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The dominance and related optimality properties of the usual Stein-rule
or shrinkage estimators are typically developed for quadratic error loss
functions. It is shown that under the classical Pitman closeness criterion the
Stein-rule estimators possess a similar dominance property when the “close-
ness” measure is based on suitable quadratic norms.

1. Introduction. Suppose that for some positive integer p, X has a p-variate
normal distribution with mean vector 8 and dispersion matrix 62V where V is
known and positive definite (p.d.) while 8 and 62 are both unknown. We also
assume that there exists another statistic S distributed independently of X as
m~'o%x2, where x2, stands for a random variable (r.v.) having the central chi
square distribution with m degrees of freedom (DF) and m is a positive integer.
Based on (X, S), the problem is to estimate 8 in an optimal manner. Usually, a
quadratic loss function is incorporated in the formulation of an optimality
criterion, and X is optimal (when p = 1 or 2). .

Stein (1956) showed that for p > 3, X is inadmissible under a quadratic loss,
and James and Stein (1961) constructed a shrinkage version which dominates X
in quadratic error loss. The past 25 years have witnessed a phenomenal growth
in the literature on this Stein-rule estimation theory in its diverse tributaries; we
may refer to Arnold (1981), Anderson (1984) and Berger (1985) for some system-
atic accounts of the related developments.

Pitman (1937) laid down the foundation of an important concept of near-
ness or closeness of an estimator. In the current context, for two estimators §,;
and 3, of 0, and for a given p.d. matrix Q, defining the norm |x — y||a as
(x — ¥)YQ(x — y), we say that 8, is “closer” to 8 than §, (in the norm || - ||q) in
the Pitman sense if

(1.1) P18, — 0llq <118, — 0llq} = 3 forall w=(0,0%).

Although the relationship of this Pitman closeness criterion with other conven-
tional measures of efficiency has been explored by a number of workers [viz., Sen
(1986a) and Peddada and Khattree (1986)], the impact of the Pitman measure of
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closeness in the Stein-rule estimation theory has not yet been fully assessed.
However, there are some striking points worth pondering:

(i) In the light of (1.1), X may not be the closest estimator of 8 even for p = 1
or 2. For the univariate normal mean (variance known), Efron (1975) has
constructed such an estimator (based on a sample of size n):

(12) 8, =X —A(X) whereA(x) = ()min(x, n'/2®(—xn"?)), x > 0,

A(—x) = —A(x) and ®(x) is the standard normal distribution function (d.f.).
Since p = 1, in (1.1), we may eliminate Q altogether, and the dominance of 8,
over the classical estimator X in the sense of (1.1) holds for all Q. Efron (1975)
has also discussed the case of p > 2; however, no dominance result has been
established in an analytical sense. Moreover, though 8§, in (1.2) is a shrinkage
estimator (in a sense), structurally it is quite different from the usual Stein-rule
estimators (as we shall see later on). For the proper Stein-rule estimators, in the
multivariate case, this dominance (in the Pitman closeness sense) deserves an
analytical treatment.

(ii) Rao (1981) has considered some simple shrinkage estimators and showed
that they need not be the Pitman closest ones. This led him to the query: Is a
Stein-rule estimator closer than X in the Pitman sense [i.e, (1.1)]? Rao has
argued that the quadratic error loss function places undue emphasis on large
deviations which may occur with small probability, and minimizing the mean
square error may insure against large errors in estimation occurring more
frequently rather than providing greater concentration of an estimator in neigh-
borhoods of the true value. This criticism is more appropriate for the Stein-rule
estimators which generally do not have (multi-) normal distributions (even
asymptotically). Recently, Rao, Keating and Mason (1986) and Keating and
Mason (1988) have shown by extensive numerical studies that the James—Stein
estimator is closer than X, for p > 2.

(iii) Hwang (1985) has introduced another measure, stochastic dominance,
which is based solely on the two marginal d.f’s of ||3, — 6]lq and ||, — 8]|q.
Neither of the Pitman closeness dominance and stochastic dominance implies the
other. The situation is more complicated for the Pitman closeness dominance as
in (1.1); one needs to consider the joint distribution of the two norms ||3, — 8]/
and ||8, — 8]lq (whereas the dominance of their marginal d.f’s leads to the
stochastic dominance measure).

In the current study, we consider shrinkage estimators of the form

(1.3) 3, =X - ¢(X, S)SIXlgvQ 'V X,

where ¢ is a nonnegative function bounded from above by (p — 1)(3p + 1)/(2p)
and |X|| v = X'V~'Q 'V™'X. Estimators of this type with a different bound
for ¢ were considered by Stein (1981), for p > 3, and hence, we shall term these
as Stein-rule estimators. It is shown here analytically that for p > 2, 8, is closer
than X in the Pitman sense in (1.1). This demonstrates that the numerical
results obtained earlier by Rao, Keating and Mason (1986) and Keating and
Mason (1988) were in the right direction. It is also shown that this dominance in
the Pitman closeness sense holds when the dispersion matrix of X is arbitrary
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(p.d.) and unknown. In the case of a known covariance matrix, additional
dominance results are considered too. The asymptotic case is discussed briefly in
the last section.

2. The main results. Toward the inadmissibility of the classical estimator
X under the Pitman measure of closeness, we have the following.

THEOREM 1. Assume that p > 2 and 4
(21) 0<¢(X,s)<(p-1)B8p+1)/(2p) forevery(X,S) a.e.
Then 8,, given by (1.3), is closer than X in the Pitman sense in (1.1).
REMARK 1. If o2 is known, then in (1.3), we may replace S by o2 and

Theorem 1 remains true. If further, 62 = 1 and V = Q = I, then (1.3) includes as
special cases the following:

(2.2) 8;5=[1-(p—2)/XX]X [Jamesand Stein (1961)],
(2.3) 8ym = [1 - (p — 1)/X'X]X [Keating and Mason (1988)].

In (2.2), p needs to be greater than 2, while in (2.3) also, Keating and Mason
(1988) considered the case of p > 3. This shows that our analytical results are
applicable to the special cases studied numerically by Rao, Keating and Mason
(1986) and Keating and Mason (1988). The case of p = 1 is left out in (2.1).
However, the Efron (1975) estimator in (1.2) exhibits the existence of some
shrinkage estimator, even in the univariate case, which dominates the classical
estimator X. On the other hand, structurally (1.2) and (1.3) are not that similar.
Note that for p =1 and S replaced by ¢% (= 1), (1.3) may be taken as
[1 — ¢(X,1)/X?]X, while (1.2) may be taken as [1 — A(X)/X]X. Thus, here
allowing ¢(X,1) to depend on A(X) by letting ¢(x,1) = xA(x), we see that (1.2)
and (1.3) are related to each other. However, in this setup, xA(x) may not have
the usual “pretest” interpretation of the shrinkage factor of the James-Stein
(1961) estimator. Moreover, in the multivariate case, such a correspondence
between (1.2) and (1.3) may be more difficult to establish.

REMARK 2. It is well known that the usual Stein-rule estimator can be
improved on by the positive-rule version. The same dominance holds in the
Pitman closeness sense too. For example, we may consider the estimators

(2.4) 8 =X - aS|X||gx¥Q 'V 'X,
(2.5) 8*= X — min{aS|X|lg%, X'V 'X|X| v ]Q 'V 'X.
On the set {aS > X'V~'X}, we see that the inequality [|8*— 8]lq < |8 — 0]|q

[equivalent to aS + X'V~ !X > 2(X — 0)'V~'X] holds if §’V~'X > 0. Let then
H be an orthogonal matrix, such that HV~'/29 = (9,0,...,0) and 7 =
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(0’V~19)'/2 and let Y = HV~/2X. Then, we have that
P{1I8* - 8lI3 <118 — 6113}
(2.6) > P {aS < X'V7'X} + P,{{as > X'V!X} n {§'V"1X > 0}}
=P {aS<YY} + Pf{aS>YY} N {Y,>0}}.

Next, we note that for any nonnegative f(-) with respect to the normal density
p(x) = 6" 4(27) /% exp{ —x?/206?} and any nonnegative 7,

E[{(¥2)I(Y; <0)] = [#(5*)I(y < 0)p(y —n)dy
(2.7) = [#(3*)I(y = 0O)p(y +n) dy

< [1(y*)1(y = Op(y - n) dy = E[ {(¥2)I(Y, = 0)],

and this implies that E[ f(Y,)I(Y, > 0)] > 1E[ f(Y2)], so that the right-hand
side of (2.6) is > P{aS < Y'Y} + ;P{aS > Y'Y} > ;. This establishes the
dominance of 8" in (2.5) over 8 in (2.4) in the light of (1.1). In particular, if we
let V=Q=1Iand a =p — 2or p — 1, then (2.5) corresponds to the positive-rule
version of (2.2) or (2.3), and hence, the aforesaid dominance result applies to
these particular cases as well.

REMARK 3. Sclove, Morris and Radhakrishnan (1972) considered shrinking

X toward a linear subspace A C R? of dimension r (< p). Let PX denote the
projection of X onto A, defined by |X — PX||q = inf, ¢ ,|IX — Nllq- Then the
shrinkage estimator is given by
(2.8) 3,(A) =X - ¢(X, S)S|IX - PX||’Q 'V (X - PX).
Using the fact that V~1/2PV~1/2 ig idempotent, it can be easily verified that
8,(A) is closer than X [in the sense of (1.1)] if p —r > 2 and 0 < ¢(X, S) <
(p—r—-1)@p+3r+1)/(2(p — r)), and this provides a natural extension of
Theorem 1.

Before we consider the proof of Theorem 1, we present the following lemmas
which are needed in this proof. Consider the confluent hypergeometric function

(2.9) M(a,b,z)=1+az/b+ --- +(a)z’/(b),j'+ -,
where (p);=p(p+1)---(p+j—1), j21,and (p), = 1.

LEMMA 2.1. Forreala, b, v and 2,
o0

Y (2%/4)/{j'T(v +j +1)}
(2.10) j=0
, = exp(—z)(T(» + 1))_1M(v + 1,20 + 1,22),
(2.11) zM(a,b+1,z) = bM(a, b,2z) — bM(a — 1, b, 2),
aM(a+1,b,2)=(1+a—-b)M(a,b,2)

(2.12) +(b-1)M(a,b-1,2)
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and, fora>0,b>1,b>aandz>0,
(2.13) M(a,b—1,2z) <(1+2z/(b—1))M(a,b,z).

ProoF. First, (2.10) follows from (9.6.10) and (9.6.47) of Abramowitz and
Stegun (1964), while their formulas (13.4.4) and (13.4.3) are rewritten as (2.11)

and (2.12). Thus, we need to prove only (2.13). For this M(a, b — 1, 2) is written
as .

M(a,b-1,2)
(2.14) - £ {(@)#(6 - 1+)/((3),1(b - 1)
=M(a,b,z) + {az/b(b— 1)} M(a £1,b+1,2).

From Lemma 2.1 of Alam (1973), we conclude that M(a + 1,b+1,2)/
M(a, b, 2) is nondecreasing in z for b > a. Also, by (13.1.4) of Abramowitz and
Stegun (1964),

(2.15) M(a,b,z) = (T(b)/T(a)}e=z"%{1+ O(z|7")} as|z| - oo,
so that
M(a+1,b+1,2)/M(a,b,2) < lim {M(a+1,b+1,2)/M(a,b,z)}

=b/a,
for every z < co0. Hence, (2.13) follows from (2.14) and (2.15). O

LEMMA 2.2. Let g{V(x) be the density function corresponding to the noncen-
tral chi square d. f GM(x) with q DF and noncentrality parameter
A. Then, for any }\>0 (3/0N)go(A + a) is nonnegative if 0<a <

(p = DEp + 1)/(4p)-

ProoF. Let g{¥(x) = g,(x) be the central chi square density function with ¢
DF and let f(A) = (3/8)\) (")2()\ + a). Then, we have
(2.16) f(A) =3 Z (A/z)j(j!)_le_)‘/z{gpwj(a +A) = 8pizeaj(at }\)}
j=0
Note that by virtue of the unimodality of the central chi square density,
(2.17) 8pia(@+N) = 8piajiala+)) 2 0 according as
' a+ASp+2j,j=0.

Therefore, f(A) > 0 for any A < p — a. Hence, we need to consider only the case
of A > p — a. By using (2.10) and (2.16), we obtain that f(A) > 0 is equivalent
to

M(3(p-1),p—1,8) - (a+\M(3(p+1),p+1,8) 20,

(2.18) §=2A(a+1).
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Making use of (2.11) and (2.12) on (2.18), we need to show that
(2.19) 2 M(3(p-1),p,8) - @n - )M(3(p~1),p-1,8) 20, V5,

where 27 = (a + A\)/2*~1/2 > 1, for every a > 0. At this stage, we make use of
(2.13) and conclude that (2.19) holds if (21 — 1){1 + 8/(p — 1)} < 27 or, equiva-
lently,

(a+A- (p—1)/2)23'(1/}TVa+}\)2=>\(a+}\)
e(p-1-a)rz{a-(p-1)/2}"

Since A >p —a and (2.20) is to hold for all A>p—a, we must have
(p—1-a)p—a)z{a—-(p-1)/2) and this is always guaranteed for 0 <
a<(p-1@Bp+1)/4p).O

(2.20)

LEMMA 23. (d/dx)log gl(,);)z(x) is nonincreasing and convex in x, for all
x>0; A>0.

The proof of the lemma is relegated to the Appendix.

Let us now return to the proof of Theorem 1. Defining 8, as in (1.3) and
writing ¢ for ¢(X, S), we may note that [I18, — Bllq < IX — 8]|o] is equivalent to
[2(X — 8)YV~'X > ¢S]. Hence, by reference to (2.1), it suffices to show that
(221) P{ecmS<(X-0)V !X} >1 forc=(p—-1)3p+ 1)/(4pm),V w.

Define T = mS/0% X\ = (0’V~'9)/4 and let P be an orthogonal matrix, such
that PV~1/%9 = 4A(1,0). Let then Z = 6"'"PV~%*(X — 0), so that Z has the
normal d.f. with null mean vector and dispersion matrix I p and T has the central
chi square d.f. with m DF; T and Z are mutually independent too. Then
 P{omS< (X-0)VX)

(2.22)
= P{(cT - 12]?)/(2)) < Z,} = h(]), say.

Through the distributional results given in Rao, Keating and Mason (1986) [see
also Efron (1975)], A(A) has been numerically studied; the task remains to show
analytically that A(A) > ;, for every finite A > 0. By the dominated conver-
gence theorem, we claim that as A — oo, A(A) > P{Z, > 0} = L and, hence, it
suffices to show that

(2.23) R'(X) = (d/dX\)R(A) <0 for every finite (positive) A.
Defining the g,,, g as in Lemma 2.2, we note that

h(A) = P{(X - 20)'V"{(X — 10) /0% > A + T}
(224) = P}\{Xi,}\ >A+ cX?n}

= [T gM(u)gn(t) dudt.
0 YA+ct
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Thus,
WO = [ °°{ g+ er) + [ O:ct(d/d}\)g},")(u) du}gm(t) dt
(2.25) = fo “{gMa(A + ct) — gD(A + ct) ) g(2) dt

—2 fo Cu(t)é,(t) dt,

where ¥(t) = (d/dt)log g0\ + ct) and ¢,,(¢) = gNo(A + ct)g,(t). Let A, =
[8°¢,(t) dt and let E ,[-] stand for the expectation with respect to the probabil-
ity law given by P(B) = [3¢,(t)dt/A,, for a set B, Then, by the convexity
property in Lemma 2.3, and the Jensen inequality, we have

h,(>‘) = _2AmE*[‘P(T)] =< _2Am¢(E*[T])’ )
EL[T] =mA, /A,

Hence, from Lemma 2.2, it follows that A'(A) < 0 if cmA,,, /A, <(p—1):
Bp +1)/(4p) or A,,., < A,. A different proof is needed for the case when
A,..=A,. Here

(2.26)

Apsz=An= "800\ + o) (8nea(t) — £n(0)} b

~2["g0a(A + et) ((d/dt) g 1))
(2.27) = 2[“gn.alt) {(d/d)uA + ct)) b

=2m™! fowtgm(t){(d/dt)gl(}gz,()\ + ct)} dt

=2m™'A,E . [Ty(T)]
< 2m'1AmE*[T]E*[4’(T)] ’

as Y(t) is nondecreasing in ¢ [see also Das Gupta and Sarkar (1984) in this
respect]. Therefore, E ,[{(T)] is nonnegative when A,,., — A,, > 0, and hence,
by (2.25) and (2.26) we conclude that A'(A) < 0, for every A > 0 when A,,,, —
A,, = 0. This shows that (2.23) holds for all A > 0 and the proof of the theorem
is complete.

Some additional results of considerable interest are presented in the next
section.

3. Some related dominance results. First, we consider the case of a
multivariate normal population with unknown mean vector 8 and arbitrary (p.d.)
covariance matrix 2. As in Berger, Bock, Brown, Casella and Gleser (1977) and
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Stein (1981), we consider a shrinkage estimator of the form
1 X (mopr)THX8)d,XSTN)QISTX,
d,=d=ch,;(QS), mz=p,

where X ~ (0, 2), S (independently of X) has a Wishart (Z, p, m) distribu-
tion and ch,;(A) [or ch ., (A)] stands for the smallest (or largest) characteristic
root of A. Then, we have the following.

THEOREM 2. Assume that p > 2 and (2.1) holds when the scalar r.v. S is
replaced by the Wishart matrix S. Then 8, given by (3.1), is closer than X in
the Pitman sense in (1.1).

OUTLINE OF THE PROOF. Proceeding as in Section 2, we need to show that

P{2(X-0)S7'X > (m—p + 1) '¢(X,8)d
(32) X(X'871X) 'X'S71QIS7X} 24, Vo=(6,3).

Since X'S7'Q'S'X/(X'S7'X) < ch,,(S7'Q ™Y =d}, it suffices to show
that for all w,

P{(X-0)S"'X>¢c}>1 |
forc=(p-1)3p +1)/{4p(m — p + 1)}.

Letting Y =2 V%X - 0), W= 37128312 y =372 and A = (0'2719)/4,
it can be shown by some standard steps that

(X-0)S"'X=YW 'Y + YWY
(3.4) =(Y-y)W (Y —y) - (D)yWly
= {Xf,,x - )\}/X?n—pﬂ,
so that for (3.3), we need to verify that
(3.5) P{x2 zA+cx} 1} 2} forallA>0,

and at this stage the proof of Theorem 1 can be called on to complete the task.
0

(3.3)

In the context of robust and nonparametric estimation, Stein-rule estimators
have been considered and the asymptotic dominance has been established when
the true parameter point belongs to a Pitman neighborhood of the assumed
pivot; in this setup the normality assumption on the underlying d.f. has been
dispensed with and a general class of shrinkage estimators has been incorporated
in the formulation of Stein-type estimators. We may consider the same setup in
the light of the Pitman closeness.
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Let {X,; n>n,} be a sequence of estimators such that asymptotically
n'/%(X, — 0) has a normal distribution with null mean vector and covariance
matrix 2. Also, let {S,; n > n,} be a sequence of stochastic matrices such that
S,, — 2, in probability, as n — oo. Further, corresponding to the null pivot for 0,
consider a sequence {K,} of local (Pitman) alternatives

(3.6) K,:0=80, =n""%, £(fixed) € R”.
Then, typically a Stein-rule version of X, is given by
(3'7) 8’1 = xﬂ - adﬂ(x;lsﬂ_ lxn) Q_lsn_lxﬂ’ dn = Chmm(QSn)’

where a is a positive constant. In terms of the asymptotic distributional risk of

n'/%(8, — 8,,)) {under K}, the dominance results have been studied earlier by
Sen (1984) Sen and Saleh (1985, 1987) and Saleh and Sen (1985, 1986), among
others. By an appeal to Theorem 2 and some standard arguments for the
incorporation of the asymptotic theory, it follows that under {K}, for every a:
0O<a<(p-1)@Bp+1)/2p), p=2, &, dominates X, in the light of the
Pitman closeness in (1.1) when n is large. Thus, the usual robust and nonpara-
metric Stein-rule estimators enjoy the Pitman closeness dominance property in
the asymptotic case under less restrictive regularity conditions.

-1

APPENDIX
Proor oF LEMMA 2.3. We provide a broad outline of the proof. Note that on
letting
= {27 T(r+1+p/2)/T(1+p/2)}""', r=0,1,...,
we have
(A1) 8No(x) = const.e™*/*xP/2 Y (Ax/2) a,

r=0
Thus, writing § = (Ax)/2 and q(8) = ¥, a,0", g(0) = q'(6)/q(8), we have
(A2) (d/dx)loggy(x) = (p/x—1)/2+ (\/2)8(A\x/2), x20.

Hence to show that (d/dx)log g(%y(x) is | in x (= 0), it suffices to show that
g'(8) <0, for every 6 > 0. Toward this, note that

g(0)=—1{q'(0)/9(8)}{q’(8)/9(0) — q"(8)/9'(8)}
-g%(8) + (20) " - {(p +2)/2}67'8(8)
—(20) 7" {»(6)g(6) - 1},

(A4) () =p+2+20(0) and I(8) = 6g(6).

At this stage we note that

(A5) g0)=E[(p+2+2K)7" [=(p+2+2EK))7,

where K is a r.v. having the power series distribution with P(K =r) =

(A.3)
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a,07/q(8), r=0,1,..., so that E(K) = [(0). Thus, g(8)»(8) > 1 and, hence,
(A.3) is nonpositive.
To establish the desired convexity property, note that

(d®/dx*)log gNo(x) = (p/x%) + (A/2)°g"(Ax/2)
= (N/8){p/0® + g"(8)},

(A.6)

where, by (A.3),
g"(0) = (26%)'(»(0)2(6) — 1) — (26) "'(»(0)g'(6) + »'(8)&(6))

= (46%) " {[»(0)2(6) — 1][»(6) + 21(8) + 2] — 41(6)g(8)}.
Thus, in order that (A.6) is nonnegative for all 8 > 0, it suffices to show that
(A.8) v(0)g(0) —1>4{1*0) —p}/{6(2v(6) —p)}, VE=0.

Since »(0)g(8) > 1, (A.8) holds automatically for all 8: /%(8) < p. Thus, we need
to consider only the case of 8: [%(8) > p. Toward this note that

(p+2+2K) " =1/v(0) — 2[K — 1(8)] /»%(8) + 4[K — 1(6)]%/»%(6)
+ {8[U(8) - K1°/»3(0)}/{p + 2 + 2K},

where [1(8) — K] and (p + 2K + 2)"! are both | in K (and hence, concor-
dant), so that

(A10)  g(8)r(8) — 1= (4V(K)}/v*(8) - {8E[K - 1(8)]°}&(8)/v*(6).

Using the recursion relations among the cumulants of a power series distribution
[viz., Johnson and Kotz (1969), page 34], we obtain that

(A.11) V(K) = 0[(/00)i(6)] = 1(6) — [&(6)»(6) —1]6/2,
E[K - 1(0)]" = () - 1%(8) + (6/4)
x[g(0)v(0) — 1][»(0) + 21(6) — 4].
From (A.10), (A.11) and (A.12), we obtain that
(A.13) v(0)g(0) — 1> {41(6)/»*(0)} {1 + 2g(0)[1(0) — 1]}
+{1+20[1 +g(0){»(8) +21(0) — 4}] /»*(6)}.
Letting a(8) = g(0)»(0) — 1 and noting that
(A.14) g(0) = [1+ a(0)]/»(6)
and

(A.15) 26/v*(6) = [2(6)/7(6)][»(8)g(8)] " = [2U(6)/»(6)][1 + a(6)] ",

(A7)

(A.9)

(A.12)
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we obtain from (A.13) that
a(8) = 41(6){1 + [2/»(0)][1 + a(8)][1(6) — 1]}
+22(0){1 + [20(8)/2(8) (1 + a(0))]
(A.16) x[1+ [1+ a(8)][»(8) +21(6) — 4]]}
3 41(0){»(8) + 21(6) — 2 + 2a(0)[1(0) — 1]}
~ w(0){»(0)[»(6) - 21(6) + 417(6)/»(6) — 81(6)/»(O)]}
Since a(8) = 0, for I(8) > 1, the right-hand side of (A.16) is greater than
41(0)[»(0) — 2][2»(8) —p — 4]
{(»(6) — 2} {»*(0)[20(6) — p — 4 + 4{1(8)/»(8)} {U(6) — 2}]}
__4I(9) 1-p/I%(8) a(9)
»(0) -2 20(6) —-p B(6)’

(A.17)

where
(A18) «(8) = [2v(8) — p][»(6) — 2][2v(8) — p - 2],
B(8) = »*(8)[1 — p/1%(8)][20(8) — p — 4{1 — 1%(8) /»(8)

(A.19) +21(0)/7(8)}].

Direct computations yield that for every [%(6) > p,
(A.20) a(0)/B(0) =1 and 41%(0)/6 < 41(6)/[»(8) — 2];
hence, (A.8) follows from (A.13), (A.17) and (A.20). O

Acknowledgments. The authors are grateful to the Editor, Associate Edi-
tor and the referees for making concrete and useful suggestions toward this
combined writeup.

REFERENCES

ABRAMOWITZ, M. and STEGUN, L. A. (1964). Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables. Appl. Math. Ser. 55. National Bureau of Standards,
Washington.

ALaMm, K. (1973). A family of admissible minimax estimators of the mean of a multivariate normal
distribution. Ann. Statist. 1 517-525.

ANDERSON, T. W. (1984). An Introduction to Multivariate Statistical Analysis, 2nd ed. Wiley, New
York.

ARNOLD, S. F. (1981). The Theory of Linear Models and Multivariate Analysis. Wiley, New York.

BERGER, J. O. (1985). Statistical Decision Theory, 2nd ed. Springer, New York.

BERGER, J. O., Bock, M. E,, BRowN, L. D., CasiLLA, G. and GLESER, L. (1977). Minimax
estimation of a normal mean vector for arbitrary quadratic loss and unknown covariance
matrix. Ann. Statist. 5 763-771.

Das GUPTA, S. and SARKAR, S. K. (1984). On TP, and log-concavity. In Inequalities in Statistics
and Probability (Y. L. Tong, ed.) 54-58. IMS, Hayward, Calif.

EFRoN, B. (1975). Biased versus unbiased estimation. Adv. in Math. 16 259-277.

HwANG, J. T. (1985). Universal domination and stochastic domination: Estimation simultaneously
under a broad class of loss functions. Ann. Statist. 13 295-314.



1386 P. K. SEN, T. KUBOKAWA AND A. K. MD. E. SALEH

JAMES, W. and STEIN, C. (1961). Estimation with quadratic loss. Proc. Fourth Berkeley Symp.
Math. Statist. Probab. 1 361-379. Univ. California Press.

JoHNSON, N. L. and Kotz, S. (1969). Distributions in Statistics: Discrete Distributions. Wiley, New
York.

KEATING, J. P. and MasoN, R. L. (1988). James-Stein estimation from an alternative perspective.
Amer. Statist. 42 160-164.

LEE, C.M.-S. (1987). On the characterization of Pitman measures of nearness. Technical Report,
Dept. Mathematics, Central Michigan Univ.

PEDDADA, S. D. and KHATTREE, R. (1986). On Pitman nearness and variance of estimators. Comm.
Statist. A—Theory Methods 15 3005-3017.

PIT™MAN, E. J. G. (1937). The closest estimates of statistical parameters. Proc. Cambridge Philos.
Soc. 33 212-222.

Rao, C. R. (1981). Some comments on the minimum mean square error as a criterion of estimation.
In Statistics and Related Topics (M. Csorgd, D. A. Dawson, J. N. K. Rao and A. K. Md.
E. Saleh, eds.) 123-143. North-Holland, Amsterdam.

Rao, C. R., KEATING, J. P. and MasoN, R. L. (1986). The Pitman nearness criterion and its
determination. Comm. Statist. A—Theory Methods 15 3173-3191.

SALEH, A. K. Mp. E. and SEN, P. K. (1985). On shrinkage M-estimators of location parameters.
Comm. Statist. A—Theory Methods 14 2313-2329.

SALEH, A. K. Mp. E. and SEN, P. K. (1986). On shrinkage R-estimation in a multiple regression
model. Comm. Statist. A—Theory Methods 15 2229-2244.

SCLOVE, S. L., MoRris, C. and RADHAKRISHNAN, R. (1972). Nonoptimality of preliminary test
estimators for the mean of a multivariate normal distribution. Ann. Math. Statist. 43
1481-1490.

SEN, P. K. (1984). A James-Stein detour of U-statistics. Comm. Statist. A—Theory Methods 13
2725-27417.

SEN, P. K. (1986a). Are BAN estimators the Pitman closest ones too? Sankhya Ser. A 48 51-58.

SEN, P. K. (1986b). On the asymptotic distributional risks of shrinkage and preliminary test versions
of maximum likelihood estimators. Sankhya Ser. A 48 354-372.

SEN, P. K. (1989). The mean-median-mode inequality and noncentral chi square distributions.
Sankhya Ser. A 51.

SEN, P. K. and SALEH, A. K. MD. E. (1985). On some shrinkage estimators of multivariate location.
Ann. Statist. 13 272-281.

SEN, P. K. and SALEH, A. K. Mp. E. (1987). On the preliminary test and shrinkage M-estimation in
linear models. Ann. Statist. 15 1580-1592.

SEN, P. K. and SALEH, A. K. M. E. (1989). Some recent developments in nonparametric and robust
shrinkage estimation theory. In Proc. Korea-Ohio State Univ. Statistics Conference
(J. C. Lee and J. P. Klein, eds.). To appear.

STEIN, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal
distribution. Proc. Third Berkeley Symp. Math. Statist. Probab. 1 197-206. Univ.
California Press.

STEIN, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9

1135-1151.
PRANAB KUMAR SEN TATsuYA KUBOKAWA
DEPARTMENTS OF BIOSTATISTICS AND STATISTICS INSTITUTE OF MATHEMATICS
UNIVERSITY OF NORTH CAROLINA UNIVERSITY OF TSUKUBA
CHAPEL HiLL, NORTH CAROLINA 27599-7400 TSUKUBA, IBARAKI 305

JAPAN
A. K. MbD. EHSANES SALEH
DEPARTMENT OF MATHEMATICS AND STATISTICS
CARLETON UNIVERSITY
OTTAWA, ONTARIO
CaNaDA K1S 5B6



