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SOME NEW VAPNIK-CHERVONENKIS CLASSES

BY G. STENGLE AND J. E. YUKICH

Lehigh University

The theory of semialgebraic sets is used to generate new Vapnik-
Chervonenkis (VC) classes of positivity sets. It is also shown that certain
analytic families of positivity sets are VC.

1. Introduction. Given a set X, a collection % of subsets of X and a finite
set F c X, let A%(F) be the number of different sets C N F for C € . For
n € N7 let m¥n) = max{A¥%F): F has n elements}. Let

inf{n: m¥(n) < 2"}
+00 if m¥(n) = 2" for all n.

Vapnik and Chervonenkis (1971) introduced A%, m¥(n) and V(%). If m¥(n) < 2"
for some n, i.e., if V(¥) < oo, then ¥ is called a Vapnik—Chervonenkis class (or
VC class) and V(%) is called its index. See Dudley (1984, 1985), Pollard (1984)
and Assouad (1983) for expositions and recent structure results on VC classes.

Let 7 be a o-algebra containing ¥ and P a probability measure on <. Let
X;, i > 1, be independent identically distributed X-valued random variables
with common law P. We shall consider the X, i > 1, to be the coordinates for a
countable product (X, &%, P®) of (X, &, P). Let the nth empirical measure
for P be defined by

V(%) =

Pn = nﬁl(SXl + - +8Xn)’

where 8, is the unit mass at x € X. If ¢ is a VC class then, under some
measurability conditions [Dudley (1984)], an unknown P can be approximated
uniformly on € by the empirical measure P,, i.e.,

P°°( sup |(P, — P)(A)| - 0, n > oo) -1
Ae?¥

This by now classical result belongs to Vapnik and Chervonenkis (1971).
Under stronger measurability conditions [Dudley (1978) and Dudley and
Philipp (1983)], VC classes € satisfy the asymptotic equicontinuity condition

Ve>0,3n,< oo,38'> O such that vV n > n,,
P=*{sup(|,(A) — »(B)|: A,B€ ¢, P(AsB) <8} >¢} <¢,

where v, := n'/%(P, — P). This condition, together with total boundedness of ¥
for dp(A, B) == P(A a B), characterizes “functional Donsker classes” of sets, for
which the central limit theorem [Dudley (1978)] holds for the normalized
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empirical measures », with respect to uniform convergence on %. In this way VC
classes play a natural role in multivariate nonparametric statistics.

Unfortunately, there are not many known examples of VC classes. The most
important examples are usually related to Dudley’s theorem [Dudley (1978),
Theorem 7.2], which implies that the positivity sets of polynomials of bounded
degree are VC classes. In this article we provide two nontrivial extensions of
Dudley’s theorem. First, we link semialgebraic sets to VC classes and show how
the former may be used in a natural way to manufacture relatively “large” VC
families of positivity sets. The main tool here is the quantifier elimination
theorem of Tarski and Seidenberg. In the process we answer a conjecture of R.
Olshen. Second, tools from the theory of analytic functions are used to show that
certain special analytic families of positivity sets are VC.

2. VC classes and the Tarski-Seidenberg theorem. By semialgebraic
set we mean a subset of R” defined by a finite system of polynomial inequalities.
More precisely, such a set is any member of the Boolean algebra generated by all
sets of the form {x|f(x) > 0}, where f(x) = f(x,,..., x,) is a polynomial. An-
other description, equally precise, is any set in R" described by a first order
unquantified statement in the language of ordered fields. Qur main tool is a
simple consequence of the principle of elimination of quantifiers of Tarski and
Seidenberg [Bochnak, Coste and Roy (1987), Proposition 5.2.2]. This ensures
that any elementary statement about the reals in the language of ordered fields
which contains free variables together with variables bound by universal or
existential quantifiers is equivalent to a quantifier-free statement in the free
variables alone. Roughly speaking, an elementary statement is one that does not
involve quantification of bound variables over general sets. However we note
that quantification over a semialgebraic set can be regarded as shorthand for an
elementary statement and is therefore an allowable constituent. A simple well-
known example is the equivalence of the quantified statement V x (x% + bx +
¢ > 0) with the quantifier-free statement b — 4c < 0. This principle is very
powerful. It typically relates a compact, mathematically meaningful, quantified
statement to an equivalent statement without quantifiers which is unproblem-
atic from a theoretical standpoint but which, in actual detail, is diffuse and
bulky to the point of unintelligibility. (One sign of this bulk would be very large
estimates for the VC index if the hypotheses and results of this paper were
further quantified.) The proof of the following, our main result, is a highly
characteristic application.

THEOREM 1. Let P(xy, ..., Xpy Yisevvs Yoo bise v vy bpy Upy o ooy Ug) =

P(x, y,t,u) be a fixed real polynomial and T and U be fixed semialgebraic
subsets of R? and R9. Then the family of subsets of R™ of the form

W, = {x|sup inf P(x,a,t, u)> O}, a € R,
teT uelU

is a VC class.
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Proor. Let W:= {(x, y)|sup,crinf, . yP(x, ¥, ¢, u) > 0}. We can describe
W by the elementary quantified formula

W= {(x,y)3teTVuecU,P(x,ytu)>0}.

By elimination of quantifiers this is equivalent to a quantifier free formula in the
unbound variables x and y alone. Such a formula describes a semialgebraic set.
Hence there exists a finite set of polynomials @,(x, ¥),..., @,(x, ¥) such that W
is generated by a finite number of Boolean operations from sets of the form
{(x, )|@(x, ¥) > 0}. The same operations with y specialized to a determines
W,. Thus the set W, can be generated by at most a fixed number of Boolean
operations from the sets {x|@ j(x, @) > 0}. But these sets are all contained in the
family of positivity sets of all polynomials in x of degree not exceeding the
largest degree of any @, in x. Since this larger family is known to be a VC class
[Dudley (1978), Theorem 7.2] and a fixed number of lattice operations preserve
the VC property [Dudley (1984), Theorem 9.2.3], the family {W,} is contained in
a VC class and hence is also VC. O

REMARK. It is easy to see that Theorem 1 remains true of P is replaced by
any semialgebraic function, that is, one whose graph is a semialgebraic set.

As an application, we prove the following corollary, thus answering a conjec-
ture of R. Olshen (private communication). This result is used by Olshen, Biden,
Wyatt and Sutherland (1989) in the statistical study of gait analysis.

COROLLARY 2. The family {x|sup g <,2; < ;< nPi(%)Q(8) > 0}, where the
P; range over any set of polynomials of bounded degree and the Q ; range over
any set of trigonometric polynomials of bounded degree, is a VC class.

ProoOF. For each coefficient of a P or a @, introduce a component of a new
variable y. Let £, = cos 0 and t, = sinf. Let T be the unit circle in the ¢-plane.
Since any trigonometric polynomial 7(8) is a polynomial in cos § and sin 8, there
is a single polynomial P(x, y, t) of which any sum Y P(x)® i(0) is a specializa-
tion. All the sets in question then have the form {x|sup,.rP(x, a, t) > 0}. By
the theorem these belong to the VC class consisting of all sets of this form. O

It is clear that no estimate for the VC index can emerge from such purely
existential reasoning without further quantification of our hypotheses. We re-
mark that estimates for the complexity of semialgebraic sets (involving the
number of inequalities which are needed, their degrees, etc.) which could yield
bounds for the index are currently the subject of intensive investigation in
semialgebraic geometry [Brocker (1988)].

3. Analytic families of semianalytic positivity sets. It is natural to ask
whether Dudley’s result can be extended to certain positivity sets of real analytic
functions. We shall consider analytic families of semianalytic positivity sets. Our
reasoning will again be qualitative and the prospect of estimates for the index
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will be even more remote. A key ingredient in our reasoning is a form of the
Weierstrass preparation technique devised by Denef and van den Dries (1988) as
a tool for studying subanalytic sets. The following theorem applies to certain
analytic families of positivity sets on the torus, for example.

THEOREM 3. Let X be a compact subset of a real analytic manifold M and
let I denote [—1,1]. If f(x,t) is a real analytic function on X X I, then the
family of subsets of X of the form

W= {{xl|f(x, ) > 0}},,
is a VC class.

Proor. The underlying idea is simple. If we could apply the Weierstrass
preparation theorem to f globally with respect to the variable ¢, then we could
replace f > 0 by P > 0 where P is a distinguished polynomial

P(x,t) =tV + a(x)tN"1 + .-+ +ay(x).

But the positivity sets of P are positivity sets of the linear family obtained by
replacing each power of ¢ by a linear parameter which, again by Dudley’s result,
is VC. There are two difficulties here. The more serious problem is that we
cannot assume that f is regular in . Moreover the usual device of a slight linear
change of coordinates to obtain regularity is not at our disposal since this
requires, in general, transformation of (x,¢). But here only transformations
which respect the product structure are relevant and these are insufficient to
achieve regularity. We will overcome this difficulty using methods of Denef and
van den Dries to achieve regularity at the cost of increasing the dimension of M.
A lesser difficulty is that such preparation is local in character. However, given
our compactness hypothesis, simple properties of VC classes allow us to reduce
our problem to a local one in the following way. First, if X is covered by a finite
union of subsets, then a family is VC if its restriction to each subset is VC.
Similarly, if I is covered by a finite number of subintervals, then it suffices to
know that the subfamily parameterized by each subinterval is VC. Thus, as an
example of such a reduction, since every point of X X I is contained in a product
neighborhood in M X I, we can cover X X I with a finite number of product
neighborhoods X; X I; on each of which f(x,¢) can be represented in local
coordinates by a convergent power series. By changing local coordinates, we can
therefore suppose without loss of generality that X = I"™ and the power series
for f converges on a slightly larger open cell containing I™ X I. We will refer to
such a reduction of the problem with respect to an open covering as “localizing
and normalizing” and use it again with only brief further mention.

We first subject f to a preliminary preparation in ¢ which does not require
any regularity. By Lemma 4.12 of Denef and van den Dries (1988) there is a
globally given finite set of analytic functions a,(x), i =1,2,...,d, such that
each point (x, £,) has a neighborhood (using local coordinates in which this is
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the origin) on which f can be represented as a finite sum of the form
f(x’ t) = Z ai(x)tiui(x’ t)’
i<d
where the u; are given by convergent power series and u;(0,0) # 0. Localizing

and normalizing it suffices to suppose that f has this form globally. We now
partition X into subsets

X; = {x||la,(x)| < |a,(x) forall i}, 1<j<d.

Also let Vi(x) = a;(x)/a(x) if x € X; and a,(x) # 0 and V/(x) := 0 otherwise.
Then on X; we have

(5,0 = 0/ iF+ L Vw0
i<d
1#)

We observe that, in general, the factors here are not analytic since the V’s
need not even be continuous. However we can repair this by introducing one
component v; of a new variable v for each V.. Each V, assumes values in the
interval I. The preceding function is then the restriction to the graph of
v = V(x) over X; of the analytic function on I™*% X I:

f(x,v,t) = aj(x){tj + Y oitiux, t)}

1<i<d
1#)
Since the restriction of a VC class to a subset is obviously VC, it will suffice to
show that the positivity sets of this extended function form a VC class. But at
any point of the form (0, c, t), ¢ € I%, the second factor reduces to
t/+ Y cit'u0,t)
l<i<d
1#y

which must be regular. To see this, let ¢, = 1 and let i, be the least integer i for
which c; # 0. If i, <j, then this function has order i, at ¢ = 0 and otherwise it
has order j. Thus every point (0, c,0) (representing an arbitrary point of
X, XTI 9 x I in original coordinates) has a neighborhood on which this second
factor can be prepared, that is,

f(x,0,t) = a;(x)u(x, v, t){tk + Y b(x, u)ti},

i<k
where u does not vanish and & = min(i,, j). It follows that each point of X; x I
has a neighborhood on which the positivity set of f(x, ¢) is given by

{xl a()(#+ £ bz, V2)E) > 0}.

i<k
Localizing and normalizing we can again suppose that this form is global. But

such a set belongs to the VC class of all zero sets of the linear space of functions
generated by a,(x) and the a;(x)b,(x, V(x)). This concludes the proof. O
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It would be interesting to know if Theorem 3 holds for the collection of
positivity sets generated by a real analytic function f(x, t)on X X I¢ for d > 1.
Our methods seem to yield no information here.

Acknowledgment. The authors thank Professor R. Olshen for bringing his
conjecture to our attention and for suggesting the link to algebraic geometry.
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