle’s theorem will tell us
T, (k) = 0,(V,(k)).
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Now

1 - - —
Ty(k) = n Zsibk(Xi) where b,(y) = fWk(x, ¥) (g (x) — m(x)) dF,(x).
Arguing as in (6.2) and by (A9), we get
[ dF, = 17, = mi + 0,(V,(k)).

Now, an argument similar to that in (6.4) will show Ty(k) = o,(V,(k)). By
Whittle’s theorem and (A9) we can show that Ty(k) = 0,(V,(k)). Now

T (8) == T{(6 - 02(%,)) + (3u(X,) — ()" + (Rl X)) (X))’
+2(riy(X;) = (X)) (i X)) = m(X;)) = 2¢,((X;) = (X))
—2¢;(y(X;) - m(X,-))}V_Vk(Xj, X))

=T, (k) + Tp(k) + Tys(k) + 2T, — 2T,5 — 2T, say.

Using Whittle’s theorem and (A5)(iii) we can show that T,,(k) = o,(V,(k)).
Because of (A5)(il), T,,(k) = O (}\kn‘l)”mk — 1,2, We know that
Ty(k) = |y — mglle — E{liy, — mglllX,} = 0,(V,()). Since by (AB)Gi)
E{||), — m,)151X,} = O,(A,n""), we conclude that

Tyo(k) = O,(An ) [0,(Aen™1) + 0,(Vi(R))] = 0,(V,())

(since sup An~t - 0).
k<K,

By (A5)(iii) and (A9),

Tys(k) = O(Aen "), — mi; = 0,(V,(k)).
Arguing similarly,

IT74(R) < O,(An 1)ty — iyl 2N, — ml| = o,(V,(k)),

I Tos(R)] < Op(Nen™)(n " L) iy = syl = 0,(Vu(k)
[since ntY) e = Op(l)] ,
I Ts(B)] < Oy(An")(n 7 L e2) ey = mil, = 0, (Vi(#))
and this completes the proof of Lemma 4.3. O
Proor oF LEMMA 4.5. (i) Because of (A8) it is enough to prove only part (a).

If inf, A\, > o as n — oo, the result is trivial. Otherwise, by (A3) and (A4) we
can find a sequence k,— o (ie, k, = oo for i=1,...,p) such that
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inf, _; n|lm, — m||* - oo; hence,
inf nV (k) = inf{ inf n||m, — m||?, inf fa2(x’)Wk2(x, x') dF(x) an(x’)}
k<K, k<k, kfk,

(k <k, means k; <k, i=1,...,p and &k £ k, means k;> k;, for some
1<i<p)
The above expression converges to infinity in probability because of (A5)(i).
Because of (A8) it is enough to prove part (b). We note that A,. =5 0 as a
consequence of part (i):

Y (nVy(k) < T (aVy(k)) T+ X (nV (k) .

k<K, k<k* ktR*

The first expression goes to zero because of (A5)(i) and (A4)(i), whereas the
second expression goes to zero because of (A4)(i). O

ProOF oF LEMMA 4.8. Let us first notice that it is enough to prove the result

for elementary functions of the form ¢(x,,...,x,) = Xa(iy,...,i)[(x, € A;),
where {A} forms a partition of I and n*F(A;) <1 and for all j. Hence

t
Jo(xs s %) [Td(E, - F)(x) = n~* Lali,si)dy -~ dy
where d; = n{F,(A,) — F(A,)}. This integral can be written as

t
n_tlZ (Taliy,...,i)d, -+ dy},
=1

where the inside summation is over all (i, ..., i,) such that (i,..., i,) form only
I-distinct indices. Hence for each 7 and (i,, ..., i,), the term d; --- d; looks like
df ... d], ks positive integers and L!_,k; = ¢. For the moment let us assume

(Lemma 6.1) that for [ < ¢, there exists a constant ¢ depending only on ¢ such
that

l
|EdF - .. dzk’| < an(Ai)n"[(““W],
i=1

where a is the number of k; = 1. This tells us that the expected value of the
above integral is bounded above in absolute value by

t
ent Y X nltle® 0 flg(x)| dF(,) - -+ dF(x;). o
=1 ¢teZ(t,l)

LEMMA 6.1. Let (ny,n,,...) be multinomial (n, p,, p,,...) with n’p, <1
for all u and d, = n, — np,. Then for k, > 1, ks integers,
|Edf --- df| < c(ky,..., k)n "W D2 (py - p))

for all i, where a, is the total number of k, =1 for 1 <u <iand c(ky,..., k;)
depends only on k..., k;.
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ProoF. It is easy to see that it is true for i = 1, since if k2, = 1 it is obvious,
whereas if &, > 2,
[k,/2] [k /2]1-u
Edp = Y X (np)"Di8k, u0

u=1 v=0
where g, , , are constants independent of n and p,. Our result holds for i = 1

since n?p, < 1. Now let us assume that it is true for i; we will show that it is

true for i + 1.
Let us note that the conditional distribution of n,,, given n,...,n;

is binomial (m;, q;) where m;=n-n, — --- — n, and gq; = p;,,/
(l_pl_"'_pi). Let 8i=d1+...+di' Then di+1=(ni+1_miqi)_
96, Soif k; ., =1, E(d; |ny,...,n;) = —q;5;, and

E(df - dbdy,,) = gE(dl - dli(dy + -+ +d))).
Now for1 < u < i,
et A (py o p) ik, 22,
clni—[a,/2](p1 D) ifk,=1,
where ¢, depends only on k..., k;. This tells us
|E(dlkl dik'di+1)| < gcon* ) (p, -+ p;)
< ognt @2 (p oo py),

where ¢, and ¢} depend only on on k..., k;. Since a; + 1 = a,,, here, our
result holds.
Now let us assume that k;,, > 2. Then a;,, = a; and

k
E(dirll|n1,...,n,-)

k By s qhutl ks ... ki
|'Edll toe du'illduu du‘-fll di'l < {

k
1+1 ki . o
= (—g8)+ ¥ ( ;I)E{(nin - miqi)]‘nl"“’ ni}(_qz'si)k’“ ¢
j=

> X (miqi)uqivgj, u,o(_QiSi)k'“_j~

u=1 0=0

kisi (. Li/210i/2]-u
= (—Qisi)k'“ + ( ‘Tl)
j=2
Since m;q; = np,,, — q,8;, a little calculation will show that
ki+1 .
E(dikflllnlf L] ni) = Z rj(qisi)]o
. Jj=0
where r’s are constants and can be bounded above in absolute value by
constants independent of n and g;. Moreover, |ry| < cynp,, ) for some constant
¢, independent of n and g;.

E(dh - dhdby Y r(gi8) dp - dh
j=0
ki+1 .

= Y ra/E(dy + - +d) df - dh
Jj=0

nl,...,ni)

kl+l
J
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For j = 0, there exist constants depending only on k,,..., k; so that
|"0Ed{izl e dh|| < role,n' U022 (p, - p,,y)
< cgni+1_[(a‘+2)/2](p1 ce pi+1)'

For j > 1, E{(d, + -+ +d;)’d} --- dF} is a linear combination of terms of the
form E(dk*h ... dk+k), where I,, 1 < u < i, are nonnegative integers and
l,+ --- +1,=Jj. For1 <j < a; apart from constants, the dominant terms are of
the form ni~{a=/+D/2(p ... p.) (since these terms have a;—j exponents
equal to 1). Hence we get

qzle(dl + ... +di)jd1k1 . dzkll < qifc5ni—[(ai_j+1)/2]
< ani+1_[(a'+l)/2](p1 v pi+1)7
since ¢/ < n/*'p; (1 + i/n?) and [(a; —j + 1)/2] +j = [(a; + 1)/2] (¢; and
¢4 depend only on k..., k;). For j > a;, apart from constants, the dominant
terms are of the form n'(p, --- p,) (since these terms have all exponents greater
than or equal to 2). Hence for j > a;,
q/|E(dy + -+ +d;)’dpr -+ d}| < glegn’(p, -+ pi)
< céni+1_[(ai+1)/2](p1 “ e pi+1)’

since ¢/ < n~%*p,,. (1 + i/n?%) and a; > [(a; + 1)/2] (cs and c4 depend only
on k,,..., k;). Our result is true for i + 1 by collecting all the terms. O

7. Proofs of the results in Section 3. We will first prove two important
lemmas, then Theorems 3.2, 3.3 and 3.4 and finally we will prove Theorem 3.1.
Throughout this section, we will denote y’y by |y||> for any vector of real
numbers 7.

LEmMA 7.1. (i) Let {{,.)} be a class of functions on I X I such that
sup, [|¢,(x, ¥)| dF(y) = OQ) and sup, [|,,(x, ¥)| dF(x) = O(1). Then

[[ &5, 2)(mi(5) = m()) dF(3)] d(E, = F)(x) = 0,(V,(k)).
(i) f(m, — m)*d(F, — F) = o(V,(k)).
PROOF. Let us note that because of (A5)(i), V.(k) = c\,/n + ||m; — m||? for
some c¢ > 0, with probability approaching 1. The proofs for both parts of this

lemma follow easily from the following result in Burman (1985). If {g,,} is a
class of functions uniformly bounded by a constant, say 1, then

2s s
E[/gnkd(Fn - F)] < cn—23 E nl”gnkHZI)
=1

where ¢ depends only on s. O
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LEMMA 7.2. For all the regression methods (except for piecewise polynomial
regression with random partitioning) described in Section 3,

Gy = m)*d(E, ~ F) = o,(V,(k)).
PROOF. First let us note that
[y = m)*d(F, = F) = [(, = m,)’d(F, = F) + [(m; - m)’d(F, - F)

+2[ (i, — m)(my, — m)d(F, - F)
=1 + I, + 2I;, say.

By part (ii) of Lemma (7.1), I, = o (V (k)] Let us denote /i, — m, and m, — m
by &, and g,, respectively. Let M = n'~% for some small 8, > 0. Divide [0,1]”
into M cubes of equal sizes and denote them by A;, j = , M. Let §,, be as
in Theorem 3.1. For all the regression estimates in Sectlon 3 the following are
true (by choosing 8§, properly):

a, = sup|gy(x;)| = 0,(A;8,,) where x; is the middle point of A,
J

by = supsup{|&,(x,) — gu(x,)l: %1, %5 € A} = 0,(A48,n7%).
J
Let (g7 dF, = L ;&%(x,,)F(A;) and (&} dF = Y, &0(x2;)F(A;). Then

I = Z{gk(xlj) & (xzj } ( ) 2é 2(‘”2; (F(A) F(Aj))
=1, +1I,, say.

Obviously I,; = o (V(k)) Lemma 4.6 tells us that for all j, |F,(A,) — F(A))| <
c(log n)~?F(A)) for some constant ¢ > 0. Hence,

Lyl < c(logn)~* [&2dF = o,(V,()).

Let I . be the indicator function of A o Then
111 < b, flgid(F, + F) + Tl | [Lewd(F = F)| = I + L, say.

Obviously I, = op(V,,(k)).

1/2 2y 1/2
I, < clMl/z(/gg dF) (Z(/Ijgkd(Fn - F)) ) for some ¢, > 0.

Note that (g2 dF = Op(r/n(k)) and a use of Lemma 4.8 gives us

u

2 u
E[Z (ijgkd(Fn - F)) ] < c,n”2 Y nY|g,l|? for some c, > 0.

t=1
This shows that I, = op(V,,(k)) and completes the proof of Lemma 7.2. O



ESTIMATING A REGRESSION FUNCTION 1587

ProoF oF THEOREM 3.2. We need to verify conditions (i) and (ii) of Theorem
3.1. We will prove this result for fixed partitioning. The case for random
partitioning is similar with some changes. Note that v, is the vector of I,,¢,,,’s
and it is enough to prove (i) and (ii) for A,, and A "

(i) Recalling that f is bounded below and above by b and B and denoting the
Lebesgue measure by ji we get, for any y € R™ with ||y| = 1,

b/(ZYu¢ktu)2Ikt dﬁ < Y/Ath < B/(ZYud)ktu)zIkt d[‘_“

An easy calculation will show that

p

2 M - 7 u,
f(ZY:A’ktu) I, dp = 27%P\;1 B 1](2%‘1_112"') dzy -+ dz,,

i
u=(up...,u,).

The result follows once we notice that (Ly,[12.,2%)? > ¢(Zy,|[12.,2%)? for some
¢ > 0 which depends only on v, the degree of the piecewise polynomials (the
proof uses a compactness argument).

(ii) Since [T}, i, dF = O(A;"), Lemma 456 tells us

fIkt(l)ktuﬁbktuzd(Fn - F) = Op( Enk)
and so the result follows. O

Proor oF THEOREM 3.3. We will show the proof for equispaced knots. The
proofs for random knots are similar. All we need to do is to verify conditions (i)
and (ii) of Theorem 3.1.

(i) Using property (viii) of de Boor [(1978), page 155] and Lemma 5.1 of
Burman (1985), we can conclude that for any y € R™ there exist constants
0 < ¢; < ¢, such that

AT < (v 9a(2))" dx < eIl

Since the marginal density f of X is bounded below and above by constants b
and B, we conclude the proof by noting that

AR IVIE < [(v9a(2))" dF(x) < e AR IYI.

(i1) ”AAk — Ayl < sup, X, |[By, By d(F, — F)|. Since By, B, =0 for
|t, — ty| > M for some M > 0, the result follows from Lemma 4.6 and the fact
that (B}, Bf, dF = O (A;") for |t, — t,] < M. D

ProoF oF THEOREM 3.4. We will prove the result only for trigonometric
polynomials. So we will verify conditions (i) and (ii) of Theorem 3.1. The proof
for (i) is quite obvious. So let us prove (ii).
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(ii) Let R, (x,, x,) = Z’}';Ocpj(xl)(pj(xz,). Then ||Ak — A,||** is bounded above
by

2u—1

~ 2u —ou
tr(( Ay = 40)") = N [ Ry, 2u00) Ri(%r %2) TT Rilis x001)
2u
x [1d(F, - F)(x)

- A [Ry(@) T1d(E, - F)(x), say,

where Tzk(&) = Rk(xl, xu+1)Rk(xu7 x2u)n?‘=l;1Rk(xt, xt+1)' USing Lemma 48’

Efl_i‘k(a_C)t:]_u[ld(Fn - F)(x,)

2u
<cXamt Y ptla /A B (x,) dF(x,) - dF(x;).

=1 veZ2u,l)
Now, [|Ru(x,)|dF(x,)-- dF(x;) < const. \3"2“~! for » € Z(2u, 1), by noting
that
Ry(x,, x,) = sin[(n + 1/2)(x; - xz)]/{27r sin[(x, — xz)/2]}-
Since a(v) > 21 — 2u for I > u, we get

B[Ru(x) [1d(E, - F)(x) < 008 £ (v/m™ "+ 40/m)")

=1
= O(1)N%(A,/n)" (since sup A,/n — 0).
k<K,
Our result follows by taking u > 38! and by noting that

P[ sup 832014, — Ayl > e] < T e ME|L, - Ay
k<K, k<K,

<O0M)n~ Y A =o(1). m]

k<K,

PROOF OF THEOREM 3.1. It is clear that in order to prove the theorem all we
need to do is to check (A5)—(A9). . )

Let us note that ||A,|| = O\, |4l = Oy(A,) and ||A, — Al |4l =
o,(1). Let d, = [my, dF,. Then by Lemma 4.6 and the fact that
supy, .|| (%)l < oo,

Iy — dy® = Z[ [mb,d(F, - F)r = Z[op(a;t) + 0,(a7) fm%i,dF]

- o(at).



ESTIMATING A REGRESSION FUNCTION 1589

Also, 0 < f[(m — d'A;'Y)*dF = |m||®> — d’A;, 'd. By assumption (i) of this theo-
rem ||d,[|* = O(A;"). Similarly, [|d,||> = O,(A;").

(A5)(1) A3’ f W2(x, x') dF,(x') dF(x) = A3 tr(A,4; )

=1+ tr((A4, —4,)AY)
=1+ 0,(1).
(ii) It can be shown that || fo2(x)¥,(x)¥i(x) dE(x)|| = 0,(A}"). So

At [o?()Wi(x, %) dE,(x')d(F, = F)(=)

< ”AAk_l(A\k - Ak)A;1|I

[o™ ¥, dF,
< O,(VIIAF YA, — Ayl = 0,(1).
(i) supAz wp(x)Ax Wi(x)] < supAg YvR()I2IAL Y = O,(1).

(A6) Let us note that a,(x,, x,) = V(%) Az "Yu(xs).

() [ad(x,, x) dF(x,) dF(x,) = tr( A 4,474, )

= O(N)IAL AL AL AL = O(A4).
(i) Jai(x,, %,) dFy(x,) dF,(x,) = Ay
(A7) The proofs of all the parts are trivial and so we will skip them.
(A8)  V,(k) = V,(k) = [y — my)(my — m) dF
= (AAk_ldkAk_ldk),flpk(mk - m)dF =0,
since

[#4(my = m)dF = [y,04 A7, dF ~ [yymdF = d) ~ d) = 0.
(A9) [(ri, = m)*d(F, = F) = [(, — m;)'d(F, ~ F)
+ [(my — m)*d(F, - F)

+2 [ (i, — my)(my, — m)d(F, ~ F)
=1 +1I,+ 2I;, say.
By part (b) of Lemma 7.1, I, = 0,(V,(k)).
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Let @, = A,;l(f_k and Q, = A;'d,. Then m(x) = Q;yy(x) and my(x) =
QiYi(x). Since ||d, — d,|| = 0,(a,) and A, — Al = 0,(8,;), an easy calcula-
tion will give ||Q, — Q4ll = 0,(X%/?8,)-

L] < 110, — QullPl AL — Al = 0,(A383,) = 0,(V,(R)),

L) < (1@ — lel“’[g{f\m(mk — m)d(F, - F)} ]

op(kis,fk)[}:{op(a;‘.) + 0,(e2) [Wh(m; — m)’ dF}] (by Lemma 4.6)

op(}\3k8,fk)[op(}\ka;t) + op(ai)”mk - m||2].
This clearly proves that I; = o,(V,(k)). O

Proor oF LEMMA 3.6. Without loss of generality let us assume that
w(x) < I(|x)) <1,...,|x,| <1) = U(x,1), ' say,
where1 = (1,...,1) € RP.
Let qn — oo such that hy /q,—0 and (hy/q,)" = 1/Vn. For t=

(ty, ..., t,), let S, =((t —1)g; % tgn T X o X (8 — D tan'], 1<
tiSqn,i=1,...,p.Letusnotethat

sup [fy(x) — fu(x)| < MulIBgl1P0( a7 ") [U(x, — ', k' + ;1) dF(x)
x€S,

= 0(n"1%),
where x, is the middle point of S, and %' = (hy',..., h)). Similarly

SuP|fk(x) fk(xt)| < }\k”hk”BO qn fU x,—x hkl +4q, 11) dF,(x').
x€S,

By Lemma 4.6,
U=+ @A, = F))| = 0.
So we get
sup |fy(x) = fi(%,)] = O,(n"1?)
x€S,
and

sup sup 'fk(x) - fk(xt)l < Sl:plfk(xt) = fulx,) + Op(n_1/2)

t x€8§
= 0,(A4en.) + 0,(n7'/?) (by Lemma 4.6).

This proves that supxlf;(x) — fo(%)] = 0,(A4e,). Similarly we can show
sup,|my(x) — m(x)| = 0,(A4en). O
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ProoF oF THEOREM 3.5. To prove this theorem all we need to do is to check

the conditions (A1)-(A9) for the discrete bandwidths (in view of Lemma 3.7).
Note that (A9) is proved in Lemma 7.2.

(A5)(D) Ag! [Wi(x, 2) dF,(x") dF(x)

A f| [t - ) db() | a0,

The above expression is bounded above and below by positive constants.
(ii) By Lemma 3.6,

sup|fy 2(x) — f7 %(x)| = 0,(Agenr)-

Now

A&t [0 Wi, ) dE(x)d(F, - F)(a)

<

Nt [ 2(2)0% (5w (hy(x — &) dE(x)d(F, - F)(x)

+ op(Muene | [y = ) (), + F)(x)].

Both terms on the above expression are o,(1) since a repetition of the arguments
of Lemma 3.6 will give us

sup A, [ fir (%)™ (2 )w*(hy(x = x)) d(F, = F)(2)| = 0,(Aens)
and )
3up (A [o?(x ) (hi(x = ¥))d(F, = F)(x)| = 0p(Ascns):
(iid) sup Ay 'Wy(x, )] = suplfy () (0) = 0,(1).

(A6) As in the proof of Lemma 3.6 let us assume that w(z) < U(z,1). It is not
hard to see that

[ai(x,, x,) dF(,) dF (x,)

< Op(l)fU(xl — x,,2h;1)

X [AZ,JU(x _nh ; il h,;ll) dF(x)rdF(xl) dF(x,).
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Since sup, A, [U(x — z, h;'1) dF(x) = 0,(1), the last term is O,(A,). Similarly,
Ja(x,, x) dF(x,) dF(x,) = O,(\y).

(A7) The proofs are simple and so we will skip them.

(A8) V (k) — V(k) = 2(ih, — My, m, — m) + 2{m, — my, m, — m). Using
part (i) of Lemma 7.1 we get (m,— m, m, —m) = op(‘_/n(k)) by taking
£4(x, ¥) = My fi(@w(hy(x - y).

Since 7, = f} !f, 7, we can write

J Gy = W) (my, = m) dF = [(£4;) (i = my)(my — m) dF
_ffk —fr mk(mk m) dF

_f(fk_l _fk_l)(fk_fk)(mk_m)dF
=I,-1,- I, say.
By Lemma 3.6,
L] = 0,(Nyene)limy, — mi = 0,(V,(k)),
;] =o (}‘ksnk)”mk -m| = Op(‘_/n(k))'
Another application of part (i) of Lemma 7.1 will show I, = op(X_/n(k)). O
Proor oF LEMMA 3.7. The proofs for (i), (ii) and (iii) are the same in the

sense that the same arguments have to be repeated. So we will only prove (ii).
We will need the following two results in order to prove (ii):

sup sup ”fh - fk”oo = Op(n_l)
k  heC,

and

sup || 5 — fall = 0,(VX (log n)/*** 1Y)

heC,
(A=h, - h,and || - ||, is the sup-norm).

The second result follows from the first result, Lemma 3.6 and the facts that if

h € Cy, then A — A, = X,0(n™") and sup,, sup, < |l fr = fallo = O(n71).
The proof of the first result is very similar to that of Lemma 3.6 and so we
will skip its proof. Now let us prove (ii).

\Ln(h) = L(k)| < llthty, = 1hy)|® + 2||y, — 1]l |17y, — ml].
Since sup,|(L,(k) — V,(k))/V,(k)| = 0,(1), it is enough to show that

sup |7, — Augl|? = 0,(V,(k)).

heC,
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Now

= [0 SHAX k(- X,))
M (X u(h(x - X))} dF()
< 8[[nt TYASY(X) {w(h(x - X)) - w(ha(x - X,)))] dF(x)
+8 [ YA (X)) - (X)) Jul ha(x - X,))]° dF(x)

+ Sf %EYJ(A - )\k)fk_l(Xj)w(hk(x - Xj))] dF(x)

= 8([1 + I, + I3)7 say.

Ll < [ ZIGAMA(x = X)) - hy(x - X,))1°
xU(x — X;, hy'1)]” dF(x)(A/A,) sup f2(x).
For h € C,, (A\/A,)sup, f;%x) = O,(1). Hence
2

|| < Op(n‘2'3)f[n‘1 YIYNU(x — X, hi'1)]” dF(x).
If p(x) = E(]Y] | X = x), then by analogy to i, we will denote

R LIGANU(x - X, b)) /N [U(x — 27, B 1) dF(x')
by fiy(x). It is easy to show that [A%(x) dF(x) = O,(1). Hence we have |[}| <
O,(n™?7F) = 0,(V,(k)). Arguing similarly, we get I, = o,(V,(k)) [since
sup,, Supheck”fk = fille = p(n_l)] and I = Op(Vn(k)) [since A — A, =
MO (n~H for e C,1.O

Proor or THEOREM 3.8. In order to prove this theorem we will need to
check conditions (A1)-(A9). What we should keep in mind is that unlike other
cases we have only one smoothing parameter here. It is easy to see that
conditions (Al)-(A4) hold. Before we check the rest, let us write down the
following useful lemma which is a corollary of Lemma 3.9.

Let

A= {(2,%):0 s MG (x, flx — x])) <1 — e}
and
A, = {(x,xl):l e < )\kG(x, lx —x) <1+ enk}'
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LEMMA 7.3. With probability approaching 1:

(i) On the set A;, MG, (%, ||x — x,|)) < 1.
(ii) On the set (A, U A,)S, A\, G (x, |lx — x|)) > 1.

Note that (A9) follows from Lemma 7.2. Now let us proceed to prove
(A5)-(A8).

(A5) It is quite easy to see that (i), (ii) and (iii) hold and hence we omit the
proofs.

(86) a1, %) = v ®N [w(MGy(x, llx = =)

Xw(X G, lx — x,]l)) dF(x).

It is quite easy to see that inf,|v,| > 0. Let us note that |a,(x,, x,)| < cA, for
some ¢ > 0 for all x, and x,. Also because of Lemmas 3.9 and 7.3, there exists
M > 0 such that a, = 0 whenever ||x, — x,||” > MA} . By denoting I to be the
indicator function of the set {(x,, X,): ||x; — %,||? > MA,'}, we get

At [ad(x, %,) dF(%,) dB(%,) < ¢\ [I(30, %) dF(21) dF(x5) = Oy(1).

The other part of (A6) can be similarly proved.
(A7) The proofs of all the parts are trivial and so we will skip them.

(A8)  V,(k) - V,(k) =2 [ (i, ~ m})(m, ~ m) dF

+ 2[(771k —m,)(m, — m)dF
= 2T, + 2T,, say,
T, = v A Jw( MG (3, 1z — &) m(x')

X (my(x) — m(x)) d(F, - F)(x") dF(x).

By part (i) of Lemma 7.1, T, = op(V'n(k)).
For notational convenience we will write g, = m;, — m.

T, = v Ay [ml2) [w(\Go(=, Iz = zil)

—w(MG (%, l1x — x,l)] 84(%) dF,(x,) dF ().

Let us now refer to Lemma 7.3. T can be written as the sum of integrals over
the regions A, and A,. Obviously the integral over the region A, is o,(V,(k)). If
w is uniform, then the proof ends here. If w is not uniform, then let w’ be
Holder continuous. Let I, be the indicator function of the region A,. By
denoting

L(x, x,) = v 'Nem(x)w' (MG (x, llx — x,0)) L, %)
and
(Gn - G)(x’ r) = Gn(x’ r) - G(x; r),
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for any r > 0, we can write the integral over the region A, as

Sz, £)(G, = G)(x, lIx — x,1)gu(x) dF,(x,) dF(x) + o,(V,())
= [z, 2)(G, - G)(x, Iix - xl)g,(x) dF(x,) dF(x)

+ 1z, 2)(G, — G)(x, llx - x,l)g4(x) d(F, — F)(x,) dF(x)

+ 0,(Va(k))
=T, +Tp+ Op(vn(k))’ say.
By part (i) of Lemma 7.1, T}, = o,(V,(k)). Now

Tio = [l(x1, ;) d(F, = F)(x,) d(F, - F)(x,),

where

B %) = [ 2) I 2 — x5 | = Jlx — %) ga(x) dF ().

First note that |[,(x), x,)| < cA%?|g,|| for some ¢ > 0. But I, = 0 whenever
ll€, — x,)|” > M A,! for some M, > 0. An application of Lemma 4.8 will give us

ET1223 < cln—4s{ 2 nl}\3’;s'—l+1 + 2 n—l+2s)\?;;9—l+1}“gk”2s

1<2s I>2s
< con 2N g% (since A, < n).

This obviously shows T}, = o,( V(%)) and this completes the proof of Theorern
3.8.0
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